Phi 270
Fall 2013
site index
(
Site navigation is not working.
)
Table of contents
(
all details
/
none
)
⊨
1. Deduction
(more …)
1.1. Formal deductive logic
(more …)
1.1.0. Overview
—
1.1.1. Logic
—
1.1.2. Inference
—
1.1.3. Arguments
—
1.1.4. Deductive
vs.
non-deductive inference
—
1.1.5. Bounds on inference
—
1.1.6. Entailment and exclusion
—
1.1.7. Inconsistency and exhaustiveness
—
1.1.8. Formal logic
—
1.1.s. Summary
—
1.1.x. Exercises
—
1.1.xa. Exercise answers
1.2. What is said: propositions
(more …)
1.2.0. Overview
—
1.2.1. Truth values and possible worlds
—
1.2.2. Truth conditions and propositions
—
1.2.3. Ordering by content
—
1.2.4. Equivalence in content
—
1.2.5. The extremes of content
—
1.2.6. Logical space and the algebra of propositions
—
1.2.7. Contrasting content
—
1.2.8. Deductive relations in general
—
1.2.s. Summary
—
1.2.x. Exercises
—
1.2.xa. Exercise answers
1.3. Beyond saying: pragmatics
(more …)
1.3.0. Overview
—
1.3.1. A model of language
—
1.3.2. Some complications
—
1.3.3. Speech acts
—
1.3.4. Implicature
—
1.3.5. Indexicality
—
1.3.6. Vagueness
—
1.3.7. Presupposition
—
1.3.s. Summary
—
1.3.x. Exercises
—
1.3.xa. Exercise answers
1.4. General principles of deductive reasoning
(more …)
1.4.0. Overview
—
1.4.1. A closer look at entailment
—
1.4.2. Separation
—
1.4.3. Content and coverage
—
1.4.4. Relative exhaustiveness
—
1.4.5. A general framework
—
1.4.6. Reduction to entailment
—
1.4.7. Laws for entailment
—
1.4.8. Duality
—
1.4.s. Summary
—
1.4.x. Exercises
—
1.4.xa. Exercise answers
∧
2. Conjunctions
(more …)
2.1.
And
: adding content
(more …)
2.1.0. Overview
—
2.1.1. A connective
—
2.1.2. A truth function
—
2.1.3. Conjunction in English
—
2.1.4. Limits on analysis
—
2.1.5. Multiple conjunction
—
2.1.6. Some sample analyses
—
2.1.7. Logical forms
—
2.1.8. Interpretations
—
2.1.s. Summary
—
2.1.x. Exercises
—
2.1.xa. Exercise answers
2.2. Proofs: analyzing entailment
(more …)
2.2.0. Overview
—
2.2.1. Proofs as trees
—
2.2.2. Argument trees
—
2.2.3. Derivations
—
2.2.4. Rules for derivations
—
2.2.5. An example
—
2.2.6. Two perspectives on derivations
—
2.2.7. More rules
—
2.2.8. Resources
—
2.2.s. Summary
—
2.2.x. Exercises
—
2.2.xa. Exercise answers
2.3. Failed proofs and counterexamples
(more …)
2.3.0. Overview
—
2.3.1. When enough is enough
—
2.3.2. Dead ends and counterexamples
—
2.3.3. Validity through the generations
—
2.3.4. Sound and safe rules
—
2.3.5. Confirming counterexamples
—
2.3.6. Reaching decisions
—
2.3.7. Soundness and completeness
—
2.3.8. Formal validity
—
2.3.s. Summary
—
2.3.x. Exercises
—
2.3.xa. Exercise answers
2.4. Using lemmas
(more …)
2.4.0. Overview
—
2.4.1. Premises, assumptions, and suppositions
—
2.4.2. The dangers of lemmas
—
2.4.3. Lemmas for
reductio
arguments
—
2.4.4. Attachment rules
—
2.4.s. Summary
—
2.4.x. Exercises
—
2.4.xa. Exercise answers
¬
3. Negations
(more …)
3.1.
Not
: contradicting content
(more …)
3.1.0. Overview
—
3.1.1. Connectives
—
3.1.2. Contradictory propositions
—
3.1.3. Negation in English
—
3.1.4. Negated conjunctions and conjoined negations
—
3.1.5. Some sample analyses
—
3.1.s. Summary
—
3.1.x. Exercises
—
3.1.xa. Exercise answers
3.2.
Reductio
arguments: refuting suppositions
(more …)
3.2.0. Overview
—
3.2.1. The duality of premises and alternatives
—
3.2.2. Drawing negative conclusions
—
3.2.3. Some examples
—
3.2.s. Summary
—
3.2.x. Exercises
—
3.2.xa. Exercise answers
3.3. Negations as premises
(more …)
3.3.0. Overview
—
3.3.1. Indirect proof
—
3.3.2. Using lemmas to complete
reductio
s
—
3.3.3. More examples
—
3.3.s. Summary
—
3.3.x. Exercises
—
3.3.xa. Exercise answers
3.4. Counterexamples to
reductio
s
(more …)
3.4.0. Overview
—
3.4.1. When
reductio
s fail
—
3.4.2. Some examples of consistency
—
3.4.s. Summary
—
3.4.x. Exercises
—
3.4.xa. Exercise answers
3.5. Being guided by the rules
(more …)
3.5.0. Overview
—
3.5.1. Approaching derivations
—
3.5.2. An example
—
3.5.3. A procedure
—
3.5.s. Summary
—
3.5.x. Exercises
—
3.5.xa. Exercise answers
∨
4. Disjunctions
(more …)
4.1.
Or
: taking common content
(more …)
4.1.0. Overview
—
4.1.1. Hedging
—
4.1.2. Inclusive and exclusive disjunction
—
4.1.3. Disjunction in English
—
4.1.4. Further examples
—
4.1.s. Summary
—
4.1.x. Exercises
—
4.1.xa. Exercise answers
4.2. Arguing from and for alternatives
(more …)
4.2.0. Overview
—
4.2.1. Proofs by cases
—
4.2.2. Proving disjunctions
—
4.2.3. Further examples
—
4.2.4. The duality of conjunction and disjunction
—
4.2.s. Summary
—
4.2.x. Exercises
—
4.2.xa. Exercise answers
4.3. Detachment: eliminating alternatives
(more …)
4.3.0. Overview
—
4.3.1. Detachment rules
—
4.3.2. More attachment rules
—
4.3.s. Summary
—
4.3.x. Exercises
—
4.3.xa. Exercise answers
→
5. Conditionals
(more …)
5.1.
If
: trimming content
(more …)
5.1.0. Overview
—
5.1.1. Conditions
—
5.1.2. The conditional as a truth-functional connective
—
5.1.3. Doubts about truth-functionality
—
5.1.4. Examples
—
5.1.s. Summary
—
5.1.x. Exercises
—
5.1.xa. Exercise answers
5.2.
Only if
and
unless
(more …)
5.2.0. Overview
—
5.2.1.
Only if
—
5.2.2. Necessary and sufficient conditions
—
5.2.3.
Unless
—
5.2.4. Three forms compared
—
5.2.s. Summary
—
5.2.x. Exercises
—
5.2.xa. Exercise answers
5.3. Conditional proofs: bottling inference
(more …)
5.3.0. Overview
—
5.3.1. Conditionalization
—
5.3.2. Detachment
—
5.3.s. Summary
—
5.3.x. Exercises
—
5.3.xa. Exercise answers
5.4. Extreme measures
(more …)
5.4.0. Overview
—
5.4.1. Last resorts
—
5.4.2. Optional extras
—
5.4.s. Summary
—
5.4.x. Exercises
—
5.4.xa. Exercise answers
=
6. Predications
(more …)
6.1. Naming and describing
(more …)
6.1.0. Overview
—
6.1.1. A richer grammar
—
6.1.2. Logical predicates
—
6.1.3. Extensionality
—
6.1.4. Identity
—
6.1.5. Analyzing predications
—
6.1.6. Individual terms
—
6.1.7. Functors
—
6.1.8. Examples and problems
—
6.1.s. Summary
—
6.1.x. Exercises
—
6.1.xa. Exercise answers
6.2. Predicates and pronouns
(more …)
6.2.0. Overview
—
6.2.1. Abstracts
—
6.2.2. Bound variables
—
6.2.3. Variables and pronouns
—
6.2.4. Expanded and reduced forms
—
6.2.s. Summary
—
6.2.x. Exercises
—
6.2.xa. Exercise answers
6.3. Arguments involving equations
(more …)
6.3.0. Overview
—
6.3.1. Logical properties of identity
—
6.3.2. A law for aliases
—
6.3.3. Derivations for identity
—
6.3.s. Summary
—
6.3.x. Exercises
—
6.3.xa. Exercise answers
6.4. Describing models
(more …)
6.4.0. Overview
—
6.4.1. Extensions and ranges
—
6.4.2. Building structures
—
6.4.3. Structures as counterexamples
—
6.4.s. Summary
—
6.4.x. Exercises
—
6.4.xa. Exercise answers
∀
7. Generalizations
(more …)
7.1. Generalizations in English
(more …)
7.1.0. Overview
—
7.1.1. Theories of quantifier phrases
—
7.1.2. Pronouns and quantifier phrases
—
7.1.3. Finding quantifier phrases
—
7.1.4. Kinds of generalizations
—
7.1.5. Bounds and exceptions
—
7.1.s. Summary
—
7.1.x. Exercises
—
7.1.xa. Exercise answers
7.2. Generalizations and quantifiers
(more …)
7.2.0. Overview
—
7.2.1. The universal quantifier
—
7.2.2. Analyzing generalizations
—
7.2.3. Compound restrictions
—
7.2.s. Summary
—
7.2.x. Exercises
—
7.2.xa. Exercise answers
7.3. Quantifiers and connectives
(more …)
7.3.0. Overview
—
7.3.1. Generalizations and counterexamples
—
7.3.2. Generalizations as components
—
7.3.3.
Any
and
every
—
7.3.s. Summary
—
7.3.x. Exercises
—
7.3.xa. Exercise answers
7.4. Multiple generality
(more …)
7.4.0. Overview
—
7.4.1. Multiple generality
—
7.4.2. Judging the scope of quantifier phrases
—
7.4.s. Summary
—
7.4.x. Exercises
—
7.4.xa. Exercise answers
7.5. General arguments
(more …)
7.5.0. Overview
—
7.5.1. Conjunction and universal quantification
—
7.5.2. Instantiation
—
7.5.3. Generalization
—
7.5.4. Adding instances
—
7.5.5. General arguments in derivations
—
7.5.6. Syllogisms
—
7.5.s. Summary
—
7.5.x. Exercises
—
7.5.xa. Exercise answers
7.6. Insuring generality
(more …)
7.6.0. Overview
—
7.6.1. How generality can fail
—
7.6.2. Multiply general arguments
—
7.6.s. Summary
—
7.6.x. Exercises
—
7.6.xa. Exercise answers
7.7. Soundness & completeness
(more …)
7.7.0. Overview
—
7.7.1. Aspects of adequacy
—
7.7.2. Soundness
—
7.7.3. Thoroughness
—
7.7.4. Effectuality
—
7.7.s. Summary
—
7.7.x. Exercises
—
7.7.xa. Exercise answers
7.8. Finite & infinite structures
(more …)
7.8.0. Overview
—
7.8.1. Finding finite structures
—
7.8.2. The failure of decisiveness
—
7.8.s. Summary
—
7.8.x. Exercises
—
7.8.xa. Exercise answers
∃
8. Numerations
(more …)
8.1.
Some
(more …)
8.1.0. Overview
—
8.1.1. Exemplification
—
8.1.2. Obversion
—
8.1.3. Conversion
—
8.1.4. Existentials exemplified
—
8.1.5. Existential commitment
—
8.1.s. Summary
—
8.1.x. Exercises
—
8.1.xa. Exercise answers
8.2. Uniform generality
(more …)
8.2.0. Overview
—
8.2.1. General and uniformly general exemplification
—
8.2.2. Quantifier scope ambiguities
—
8.2.3. Controlling ambiguity
—
8.2.s. Summary
—
8.2.x. Exercises
—
8.2.xa. Exercise answers
8.3. Numerical quantification
(more …)
8.3.0. Overview
—
8.3.1. Else
—
8.3.2. Numerical quantifier phrases
—
8.3.3. Exactly
n
—
8.3.s. Summary
—
8.3.x. Exercises
—
8.3.xa. Exercise answers
8.4. Definite descriptions
(more …)
8.4.0. Overview
—
8.4.1. The problem of definite descriptions
—
8.4.2. Definite descriptions as quantifier phrases
—
8.4.3. Definite descriptions as individual terms
—
8.4.4. Examples: restrictive
vs.
non-restrictive relative clauses
—
8.4.s. Summary
—
8.4.x. Exercises
—
8.4.xa. Exercise answers
8.5. Proofs by choice & proofs of existence
(more …)
8.5.0. Overview
—
8.5.1. Proof by choice
—
8.5.2. Constructive and non-constructive proof
—
8.5.3. Derivations for existentials
—
8.5.4. First-order logic
—
8.5.s. Summary
—
8.5.x. Exercises
—
8.5.xa. Exercise answers
8.6. Arguments involving descriptive reference
(more …)
8.6.0. Overview
—
8.6.1. The role of definite descriptions in entailment
—
8.6.2. Derivations for the description operator
—
8.6.3. Consequences for adequacy
—
8.6.s. Summary
—
8.6.x. Exercises
—
8.6.xa. Exercise answers
Appendices
(more …)
A. Reference
(more …)
A.0. Overview
—
A.1. Definitions and notation for basic concepts
—
A.2. Logical forms
—
A.3. Truth tables
—
A.4. Derivation rules
B. Laws for relative exhaustiveness
Index and glossary
Glen Helman
01 Aug 2013