|   | 
h.
 | 
 
(∀x: Px) (∀y: Py ∧ (∃z: Pz) Lyz) Lxy
 
(∃x: Px) (∃y: Py) Lxy
  
(∀x: Px) (∀y: Py) Lxy
 | 	│∀x (Px → ∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lxy))  | 	b:7, a:14 |  
 | 	│∃x (Px ∧ ∃y (Py ∧ Lxy)) | 	5 |  
 | 	├─ | 	 |  
 | 	│ⓐ | 	 |  
 | 	│││Pa | 	(15) |  
 | 	││├─ | 	 |  
 | 	│││ⓑ | 	 |  
 | 	│││││Pb | 	(8), (19) |  
 | 	││││├─ | 	 |  
 | 	│││││ⓒ | 	 |  
 | 	││││││Pc ∧ ∃y (Py ∧ Lcy)  | 	6 |  
 | 	│││││├─ | 	 |  
| 6 Ext | 	││││││Pc  | 	(12), (17) |  
| 6 Ext | 	││││││∃y (Py ∧ Lcy)  | 	10 |  
| 7 UI | 	││││││Pb → ∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lby) | 	8 |  
| 8 MPP | 	││││││∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lby) | 	c:9 |  
| 9 UI | 	││││││(Pc ∧ ∃z (Pz ∧ Lcz)) → Lbc | 	13 |  
 | 	││││││ | 	 |  
 | 	││││││ⓓ  | 	 |  
 | 	│││││││Pd ∧ Lcd | 	(11) |  
 | 	││││││├─ | 	 |  
| 11 EG | 	│││││││∃z (Pz ∧ Lcz)  | 	X, (12) |  
| 12 Adj | 	│││││││Pc ∧ ∃z (Pz ∧ Lcz)  | 	X, (13) |  
| 13 MPP | 	│││││││Lbc  | 	(17) |  
| 14 UI | 	│││││││Pa → ∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lay) | 	15 |  
| 15 MPP | 	│││││││∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lay) | 	b:16 |  
| 16 UI | 	│││││││(Pb ∧ ∃z (Pz ∧ Lyz)) → Lab | 	20 |  
| 17 Adj | 	│││││││Pc ∧ Lbc | 	X, (18) |  
| 18 EG | 	│││││││∃z (Pz ∧ Lbz)  | 	X, (19) |  
| 19 Adj | 	│││││││Pb ∧ ∃z (Pz ∧ Lbz)  | 	X, (20)  |  
| 20 MPP | 	│││││││Lab  | 	(21) |  
 | 	│││││││● | 	 |  
 | 	││││││├─ | 	 |  
| 21 QED | 	│││││││Lab | 	10 |  
 | 	│││││├─ | 	 |  
| 10 PCh | 	││││││Lab | 	5 |  
 | 	││││├─ | 	 |  
| 5 PCh | 	│││││Lab | 	4 |  
 | 	│││├─ | 	 |  
| 4 CP | 	││││Pb → Lab | 	3 |  
 | 	││├─ | 	 |  
| 3 UG | 	│││∀y (Py → Lay)  | 	2 |  
 | 	│├─ | 	 |  
| 2 CP | 	││Pa → ∀y (Py → Lay)  | 	1 |  
 | 	├─ | 	 |  
| 1 UG | 	│∀x (Px → ∀y (Py → Lxy)) | 	 |  
 
Note that stages 10 and 11 serve only to move us from ∃y (Py ∧ Lcy) to ∃z (Pz ∧ Lcz)—i.e., to change a bound variable. If sentences that differ only in the choice of a letter for a bound variable are regarded as the same (or if a different variable had been chosen when analyzing the second premise), the assumption Pc ∧ ∃y (Py ∧ Lcy) could be used as a premise for MPP to exploit the conditional introduced at stage 9, and the derivation could then proceed along the lines of stages 13-21 above.
 
 |