1, 2 | 3: 1, 2, 3

3.4: 0, 1, 2, S, E, A

3: 5 | 4, 5, 6, 7, 8, app

P
S
Phi 270
Fall 2013
prefacecontentsbodyglssry-indx
syllabustexttestsmisc

3.4.xa. Exercise answers

1. a.
│¬ B
├─
││A ∧ ¬ B 2
│├─
2 Ext ││A
2 Ext ││¬ B
││○ A, ¬ B ⊭ ⊥
│├─
││⊥ 1
├─
1 RAA │¬ (A ∧ ¬ B)
AB¬B/¬(A¬B)
TFTT
  b.
│¬ (A ∧ B) 3,8
├─
│││A (5)
││├─
│││││●
││││├─
5 QED │││││A 4
││││
││││││¬ B
│││││├─
││││││○ A, ¬ B ⊭ ⊥
│││││├─
││││││⊥ 6
││││├─
6 IP │││││B 4
│││├─
4 Cnj ││││A ∧ B 3
││├─
3 CR │││⊥ 2
│├─
2 RAA ││¬ A 1
│││B (11)
││├─
││││││¬ A
│││││├─
││││││○ ¬ A, B ⊭ ⊥
│││││├─
││││││⊥ 10
││││├─
10 IP │││││A 9
││││
│││││●
││││├─
11 QED │││││B 9
│││├─
9 Cnj ││││A ∧ B 8
││├─
8 CR │││⊥ 7
│├─
7 RAA ││¬ B 1
├─
1 Cnj │¬ A ∧ ¬ B
AB¬(AB)/¬A¬B
TFFFT(lurks n the first gap)
FTFTF(lurks in the second gap)

 

  c.
│¬ (A ∧ B) 3
│¬ (B ∧ C) 7
├─
││A ∧ C 2
│├─
2 Ext ││A
2 Ext ││C (10)
││
││││●
│││├─
5 QED ││││A 4
│││
│││││¬ B
││││├─
││││││││¬ B
│││││││├─
││││││││○ A, ¬ B, C ⊭ ⊥
│││││││├─
││││││││⊥ 9
││││││├─
9 IP │││││││B 8
││││││
│││││││●
││││││├─
10 QED │││││││C 8
│││││├─
8 Cnj ││││││B ∧ C 7
││││├─
7 CR │││││⊥ 6
│││├─
6 IP ││││B 4
││├─
4 Cnj │││A ∧ B 3
│├─
3 CR ││⊥ 1
├─
1 RAA │¬ (A ∧ C)
ABC¬(AB),¬(BC)/¬(AC)
TFTFFT
2. a.
│¬ (A ∧ ¬ B) 2
├─
││¬ B (5)
│├─
│││││¬ A
││││├─
│││││○ ¬ A, ¬ B ⊭ ⊥
││││├─
│││││⊥ 4
│││├─
4 IP ││││A 3
│││
││││●
│││├─
5 QED ││││¬ B 3
││├─
3 Cnj │││A ∧ ¬ B 2
│├─
2 CR ││⊥ 1
├─
1 RAA │B
AB¬(A¬B)/B
FFFT
b.
│¬ (A ∧ B) 3
├─
││B ∧ A 2
│├─
2 Ext ││B (6)
2 Ext ││A (5)
││
││││●
│││├─
5 QED ││││A 4
│││
││││●
│││├─
6 QED ││││B 4
││├─
4 Cnj │││A ∧ B 3
│├─
3 CR ││⊥ 1
├─
1 RAA │¬ (B ∧ A)
c.
│¬ (A ∧ ¬ B) 3
├─
││B ∧ ¬ A 2
│├─
2 Ext ││B
2 Ext ││¬ A
││
│││││¬ A
││││├─
│││││○ ¬ A, B ⊭ ⊥
││││├─
│││││⊥ 5
│││├─
5 IP ││││A 4
│││
│││││B
││││├─
│││││○ ¬ A, B ⊭ ⊥
││││├─
│││││⊥ 6
│││├─
6 IP ││││¬ B 4
││├─
4 Cnj │││A ∧ ¬ B 3
│├─
3 CR ││⊥ 1
├─
1 RAA │¬ (B ∧ ¬ A)
AB¬(A¬B)/¬(B¬A)
FTFFTT
  d.
│¬ (A ∧ B) 3,8
│¬ (B ∧ C) 12
│B (6),(10),(14)
├─
│││A (5)
││├─
│││││●
││││├─
5 QED │││││A 4
││││
│││││●
││││├─
6 QED │││││B 4
│││├─
4 Cnj ││││A ∧ B 3
││├─
3 CR │││⊥ 2
│├─
2 RAA ││¬ A 1
│││C (15)
││├─
││││││¬ A
│││││├─
││││││││●
│││││││├─
14 QED ││││││││B 13
│││││││
││││││││●
│││││││├─
15 QED ││││││││C 13
││││││├─
13 Cnj │││││││B ∧ C 12
│││││├─
12 CR ││││││⊥ 11
││││├─
11 IP │││││A 9
││││
│││││●
││││├─
10 QED │││││B 9
│││├─
9 Cnj ││││A ∧ B 8
││├─
8 CR │││⊥ 7
│├─
7 RAA ││¬ C 1
├─
1 Cnj │¬ A ∧ ¬ C
│¬ (A ∧ B) 3
│¬ (B ∧ C) 8
│B (6),(10)
├─
│││A (5)
││├─
│││││●
││││├─
5 QED │││││A 4
││││
│││││●
││││├─
6 QED │││││B 4
│││├─
4 Cnj ││││A ∧ B 3
││├─
3 CR │││⊥ 2
│├─
2 RAA ││¬ A 1
│││C (11)
││├─
│││││●
││││├─
10 QED │││││B 9
││││
│││││●
││││├─
11 QED │││││C 9
│││├─
9 Cnj ││││B ∧ C 8
││├─
8 CR │││⊥ 7
│├─
7 RAA ││¬ C 1
├─
1 Cnj │¬ A ∧ ¬ C

The derivation at the left above exploits resources in their order of appearance; while the alternative derivation at the right chooses, at stage 8, the resource that is most closely connected with other resources of the gap in which it is exploited. Notice that derivation at the left is eventually led, at stage 12, to exploit the same resource to the same effect.

e.
│¬ (A ∧ ¬ (B ∧ ¬ (C ∧ ¬ D))) 3
├─
││A ∧ ¬ (B ∧ D) 2
│├─
2 Ext ││A (5)
2 Ext ││¬ (B ∧ D) 8
││
││││●
│││├─
5 QED ││││A 4
│││
│││││B ∧ ¬ (C ∧ ¬ D) 7
││││├─
7 Ext │││││B (10)
7 Ext │││││¬ (C ∧ ¬ D) 12
│││││
│││││││●
││││││├─
10 QED │││││││B 9
││││││
││││││││¬ D (15)
│││││││├─
│││││││││││¬ C
││││││││││├─
│││││││││││○ A, B, ¬ C, ¬ D ⊭ ⊥
││││││││││├─
│││││││││││⊥ 14
│││││││││├─
14 IP ││││││││││C 13
│││││││││
││││││││││●
│││││││││├─
15 QED ││││││││││¬ D 13
││││││││├─
13 │││││││││C ∧ ¬ D 12
│││││││├─
12 CR ││││││││⊥ 11
││││││├─
11 IP │││││││D 9
│││││├─
9 Cnj ││││││B ∧ D 8
││││├─
8 CR │││││⊥ 6
│││├─
6 RAA ││││¬ (B ∧ ¬ (C ∧ ¬ D)) 4
││├─
4 Cnj │││A ∧ ¬ (B ∧ ¬ (C ∧ ¬ D)) 3
│├─
3 CR ││⊥ 1
├─
1 RAA │¬ (A ∧ ¬ (B ∧ D))
ABCD¬(A¬(B¬(C¬D)))/¬(A¬(BD))
TTFFFFTTFTTTF
Glen Helman 01 Aug 2013