A CURL-FREE VECTOR FIELD THAT IS NOT A GRADIENT

ROBERT L. FOOTE
Math 225

Recall our main theorem about vector fields.

Theorem. Let \(R \) be an open region in \(\mathbb{R}^2 \) and let \(\mathbf{F} \) be a \(C^1 \) vector field on \(R \). The following statements about \(\mathbf{F} \) are equivalent:

1. There is a differentiable function \(f : R \to \mathbb{R} \) such that \(\nabla f = \mathbf{F} \).
2. If \(C \) is a piecewise \(C^1 \) path in \(R \), then \(\int_C \mathbf{F} \cdot d\mathbf{x} \) depends only on the endpoints of \(C \).
3. \(\oint_C \mathbf{F} \cdot d\mathbf{x} = 0 \) for every piecewise \(C^1 \) simple, closed curve in \(R \).

Furthermore, statements (1)–(3) imply

4. \(\text{curl} \mathbf{F} = 0 \),

and (4) implies (1)–(3) when \(R \) is simply connected (so all four are equivalent when \(R \) is simply connected).

The purpose of this handout is to explore what happens when \(R \) is not simply connected, that is, when there exist non-gradient vector fields with zero curl.

AN IMPORTANT EXAMPLE

Consider the vector field

\[
\mathbf{F} = \frac{-y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j}
\]

defined on \(R = \mathbb{R}^2 \setminus \{(0,0)\} \), that is, on all of \(\mathbb{R}^2 \) except the origin. Letting \(P = -y/(x^2+y^2) \) and \(Q = x/(x^2+y^2) \), it is a simple matter to show that \(\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \), and so \(\text{curl} \mathbf{F} = 0 \).

We can show that (1)–(3) are false for \(\mathbf{F} \) by finding a simple, closed curve \(C \) for which \(\oint_C \mathbf{F} \cdot d\mathbf{x} \neq 0 \). Let \(C \) be the unit circle parameterized counterclockwise by \(x = \cos t \), \(y = \sin t \), \(0 \leq t \leq 2\pi \). We have

\[
\oint_C \mathbf{F} \cdot d\mathbf{x} = \oint_C \left(\frac{-y}{x^2+y^2} \, dx + \frac{x}{x^2+y^2} \, dy \right)
\]

\[
= \int_0^{2\pi} \frac{-\sin t}{1} (-\sin t) \, dt + \frac{\cos t}{1} \cos t \, dt = \int_0^{2\pi} \, dt = 2\pi.
\]

It follows from the theorem that \(\mathbf{F} \) is not the gradient of any function defined on \(R \).
Exercise 1. Show that if \(C \) is any circle centered at the origin oriented counterclockwise, then \(\oint_C \mathbf{F} \cdot d\mathbf{x} = 2\pi \), that is, the radius of the circle does not affect the value of the integral.

Exercise 2. Let \(D \) be a disk centered at the origin. Since \(\text{curl} \mathbf{F} = 0 \), it would be very easy to use Green’s Theorem to conclude that \(\oint_C \mathbf{F} \cdot d\mathbf{x} = \iint_D \text{curl} \mathbf{F} \, dA = \iint_D 0 \, dA = 0 \), where the circle \(C \) is the boundary of \(D \), in contrast to the previous exercise. Why is the reasoning here incorrect?

Now suppose that \(\hat{R} \) is a simply connected subset of \(R \). To be concrete, suppose \(\hat{R} \) is all of \(\mathbb{R}^2 \) except the negative \(x \)-axis. Then the theorem implies that \(\mathbf{F} \) is the gradient of some function \(\hat{f}: \hat{R} \to \mathbb{R} \). Suppose further that \(\hat{R} \) is all of \(\mathbb{R}^2 \) except the positive \(x \)-axis. Then \(\mathbf{F} \) is the gradient of some function \(\tilde{f}: \tilde{R} \to \mathbb{R} \). Then the functions \(\hat{f} \) and \(\tilde{f} \) have the same gradient, namely \(\mathbf{F} \), on their common domain \(\hat{R} \cap \tilde{R} \). You might guess that if two functions have the same gradient, then they must differ by a constant. That’s true, but only if you restrict yourself to a connected set. In this case the common domain \(\hat{R} \cap \tilde{R} \) consists of two disjoint connected subsets, namely the upper and lower half planes (\(y > 0 \) on one and \(y < 0 \) on the other). Evidently the two functions differ by different constants on these two half planes, so you can’t “fix” the situation by adding a constant to one of them.

What can these functions be? Given a vector field with zero curl, you have a method for finding a function whose gradient is the vector field. It’s a bit messy to apply with this vector field, so I’ll just tell you what the answer is: it’s \(\theta \), the angle of polar coordinates, plus an arbitrary constant, of course.

Exercise 3. Verify this by implicit differentiation. To do this, first show that \(x \sin \theta = y \cos \theta \) (can you do this without dividing by anything that might be zero?). Then apply \(\frac{\partial}{\partial x} \) to both sides of this, treating \(y \) as a constant and \(\theta \) as a function of \(x \) and \(y \).

Now you may be thinking that there is a contradiction here: first we decided that \(\mathbf{F} \) is not the gradient of any function on \(R \), and then we showed that it is the gradient of \(\theta \)? The resolution of the apparent contradiction is that \(\theta \) is not a well-defined function on \(R \), even though we often treat it as such. If you start with \(\theta = 0 \) on the positive \(x \)-axis and then go counterclockwise around the origin, \(\theta \) increases. When you get close to the positive \(x \)-axis in the fourth quadrant, \(\theta \) is near \(2\pi \). There is no way to make it a continuous, let alone differentiable, function on \(R \). What about on \(\hat{R} \) and \(\tilde{R} \)? On \(\hat{R} \) you can take \(\theta \) to have values between \(-\pi \) and \(\pi \). On \(\tilde{R} \) you can take \(\theta \) to have values between \(0 \) and \(2\pi \). More generally, if \(\hat{R} \) is an arbitrary simply connected subset of \(R \), then \(\mathbf{F} \) is the gradient of some function \(\hat{f}: \hat{R} \to \mathbb{R} \). By adding a constant, you can get \(\hat{f} + C \) to agree with some suitable definition of \(\theta \) on \(\hat{R} \), but it may not agree with any of the “usual” definitions of \(\theta \) on all of \(R \).

Exercise 4. Suppose that \(\hat{R} \) is a connected, narrow spiral-shaped subregion of \(R \) that contains \((1,0)\) and \((5,0)\), but that to get from \((1,0)\) to \((5,0)\), staying in the region, you have to cross the negative \(x \)-axis. If \(\tilde{f}(1,0) = 0 \), then \(\tilde{f} \) agrees with the usual definition of \(\theta \) near \((1,0)\). What is \(\tilde{f}(5,0) \) in this case? Notice that \(\tilde{f} \) is well-defined, but that it takes on a range of values larger than \(2\pi \)!
Exercise 5. Show that the following vector field, also with domain \(R \), is the gradient of a function defined on all of \(R \):
\[
\frac{x}{x^2 + y^2} \mathbf{i} + \frac{y}{x^2 + y^2} \mathbf{j}
\]

The general case on \(R = \mathbb{R}^2 \setminus \{(0,0)\} \)

Now suppose that \(\mathbf{G} \) is an arbitrary vector field defined on \(R = \mathbb{R}^2 \setminus \{(0,0)\} \), that \(\text{curl} \mathbf{G} = 0 \), and that \(\mathbf{G} \) is not the gradient of any function. By the theorem, there must be a simple, closed curve \(C \) such that \(\oint_C \mathbf{G} \cdot d\mathbf{x} \neq 0 \). Let’s find one.

Suppose that \(C \) is a simple, closed curve in \(R \). If \(C \) does not go around the origin, then \(C \) is contained in some simply connected subregion \(\tilde{R} \) of \(R \). Then the theorem implies that \(\oint_C \mathbf{G} \cdot d\mathbf{x} = 0 \). (You can also conclude this by applying Green’s Theorem to the region bounded by \(C \).) Thus, if \(C \) is a simple, closed curve for which \(\oint_C \mathbf{G} \cdot d\mathbf{x} \neq 0 \), then \(C \) must go around the origin.

Suppose that \(C_1 \) and \(C_2 \) are two simple, closed curves in \(R \) that go around the origin counterclockwise. Furthermore, assume that they don’t intersect and that \(C_1 \) is the outer curve. (Draw a picture!) Let \(\Omega \) be the annular region between \(C_1 \) and \(C_2 \). Then \(\partial \Omega \) is \(C_1 \cup C_2 \), which is given its correct orientation by having \(C_1 \) go counterclockwise and \(C_2 \) go clockwise. By Green’s Theorem we have
\[
0 = \iint_{\Omega} \text{curl} \mathbf{G} \, dA = \oint_{\partial \Omega} \mathbf{G} \cdot d\mathbf{x} = \oint_{C_1} \mathbf{G} \cdot d\mathbf{x} - \oint_{C_2} \mathbf{G} \cdot d\mathbf{x},
\]
and so
\[
\oint_{C_1} \mathbf{G} \cdot d\mathbf{x} = \oint_{C_2} \mathbf{G} \cdot d\mathbf{x}.
\]

Exercise 6. Show that this holds even if \(C_1 \) and \(C_2 \) intersect.

Thus every simple, closed curve \(C \) that goes around the origin counterclockwise gives the same non-zero value for the integral \(\oint_C \mathbf{G} \cdot d\mathbf{x} \). (This should remind you of Exercise 1.) This number is a property of the vector field \(\mathbf{G} \). Denote this value by \(c \).

Define a new vector field \(\tilde{\mathbf{G}} \) by modifying \(\mathbf{G} \):
\[
\tilde{\mathbf{G}} = \mathbf{G} - \frac{c}{2\pi} \mathbf{F},
\]
where \(\mathbf{F} \) is the vector field in the previous section.

I claim that \(\tilde{\mathbf{G}} \) is the gradient of some function on \(R \). To see this, suppose \(C \) is a simple, closed curve in \(R \). If \(C \) doesn’t go around the origin, then, as observed above, \(\oint_C \mathbf{G} \cdot d\mathbf{x} = 0 \). For the same reason, \(\oint_C \mathbf{F} \cdot d\mathbf{x} = 0 \) (in fact \(\mathbf{F} \) is a special case of \(\mathbf{G} \)). Thus, \(\oint_C \tilde{\mathbf{G}} \cdot d\mathbf{x} = 0 \).

Now suppose \(C \) goes around the origin counterclockwise. Then
\[
\oint_C \tilde{\mathbf{G}} \cdot d\mathbf{x} = \oint_C \mathbf{G} \cdot d\mathbf{x} - \frac{c}{2\pi} \oint_C \mathbf{F} \cdot d\mathbf{x} = c - \frac{c}{2\pi} (2\pi) = 0.
\]
Since \(\oint_C \mathbf{G} \cdot d\mathbf{x} = 0 \) for every simple, closed curve \(C \) in \(R \), the theorem implies that \(\mathbf{G} \) is the gradient of some function \(\tilde{g} \): \(R \to \mathbb{R} \). Recall that \(\mathbf{F} \) is almost the gradient of \(\theta \), except that \(\theta \) isn’t a well-defined function on \(R \). Similarly, \(\mathbf{G} \) is almost the gradient of \(\tilde{g} + c\theta \). On a simply connected subregion of \(R \), \(\mathbf{G} \) will be the gradient of \(\tilde{g} + c\theta \), where \(\theta \) is some extension of the usual \(\theta \) to the subregion.

Note that this says that every vector field \(\mathbf{G} \) on \(R \) that is curl-free and not a gradient can be made into a gradient simply by adding a constant multiple of the vector field \(\mathbf{F} \) that is the main example,

\[
\mathbf{F} = \frac{-y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j}.
\]

Thus the vector field \(\mathbf{F} \) is, in some sense, the only example, at least on \(R \).

The Case of More Holes

Now suppose that \(R \subset \mathbb{R}^2 \) is a region with finitely many holes. A hole can be more than just a point; can be the result of removing a simply connected set. In general, \(R = R_0 \setminus (H_1 \cup \cdots \cup H_n) \) in which \(R_0 \) is a simply connected region, each \(H_i \) is a non-empty, closed set that is either a point or the closure of a simply connected region, and the sets \(H_1, \ldots, H_n \) are disjoint subsets of \(R_0 \).

For each index \(i \), let \(P_i(x_i, y_i) \) be a point in \(H_i \), and consider the vector field

\[
\mathbf{F}_i = \frac{-(y - y_i)}{(x - x_i)^2 + (y - y_i)^2} \mathbf{i} + \frac{x - x_i}{(x - x_i)^2 + (y - y_i)^2} \mathbf{j}.
\]

This is similar to the main example \(\mathbf{F} \), but it is centered at \(P_i \) instead of the origin. If \(\mathbf{r} \) denotes the position vector of a point \(X \) from the origin and \(r \) denotes the distance from \(X \) to the origin, note that \(\mathbf{F} \) can be written as \(\mathbf{F} = \mathbf{r}_\perp / r^2 \). In the same way, let \(\mathbf{r}_i = X - P_i \) be the position vector of \(X \) relative to \(P_i \), and let \(r = \|X - P_i\| = ||\mathbf{r}_i|| \) be the distance from \(P_i \) to \(X \). Then we have \(\mathbf{F}_i = (\mathbf{r}_i)_\perp / r_i^2 \).

If \(C \) is a simple, closed curve in \(R \) oriented counterclockwise, then \(\frac{1}{2\pi} \oint_C \mathbf{F}_i \cdot d\mathbf{x} \) is equal to \(2\pi \) or \(0 \) depending on whether \(C \) goes around \(P_i \) or not. More generally, suppose that \(C \) is piecewise \(C^1 \) loop in \(R \). It can be shown that \(\frac{1}{2\pi} \oint_C \mathbf{F}_i \cdot d\mathbf{x} \) is an integer. It is called the winding number of \(C \) around \(P_i \) because it counts how many times \(C \) goes around \(P_i \). Since \(C \) stays in \(R_i \), this integer also counts the number of times \(C \) goes around \(H_i \). The collection of integers, \(\frac{1}{2\pi} \oint_C \mathbf{F}_i \cdot d\mathbf{x} \) for \(1 \leq i \leq n \), gives considerable information about how the curve \(C \) makes its way around all of the holes in the region.

Exercise 7. Let \(P_1(0,0) \), \(P_2(1,0) \), \(P_3(0,1) \), and let \(\mathbf{F}_1 \), \(\mathbf{F}_2 \), and \(\mathbf{F}_3 \) be the corresponding vector fields. Draw a closed curve \(C \) such that

\[
\frac{1}{2\pi} \oint_C \mathbf{F}_1 \cdot d\mathbf{x} = 2, \quad \frac{1}{2\pi} \oint_C \mathbf{F}_2 \cdot d\mathbf{x} = 1, \quad \text{and} \quad \frac{1}{2\pi} \oint_C \mathbf{F}_3 \cdot d\mathbf{x} = -1.
\]

Exercise 8. Suppose \(P_1 \) is a point and \(\mathbf{F}_1 \) is the corresponding vector field. If \(C \) is a curve such that \(\frac{1}{2\pi} \oint_C \mathbf{F}_1 \cdot d\mathbf{x} = 0 \), it can be shown that \(C \) can be morphed to a point (a curve that
doesn’t go anywhere) without passing through \(P_1 \) during the morphing process. (This is a substantial theorem. It says that no matter how crazy the curve \(C \) is, if \(\oint_C \mathbf{F}_1 \cdot d\mathbf{x} = 0 \), then \(C \) can be “unwound” from around \(P_1 \).) Let \(P_1(0,0) \) and \(P_2(1,0) \), and let \(\mathbf{F}_1 \) and \(\mathbf{F}_2 \) be the corresponding vector fields. Draw a closed curve \(C \) such that

\[
\oint_C \mathbf{F}_1 \cdot d\mathbf{x} = \oint_C \mathbf{F}_2 \cdot d\mathbf{x} = 0
\]

for which it is intuitively clear that \(C \) cannot be morphed to a point without passing through at least one of the points.

Suppose \(\mathbf{G} \) is a vector field on \(R \) with \(\text{curl} \mathbf{G} = 0 \). For each \(i \), let \(C_i \) be a simple, closed curve in \(R \), oriented counterclockwise, that goes around the hole \(H_i \), but none of the other holes. Let \(c_i = \oint_{C_i} \mathbf{F}_i \cdot d\mathbf{x} \), and define a new vector field by

\[
\mathbf{\tilde{G}} = \mathbf{G} - \frac{1}{2\pi} \sum_{i=1}^{n} c_i \mathbf{F}_i.
\]

Then it can be shown that \(\mathbf{\tilde{G}} \) is the gradient of some function on \(R \). This implies that if \(\text{curl} \mathbf{G} = 0 \), then the only difference between \(\mathbf{G} \) and a gradient is some linear combination of the vector fields \(\mathbf{F}_1, \ldots, \mathbf{F}_n \).

Exercise 9. Let \(\mathbf{\tilde{G}} \) be the vector field in the paragraph above. Prove that \(\mathbf{\tilde{G}} \) is the gradient of some function on \(R \). Do this by supposing that \(C \) is a piecewise \(C^1 \), simple, closed curve in \(R \), and giving a careful explanation of why \(\oint_C \mathbf{\tilde{G}} \cdot d\mathbf{x} = 0 \).