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Abstract. This paper presents analysis of a weighted-norm least squares finite element method
for elliptic problems with boundary singularities. We use H(div) conforming Raviart-Thomas ele-
ments and continuous piecewise polynomial elements. With only a rough estimate of the power of the
singularity, we employ a simple, locally weighted L

2 norm to eliminate the pollution effect and recover
better rates of convergence. Theoretical results are carried out in weighted Sobolev spaces and in-
clude ellipticity bounds of the homogeneous least-squares functional, new weighted Raviart-Thomas
interpolation results, and error estimates in both weighted and non-weighted norms. Numerical tests
are given to confirm the theoretical estimates and to illustrate the practicality of the method
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1. Introduction. The loss of regularity of second-order partial differential equa-
tions at corners/edges of polygonal/polyhedral domains is well-known. Numerical
methods for approximating solutions to these problems often suffer either reduced
rates of accuracy or loss of convergence due to the nonsmooth solutions. For finite
element methods, the rate of convergence generally depends on both the smoothness
of the solution and the approximation properties of the finite element space used.
When the rates are diminished due to these boundary singularities, standard rates of
convergence can only be recovered with care.

In this paper we present a weighted-norm least-squares method for scalar elliptic
problems of the form:

{

−∇ · A∇u + b · ∇u + cu = f in Ω,

u = 0 on ∂Ω,
(1.1)

where A is symmetric, positive definite and b and c are smooth, bounded functions.
For the analysis in this paper we assume homogenous Dirichlet boundary conditions,
though the method may easily be applied to other boundary conditions. It is well-
known that if Ω is a polygonal/polyhedral domain in R

2/R
3 then the regularity of

system (1.1) may be limited by the geometry of Ω. To illustrate, assume that Ω ⊆ R
2

has one reentrant corner, which has interior angle ω, and (r, θ) are polar coordinates
centered at the corner. For f ∈ L2(Ω), solutions to (1.1) may be decomposed by

u = ũ + rλw,

where ũ ∈ H2(Ω) is the smooth component of u, and rλw ∈ Hα+1(Ω) for α < λ is
the singular component. The function w = w(θ) and parameter α are characteristic
of the operator and the domain. For Poisson’s equation the singular functions are
multiples of rπ/ω sin(πθ/ω). Edge singularities in R

3 may be considered analogously,
where w = w(θ, z).

∗Department of Mathematics, Purdue University; West Lafayette, IN, USA. Email:
zcai@math.purdue.edu

†Department of Mathematics and Computer Science, Wabash College, PO Box 352, Craw-
fordsville, IN 47933, USA. Email: westphac@wabash.edu.

‡This work was sponsored by the National Science Foundation under grant DMS–0511430

1



2 CAI AND WESTPHAL

The least-squares finite element approach for a variety of problems affords several
unique features. Among these is the freedom to independently choose finite element
spaces for different unknowns. In [5], system (1.1) is reformulated as a first-order
system by introducing the flux variable σ = −A∇u, and (u,σ) ∈ H1 × H(div) are
approximated using piecewise polynomial and H(div)-conforming Raviart-Thomas
elements. See also [4, 9] for results concerning least-squares minimization of this sys-
tem. For polygonal/polyhedral domains this method results in O(hα) approximations,
even for smooth data or higher-order approximation spaces. Thus, for problems with
α < 1, the convergence is suboptimal. Moreover, the reduction in convergence rate is
generally a global effect–that is, convergence throughout the entire domain is subop-
timal. This well-known pollution effect is also seen in Galerkin discretizations as well
as div-curl least-squares formulations. We overcome this difficulty by minimizing an
appropriately weighted functional. Our approach eliminates the pollution effect with
only a trivial modification of the equations, requires only crude a priori knowledge
of the power of the singularity (not the singular function itself), and can be used in
conjunction with adaptive mesh refinement. A least-squares formulation provides a
natural error estimator that can be used in an adaptive mesh refinement strategy.
We note that, while many problems are effectively treated with only mesh refinement
near boundary singularities, some problems admit solutions much less smooth than
considered here. If the approximation space used is not dense in the solution space,
then global errors may persist, despite any amount of mesh refinement. In these cases,
a weighted-norm method in the spirit of this paper can be effectively used to recover
convergence, allowing mesh refinement to be much less aggressive.

In [6], Cox and Fix use a weighted norm approach similar to our approach, but
achieve optimal convergence with continuous P1 finite elements and specialized graded
meshes. In [10, 11] the weighted norm least squares approach is presented for div-
curl functionals in 2-d and 3-d. An aggressive weighting is used to recover optimal
convergence without relying on mesh refinement. In this paper, using mixed affine
finite element spaces allows a less-aggressive weighting to achieve optimal results, even
with uniform meshes.

The organization of this paper is as follows. We define notation and detail the
problem formulation in section 2. In section 3, we show equivalence of the homoge-
neous least-squares functional to an appropriate weighted norm, present new interpo-
lation bounds for Raviart-Thomas finite element spaces in weighted norms and show
the resulting error bounds. Numerical results are given in section 4 that confirm the
theoretical error estimates and demonstrate the practicality of the method.

2. Problem Formulation. We use standard notation for the L2 norm, ‖ · ‖,
and inner product, 〈·, ·〉, and use ‖ · ‖k;Ω to denote the norm corresponding to the
Sobolev space Hk(Ω)d, omitting subscript Ω and superscript d when the domain and
dimension are clear by context. For noninteger k, Hk(Ω) represents the standard
interpolation space.

For this paper, we assume that Ω is a bounded domain in R
d, d = 2, 3, with one

boundary corner in R
2 or one boundary edge in R

3 that admits a singularity with
α < 1. Assume further that this singular point is located at the origin for d = 2 or
along the z-axis for d = 3, and denote this part of ∂Ω by E . For simplicity, we consider
only one singular point although techniques here may be applied locally to more than
one singular point. In section 4 we discuss practical implementation in such cases.
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Define the weighted Sobolev norm by

‖v‖k,β;Ω =





∑

|j|≤k

‖rβ−k+|j|Djv‖2
0;Ω





1/2

and semi-norm by

|v|k,β;Ω =





∑

|j|=k

‖rβDjv‖2
0;Ω





1/2

.

For k = 0, 1, we have

‖v‖0,β;Ω = ‖rβv‖0;Ω, ‖v‖1,β;Ω =
(

‖rβ∇v‖2
0;Ω + ‖rβ−1v‖2

0;Ω

)1/2
,

and |v|1,β;Ω = ‖rβ∇v‖0;Ω.

Then the weighted Sobolev space Hk
β (Ω) is defined by

Hk
β (Ω) = {v ∈ L2(Ω) : ‖v‖k,β;Ω < +∞}.

The dual spaces are defined by duality in the natural way. Let

D1
−β = {v ∈ H1

−β(Ω) : v = 0 on ∂Ω},

and define its dual, H−1
β (Ω), by the norm

‖v‖−1,β = sup
φ∈D1

−β

〈v, φ〉
‖φ‖1,−β

.

By introducing the new unknown σ = −A∇u and denoting the lower order terms
by Xu = b · ∇u + cu, we may expand system (1.1) to the first-order system











σ + A∇u = 0 in Ω,

∇ · σ + Xu = f in Ω,

u = 0 on ∂Ω.

(2.1)

In this paper, we consider the weighted least-squares functional

G(u,σ; f) = ‖A−1/2(σ + A∇u)‖2
0,β1

+ ‖∇ · σ + Xu − f‖2
0,β2

(2.2)

for functions (u,σ) ∈ V ×W, where

V = {v ∈ H1
β1

(Ω) : v = 0 on ∂Ω}

and

W = {τ : rβ1τ ∈ L2(Ω), rβ2∇ · τ ∈ L2(Ω)}.

The non-weighted functional (i.e., β1 = β2 = 0) yields less-than-optimal global dis-
cretization rates for problems with α < 1. We thus investigate appropriate values for
β1 and β2 to recover better rates of convergence and eliminate the pollution effect.
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The least-squares minimization problem is to find (u,σ) ∈ V ×W such that

G(u,σ; f) = inf
(v,τ )∈V×W

G(v, τ ; f).

It may be noted that the minimization above is equivalent to the following symmetric
variational problem of finding (u,σ) ∈ V ×W such that

b(u,σ; v, τ ) = f(v, τ ) for all (v, τ ) ∈ V ×W,

where the bilinear and linear forms are given by

b(u,σ; v, τ ) := 〈r2β1A−1(σ + A∇u), τ + A∇v〉 + 〈r2β2(∇ · σ + Xu),∇ · τ + Xv〉

and

f(v, τ ) := 〈r2β2f,∇ · τ + Xv〉.

Let Th be a regular affine triangulation of Ω with a meshsize of O(h), where
on element K we denote hK = diam(K). Denote by Pk(K) the standard space of
polynomials of degree ≤ k on element K, and consider the Raviart-Thomas space of
degree k on element K defined by

RTk(K) = Pk(K)d + xPk(K),

where x = (x1, ..., xd)
t. For this paper we define the spaces

Vh = {v ∈ V ∩ C0(Ω) : v|K ∈ P1(K) ∀ K ∈ Th},
Wh = {τ ∈ W : τ |K ∈ RT0(K) ∀ K ∈ Th}.

The discrete minimization problem is to find (uh,σh) ∈ Vh ×Wh such that

G(uh,σh; f) = min
(vh,τh)∈Vh×Wh

G(vh, τh; f).

This leads to a symmetric, positive definite linear system of equations that can be
efficiently solved by standard multigrid methods.

3. Theory. In the following analysis, we assume that A is a d × d matrix of
functions in L2(Ω) and that b and c are smooth, bounded functions. We further
assume that A is uniformly symmetric positive definite, that is, there exist positive
constants λ1 and λ2 such that

λ1ξ
T ξ ≤ ξT Aξ ≤ λ2ξ

T ξ, (3.1)

for all ξ ∈ R
d and almost all ξ ∈ Ω. Under an ellipticity assumption on the operator

for problem (1.1), a general regularity result for second-order problems is established
in [1]. We state here an H1

β estimate sufficient for our purposes.

Theorem 3.1 Assume that the operator L := −∇·A∇ + X satisfies the assumptions
of Theorem 5.2 in [1] and that f ∈ H−1

β (Ω). Then there exists some α > 0 such that
problem (1.1) admits the estimate

‖u‖1,β ≤ C‖f‖−1,β

for any |β| < α. In general, α depends on the operator and domain. If L = −∆, then
α = π/ω, where ω is the interior angle at E.
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Proof. See Theorem 5.4 in [1].
We note that values for α are considered in the classic works [7, 8]. In [12], values

for α are explicitly shown to satisfy α ≥ 1/2 for the Stokes and elasticity systems. In
general, the value of α for Poisson’s equation serves as an upper bound for second-
order problems on similar geometries. While the method described in this paper is
based on the value of α for the operator of the problem, we note that the exact value
of α need not be known for the method to be effective.

Let Ih be the standard interpolation operator onto Pk(K), where, for all v ∈
Hm(K),

‖v − Ihv‖s;K ≤ Chm−s
K |v|m;K (3.2)

holds for 0 ≤ s ≤ m and 1 < m ≤ k + 1. A proof of this classical result can be found
in [2].

Define the modified interpolation operator, Ih
0 , by

Ih
0 v|K =











Ihv|K , if K ∩ E = ∅,
∑

ai /∈E

v(ai)φi, if K ∩ E 6= ∅,

where ai are the nodal points corresponding to the basis functions, φi. Thus, the
modified interpolation has a value of zero at E and is identical to Ih away from E .
From [10, 11], if β > 0 then Ih

0 satisfies

∑

K∈Th

‖v − Ih
0 v‖2

1,β;K ≤ Ch2‖v‖2
2,β (3.3)

for v ∈ H2
β(Ω).

Let Ih be the standard interpolation operator from H(div) ∩ Lp(Ω) onto RTk

with p > 2. Then the following approximation properties of RTk hold (see, e.g., [3])
for any τ ∈ (Hm(K))d with 1 ≤ m ≤ k + 1,

‖τ − Ihτ‖s;K ≤ Chm−s
K |τ |m;K with s = 0, 1, (3.4)

and

‖∇ · (τ − Ihτ )‖0;K ≤ Chm
K |∇ · τ |m;K (3.5)

if ∇·τ ∈ Hm(K). For any τ ∈ (Hα(K))d and ∇·τ ∈ Hα(K) with α < 1, we assume
the following approximation properties:

‖τ − Ihτ‖ ≤ Chα̃|τ |α (3.6)

and

‖∇ · (τ − Ihτ )‖ ≤ Chα̃|∇ · τ |α (3.7)

hold for some constant α̃ ∈ (0, α].

Theorem 3.2 Assume that ∇ · τ and each τ j are in H1
β(Ω)∩Hα(Ω). Then for any

β ≥ 0, there exists a positive constant C such that

‖τ − Ihτ‖0,β ≤ Chm1 (|τ |1,β + |τ |α) (3.8)
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and that

‖∇ · (τ − Ihτ )‖0,β ≤ Chm2 (|∇ · τ |1,β + |∇ · τ |α) , (3.9)

where m1 = min{1, β + α̃}, m2 = min{1, β + α}, and C depends only on k, β, and
the shape of Ω.

Proof. We first prove the bound in (3.8). Note that (3.4) and (3.5) apply since τ

is smooth enough to be in the domain of Ih. Denote the set of elements adjacent to
E by

K0 = {K ∈ Th : K ∩ E 6= ∅}.
For any element K ∈ Th\K0, we note that τ ∈ H1(K) and that

1

cK
hK ≤ rmin ≤ r ≤ rmax ≤ rmin + cKhK , (3.10)

where rmin and rmax are the minimum and maximum distances from K to E , respec-
tively, and cK depends only on d and the shape of K (e.g., cK =

√
d for a uniform

mesh). (3.10) implies

rmax

rmin
≤ 1 + c2

K .

Now, it follows from (3.10) and (3.4) with m = 1 and s = 0 that

‖τ − Ihτ‖0,β;K = ‖rβ(τ − Ihτ )‖0;K ≤ rβ
max‖τ − Ihτ‖0;K

≤ Crβ
maxhK |τ |1;K ≤ Crβ

maxhK‖(r/rmin)β∇τ‖0;K

= C

(

rmax

rmin

)β

hK |τ |1,β;K = ChK |τ |1,β;K .

(3.11)

For any element K ∈ K0, it follows from the fact that r ≤ hK and (3.4) that

‖τ − Ihτ‖0,β;K = ‖rβ(τ − Ihτ )‖0;K ≤ hβ
K‖τ − Ihτ‖0;K

≤ Chβ+α̃
K |τ |α;K ,

which, together with (3.11), yields the bound in (3.8).
To prove (3.9), we first consider K ∈ Th\K0. A calculation identical to (3.11)

using (3.5) with m = 1 gives

‖∇ · (τ − Ihτ )‖0,β;K ≤ ChK |∇ · τ |1,β;K . (3.12)

Now consider K ∈ K0. Let Πh be the L2-projection onto discontinuous piecewise
polynomial of degree k. Working with affine elements allows the use of the well-
known commutativity property,

∇ · (Ihτ ) = Πh∇ · τ .

This, (3.5), and the approximation property of Πh gives

‖∇ · (τ − Ihτ )‖0,β;K = ‖(I − Πh)∇ · τ‖0,β;K

≤ hβ
K‖(I − Πh)∇ · τ‖0;K

≤ Chβ+α
K |∇ · τ |α;K .
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This and (3.12) leads to the bound in (3.9). The proof of the theorem is now com-
pleted.

Lemma 3.3 If β ≤ γ, then

‖φ‖0,γ ≤ C ‖φ‖0,β ∀ φ ∈ H0
β(Ω). (3.13)

Proof. Let Ω1 = Ω ∩ {r < 1}. For r < 1, since rγ ≤ rβ , we then have

‖φ‖0,γ;Ω1
= ‖rγφ‖0;Ω1

≤ ‖rβφ‖0;Ω1
= ‖φ‖0,β;Ω1

.

Now, (3.13) is a direct consequence of the fact that ‖φ‖0,γ;Ω2
≤ C ‖φ‖0,β;Ω2

, where
Ω2 = Ω \ Ω1.

The following theorem establishes equivalence of G(u,σ; 0)1/2 to the norm

|||(u,σ)|||β1,β2
:=

(

‖u‖2
1,β1

+ ‖σ‖2
0,β1

+ ‖∇ · σ‖2
0,β2

)1/2
.

Since G(uh,σh; f) = G(u − uh,σ − σh; 0), this equivalence implies that minimizing
the functional is equivalent to minimizing the error in this natural norm.

Theorem 3.4 For β1 ≤ β2 ≤ β1 + 1 and |β1| < α, there exist positive constants c0

and c1 such that

c0|||(u,σ)|||2β1,β2
≤ G(u,σ; 0) ≤ c1|||(u,σ)|||2β1,β2

(3.14)

for all (u,σ) ∈ V ×W.

Proof. We first recall the definition of the homogeneous functional

G(u,σ; 0) = ‖A−1/2(σ + A∇u)‖2
0,β1

+ ‖∇ · σ + Xu‖2
0,β2

.

Since β1−1 < β1 ≤ β2, (3.13) with the respective φ = ∇u, β = β1, γ = β2 and φ = u,
β = β1 − 1, γ = β2 implies

‖∇u‖0,β2
+ ‖u‖0,β2

≤ C (‖∇u‖0,β1
+ ‖u‖0,β1−1) = C ‖u‖1,β1

. (3.15)

These, together with the triangle inequality and the assumptions on A and X, proves
the validity of the upper bound in (3.14).

For the lower bound in (3.14), since |β1| < α, Theorem 3.1 with β = β1 and the
triangle inequality gives

‖u‖1,β1
≤ C‖ − ∇ · A∇u + Xu‖−1,β1

≤ C(‖∇ · σ + ∇ · A∇u‖−1,β1
+ ‖∇ · σ + Xu‖−1,β1

).
(3.16)

We consider each term on the right side above separately. For the first term, integra-
tion by parts and the Cauchy-Schwarz inequality give

‖∇ · σ + ∇ · A∇u‖−1,β1
= sup

φ∈D1

−β1

〈∇ · (σ + A∇u), φ〉
‖φ‖1,−β1

= sup
φ∈D1

−β1

〈−rβ1(σ + A∇u), r−β1∇φ〉
‖φ‖1,−β1

≤ ‖rβ1(σ + A∇u)‖ sup
φ∈D1

−β1

‖∇φ‖0,−β1

‖φ‖1,−β1

≤ ‖σ + A∇u‖0,β1
.

(3.17)
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Since β2 ≤ β1 + 1, (3.13) with β = −(β1 + 1) and γ = −β2 gives

‖φ‖0,−β2
≤ C ‖φ‖0,−(β1+1) = C ‖r−β1−1φ‖ ≤ C ‖φ‖1,−β1

. (3.18)

Now, the second term may be bounded similarly using the Cauchy-Schwarz inequality
and (3.18),

‖∇ · σ + Xu‖−1,β1
= sup

φ∈D1

−β1

〈∇ · σ + Xu, φ〉
‖φ‖1,−β1

= sup
φ∈D1

−β1

〈rβ2(∇ · σ + Xu), r−β2φ〉
‖φ‖1,−β1

≤ ‖∇ · σ + Xu‖0,β2
sup

φ∈D1

−β1

‖φ‖0,−β2

‖φ‖1,−β1

≤ C ‖∇ · σ + Xu‖0,β2
.

(3.19)

Combining equations (3.16), (3.17), and (3.19) give

‖u‖1,β1
≤ CG(u,σ; 0)1/2. (3.20)

It follows from the triangle inequality, (3.1), (3.20), and (3.15) that

‖σ‖0,β1
+ ‖∇ · σ‖0,β2

≤ ‖σ + A∇u‖0,β1
+ ‖A∇u‖0,β1

+ ‖∇ · σ + Xu‖0,β2
+ ‖Xu‖0,β2

≤ CG(u,σ; 0)1/2 + C‖u‖1,β1
+ C(‖∇u‖0,β2

+ ‖u‖0,β2
)

≤ CG(u,σ; 0)1/2,

which, together with (3.20), implies the lower bound in (3.14) and, hence, completes
the proof of the theorem.

We may now prove error estimates.

Theorem 3.5 Let (u,σ) ∈ V ×W be the solution of system (2.1) and (uh,σh) be the
minimizer of the weighted functional (2.2) over Vh ×Wh. Assume that f ∈ Hα(Ω).
Then for β1 ∈ [1 − α, α) and β2 ∈ [β1, β1 + 1], the following error estimate holds

|||(u − uh,σ − σh)|||β1,β2
≤ Chm1 (‖u‖2,β1

+ ‖u‖1+α + ‖f‖α)

with m1 = min{1, β1 + α̃}.

Proof. For any (v, τ ) ∈ Vh ×Wh, it follows from Theorem 3.4 and the orthogo-
nality property that

c0|||(u − uh,σ − σh)|||2β1,β2
≤ G(u − uh,σ − σh; 0)

= G(u − vh,σ − τh; 0) ≤ c1|||(u − vh,σ − τh)|||2β1,β2
,
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which implies

|||(u − uh,σ − σh)|||2β1,β2
≤ c1

c0
inf

(v,τ )∈Vh×Wh
|||(u − v,σ − τ )|||2β1,β2

≤ C

(

inf
v∈V

‖u − v‖2
1,β1

+ inf
τ∈Wh

‖σ − τ‖2
0,β1

+ inf
τ∈Wh

‖∇ · (σ − τ )‖2
0,β2

)

.

This, with the approximation properties in (3.3), (3.8), and (3.9) results in

|||(u − uh,σ − σh)|||2β1,β2
≤ Ch2m1

(

‖u‖2
2,β1

+ |σ|21,β1
+ |σ|2α + |∇ · σ|2α

)

.

Choosing β1 ≥ 1 − α ensures that u ∈ H2
β1

(Ω). The terms above involving σ each
may be bounded as follows:

|σ|1,β1
= |A∇u|1,β1

≤ C‖u‖2,β1
,

|σ|α = |A∇u|α ≤ C‖u‖1+α,

|∇ · σ|α = |f − Xu|α ≤ |f |α + |Xu|α ≤ |f |α + C‖u‖1+α,

and the theorem follows by combining these bounds above.
Theorem 3.5 shows improvement in the order of approximation by choosing

β1 ∈ (0, α]. We note that Theorem 3.5 assumes β1 ≥ 1−α to be consistent with inter-
polation bound (3.3). In practice this restriction is unnecessary. Choosing β1 = 1−α
restores exactly O(h) convergence. Since for many elliptic problems (Poisson, Stokes,
linear elasticity, etc.) we have α ∈ [0.5, 1), we may choose β1 ∈ [1 − α, α) or simply
β1 = 0.5. This flexibility in parameter choice shows that almost no a priori infor-
mation of the singular solutions is required for this approach to apply. Rough lower
bounds on α suffice.

We also may choose to apply the techniques here locally to each singular point
in the domain. The loss of smoothness of the solution at irregular boundary points
is a local phenomenon, but it causes global difficulties. Our motivation is to provide
a local treatment that eliminates the global effect of the irregular boundary point.
To this end, let ΩR = {x ∈ Ω : r > R} be a subdomain of Ω of fixed size that does
not include E . Since on ΩR the norms |||(u,σ)|||0,0 and |||(u,σ)|||β1,β2

are equivalent,
Theorem 3.5 indicates that the error is reduced at optimal asymptotic rates away
from E–thus eliminating the pollution effect.

We conclude this section with a brief justification of the reduction of the error
with respect to a non-weighted norm.

Theorem 3.6 Let β1 ≥ 1 − α̃. Then under the same assumptions as Theorem 3.5,
the error in approximating σ satisfies

‖σ − σh‖ ≤ C hα̃, (3.21)

where C is independent of h.

Proof. By the triangle inequality we take

‖σ − σh‖ ≤ ‖σ − Ihσ‖ + ‖σh − Ihσ‖ (3.22)
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and consider the terms above separately. The first term may be bounded by (3.6),

‖σ − Ihσ‖ ≤ Chα̃|σ|α. (3.23)

For the second term, we require an inequality proved in [10]:

‖τh‖ ≤ Ch−δ‖τh‖0,δ (3.24)

for δ > 0 and all τh ∈ Wh. Now, using (3.24), the triangle inequality, Theorem 3.5
and (3.8) results in

‖σh − Ihσ‖ ≤ Ch−β1‖σh − Ihσ‖0,β1

≤ Ch−β1

(

‖σ − σh‖0,β1
+ ‖σ − Ihσ‖0,β1

)

≤ C h−β1hβ1+α̃ ≤ C hα̃.

(3.25)

Combining (3.22), (3.23) and (3.25) yields the bound in (3.21), and thus completes
the theorem.

4. Numerical Results. In this section we validate the weighted norm method
by presenting two numerical test problems. Define the domain Ω = {(r, θ) : r < 1, θ ∈
(0, 7π/4)} as pictured in figure 4.1, which results in singularities with α = 4/7.

While the analysis in this paper assumes one singular corner with norms weighted
by rβ1 and rβ2 , generalization to more than one singular corner is straightforward.
We illustrate that here by defining the local weight functions

wi =

{

(r/R)
βi for r < R,

1 for r ≥ R,

for i = 1, 2 and R = 0.25. We minimize the weighted functional

G(u,σ; f) = ‖w1A
−1/2(σ + A∇u)‖2 + ‖w2(∇ · σ + b · ∇u + cu − f)‖2,

for uh using continuous P1 finite elements and σh using RT0 elements. We take
β1 = β2 = 0.57 ≈ α as the power of the weight functions. A regular triangulation of
the domain is used, where the meshsize parameter is h = minK∈T hdiam(K).

Ω0

Ω1

Fig. 4.1. Test domain Ω, partitioned into subdomains Ω0 and Ω1, and the initial discretization,
M1.

Solving on the sequence of discretizations described in table 4.1, we compare the
computed convergence rate from the two finest meshes and compare to the asymptotic
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mesh # elements h

M1 1576 5.72e-2

M2 6304 2.86e-2

M3 25216 1.43e-2

M4 100864 7.15e-3
Table 4.1

Computational meshes used for both example problems.

rate that the interpolant admits (e.g., see equations (3.2) and (3.4)). We refer to this
as the asymptotic optimal convergence rate (i.e., asy. opt. in table 4.2).

We denote the exact solution by u, strongly impose Dirichlet boundary conditions
on ∂Ω, and compute the right side function f by analytically computing

f = −∇ · A∇u + b · ∇u + cu.

We also analytically define σ = −A∇u for comparison to the numerical approxima-
tion, σh.

Problem 1: Poisson’s Equation. As a baseline case we begin with the Laplace operator,

A =

(

1 0
0 1

)

, b =

(

0
0

)

, and c = 0.

The exact solution is chosen to be u = rα sin (αθ), and in this case f = 0.

Problem 2: Convection Dominated Anisotropic Diffusion. We now consider an opera-
tor consisting of anisotropic diffusion dominated by a strong convection with a small
reaction term,

A =

(

0.1 0
0 1

)

, b =

(

10
5

)

, and c = 1.

The exact solution in this case is chosen to be u = r̃α sin (αθ̃), where (r̃, θ̃) are
polar coordinates in the rescaled domain defined by (x̃1, x̃2)

t = A−1/2(x1, x2)
t. The

resulting data function satisfies f ∈ Hk(Ω) for any k < α and takes the form

f = 10αr̃α−1 sin
(

(α − 1)θ̃
)

+ 5αr̃α−1 cos
(

(α − 1)θ̃
)

+ r̃α sinαθ̃.

To distinguish the rates of convergence close to and far from the singular point we
define the following partitioning of the domain: Ω0 = {r < 1/4} ∩Ω and Ω1 = Ω\Ω0.
Thus, Ω0 contains the singular point and Ω1 does not. We solve the problem in
Ω, but monitor the error in these subdomains as measured in the functional norm,
G1/2 = G(uh,σh; f)1/2, the L2 errors in σ, and the H1 seminorm error in u.

Table 4.2 summarizes the computational results of the two problems. In both
problems, the weighted functional is reduced at (or very nearly at) optimal O(h),
as predicted by Theorem 3.5. This rate is seen on both partitions of the domain.
For both ‖σ − σh‖ and |u − uh|1, the optimal rates are O(h4/7) and O(h) in Ω0

and Ω1 respectively. Both example problems have similar behavior, though example
1 approaches the asymptotic rate faster than the more challenging example 2. The



12 CAI AND WESTPHAL

Problem 1 Problem 2

G1/2 Ω Ω0 Ω1 Ω Ω0 Ω1

mesh M1 8.57e-2 7.65e-2 3.84e-2 8.94e-1 7.45e-1 4.94e-1

M2 4.30e-2 3.85e-2 1.91e-2 4.67e-1 3.94e-1 2.49e-1

M3 2.15e-2 1.93e-2 9.52e-3 2.40e-1 2.05e-1 1.25e-1

M4 1.08e-2 9.66e-3 4.75e-3 1.23e-1 1.06e-2 6.23e-2

conv. rate 1.00 1.00 1.00 0.98 0.96 1.00

asy. opt. 1 1 1 1 1 1

‖σ − σh‖ Ω Ω0 Ω1 Ω Ω0 Ω1

mesh M1 1.19e-1 1.16e-1 2.84e-2 8.60e-2 8.12e-2 2.84e-2

M2 8.15e-2 8.03e-2 1.39e-2 5.21e-2 5.06e-2 1.26e-2

M3 5.52e-2 5.48e-2 6.93e-3 3.21e-2 3.16e-2 5.84e-3

M4 3.73e-2 3.72e-2 3.46e-3 2.03e-2 2.02e-2 2.79e-3

conv. rate 0.57 0.56 1.00 0.61 0.60 1.05

asy. opt. 4/7 4/7 1 4/7 4/7 1

|u − uh|1 Ω Ω0 Ω1 Ω Ω0 Ω1

mesh M1 1.10e-1 1.07e-1 2.58e-2 2.51e-1 2.41e-1 7.17e-2

M2 7.42e-2 7.31e-2 1.30e-2 1.66e-1 1.62e-1 3.56e-2

M3 4.99e-2 4.95e-2 6.51e-3 1.09e-1 1.07e-1 1.75e-2

M4 3.36e-2 3.34e-2 3.26e-3 7.12e-2 7.07e-2 8.66e-3

conv. rate 0.57 0.57 1.00 0.61 0.60 1.02

asy. opt. 4/7 4/7 1 4/7 4/7 1
Table 4.2

Numerical results for Problems 1 and 2.

results also show no pollution effect as evidenced by a clear distinction in convergence
rates between partitions Ω0 and Ω1.

We also note that in (3.6) and (3.7) we assume α̃ ∈ (0, α]. The rates we achieve
in table 4.2 indicate that α̃ = α. We also observe this same result in many numerical
tests not shown here.
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