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Abstract.

A weighted-norm least-squares method is considered for the numerical approximation of solutions
that have singularities at the boundary. While many methods suffer from a global loss of accuracy
due to boundary singularities, the least-squares method can be particularly sensitive to a loss of
regularity. The method we describe here requires only a rough lower bound on the power of the
singularity and can be applied to a wide range of elliptic equations. Optimal order discretization
accuracy is achieved in weighted H1, and functional norms and L2 accuracy is retained for boundary
value problems with a dominant div/curl operator. Our analysis, including interpolation bounds
and several Poincaré type inequalities, are carried out in appropriately weighted Sobolev spaces.
Numerical results confirm the error bounds predicted in the analysis.

1. Introduction. In this paper, we develop a method for treating div/curl sys-
tems with reduced regularity. While motivated by first-order systems that arise from
second-order elliptic boundary value problems, div/curl systems appear in many con-
texts, for example, in Maxwell’s equations and in the vorticity from of Stokes equa-
tions. These problems have the fortunate property of a guaranteed smooth solution
as long as the data and domain are smooth. However, many problems of interest are
posed in non-smooth domains and, as a consequence, lose this property at a finite
number of points on the boundary in two dimensions or along curves on the boundary
in three dimensions. In the present paper, we study two-dimensional problems that
have non-smooth solutions at irregular boundary points, that is, points that are cor-
ners of polygonal domains, locations of changing boundary condition type, or both.
Similar behavior occurs in problems with discontinuous material coefficients and the
methods presented here can easily be extended to that situation.

Standard solution techniques that attempt to approximately solve a div/curl sys-
tem with reduced regularity using H1-conforming finite elements will, in general, fail
to converge. This phenomenon can be explained by noting that the Sobolev space
(H1)2 is a closed subspace of H(div) ∩H(curl) (see section 2), which implies either
that (H1)2 = H(div) ∩H(curl), the case of full regularity, or (H1)2 is a proper sub-
space. In this case, the co-dimension is finite and is spanned by so-called singular
functions. In the presence of reduced regularity, the solution will, in general, not
be in (H1)2. A standard finite element method using H1-conforming elements will
converge to the element of (H1)2 closest to the true solution in the H(div)∩H(curl)
norm. Local mesh refinement will not alter this outcome.

If a basis for the singular functions is known, it can be incorporated directly
into the finite element space (c.f.[10, 16, 24]). In [3, 4], this approach is applied to
div/curl systems and shown to restore optimal convergence throughout the domain
at a minimal additional cost. For some two-dimensional problems, the singular basis
functions are known and can be included in the finite element space. For the other
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problems, or in three dimensions, the exact character of the singular functions is less
well understood which makes this approach more difficult to implement.

As a different type of remedy for this so-called pollution effect, least-squares
methods based on inverse norms can be effective for problems with irregular boundary
points, discontinuous coefficients, and data in H−1. For example, in [5, 8, 11–13, 19],
the functional is posed in terms of H−1-norms rather than L2-norms, resulting in
optimal L2-approximations to the solution. A more recent approach, called FOSLL∗,
uses an inverse norm induced by the equations, and is shown in [14, 22] to be more
efficient than the H−1-norm methods.

Graded mesh refinement in weighted Sobolev spaces has been shown to be effective
in restoring optimal convergence, in L2- and H1-norms, in the context of a Galerkin
formulation of second-order elliptic problems with reduced regularity (c.f. [2], [1]).
However, in that context, the solution is in H1. Convergence would occur, although
more slowly, without weighting and mesh refinement.

In [15], a weighted norm and a sequence of graded meshes is used in an H(div)
least-squares functional, arising from a second-order elliptic problem, to restore op-
timal convergence for the primal variable, in both L2- and H1-norms, if the flux
variable is approximated in a finite element space satisfying the grid decomposition
property, for example, Raviart-Thomas elements (c.f.[6]). The flux variable converges
in a weighted H(div)-norm.

In this paper we examine div/curl systems that lack regularity within the first-
order system least-squares (FOSLS) framework. The basic FOSLS approach is to
recast the original system as an appropriate first-order system and apply an L2 min-
imization principle over the residual of the equations. If possible, this reformulation
is done by minimizing a functional whose quadratic part is equivalent to the product
H1-norm, indicating that the process is similar to solving a weakly coupled system
of Poisson-like equations. This equivalence also guarantees optimal H1-accuracy for
standard discretizations. For div/curl systems with reduced regularity, as briefly men-
tioned above, the L2 based functional fails to be H1-equivalent and, as a consequence,
standard discretizations suffer from the pollution effect. Here, a weighted-norm least-
squares method is developed that restores optimal convergence using H1-conforming
finite elements without graded mesh refinement. It replaces the L2-norms in the
FOSLS functional with weighted L2-norms, making the functional norm equivalent to
a weighted H1-norm. With an appropriate weighting function, this method recovers
optimal order accuracy in the weighted L2- and H1-norms, and retains optimal L2

convergence even near the singularity. Our method requires only the power of the
singularity (not the actual singular solution) to be known a priori and, in practice,
can be used with only a rough estimate of the power of the singularity, which can be
adaptively determined if unknown (c.f.[4]).

The method developed here has some similarity to [15], but considers an H(div)∩
H(curl) functional and considers more general boundary conditions. Most impor-
tantly, our analysis admits a more aggressive weighting, resulting in optimal order
accuracy in the weighted norms without mesh refinement. In addition, we prove sev-
eral Poincaré type inequalities in weighted Sobolev spaces under a variety of boundary
conditions that, in addition to being necessary for our main result, may be of inde-
pendent interest.

We use Poisson’s equation on a domain with a reentrant corner as a model problem
and as the formal setting for analysis. The resulting div/curl system is the focus. The
analysis in this paper is restricted to two dimensions. However, the approach suggests
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a natural generalization to problems with reduced regularity due to discontinuous
coefficients and to problems in three dimensions.

This paper is organized as follows. Section 2 contains notation and preliminary
discussion. In section 3, the weighted FOSLS functionals are described. Section 4
contains Poincaré inequalities and regularity results in weighted Sobolev spaces. Error
bounds for the weighted FOSLS functional are presented in section 5 and section 6
contains computational results.

2. Singular solutions and preliminaries. For vector function u = (u1, u2)
t,

let the divergence and curl of u be defined in the standard way: ∇ · u = ∂xu1 + ∂yu2

and ∇× u = ∂xu2 − ∂yu1. Further, define the formal adjoint of the curl operator by

∇⊥q =

(

∂yq
−∂xq

)

.

We use standard notation for Sobolev spaces Hk(Ω)d, corresponding inner product
(·, ·)k,Ω, and norm ‖ ·‖k,Ω, for k ≥ 0. We drop subscript Ω and superscript d when the
domain and dimension are clear by context. Since H0(Ω) coincides with L2(Ω) we
often denote ‖ · ‖0 by ‖ · ‖. Define the subspaces of L2(Ω) induced by the divergence
and curl of u by

H(div) = {u ∈ L2(Ω) : ‖∇ · u‖ <∞},
H(curl) = {u ∈ L2(Ω) : ‖∇ × u‖ <∞}.

We also make use of the following general inequalities for nonnegative a and b:

|a|2 + |b|2 ≤ |a+ b|2 ≤ 2(|a|2 + |b|2). (2.1)

Consider the function f(r, θ) = ra in two dimensional polar coordinates. Assume
that the origin lies on the boundary of domain

Ωw = {(r, θ) : 0 < r < R, 0 < θ < ω < 2π},

as pictured in figure 2.1. By a direct computation it is clear that f ∈ Hk(Ω) only for
k < a+ 1.

ω

R

Fig. 2.1. Simple wedge-shaped domain, Ωw.

Now, consider Poisson’s equation on a domain in R
2 with a corner of interior angle

ω. It is well known that, for the case of Dirichlet or Neumann boundary conditions,
the solutions of this boundary value problem may include those with radial part of
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the form p ∼ r
π

ω in a local polar coordinate system centered at the corner. Thus, for
the case of reentrant corners, ω > π, the solution fails to be in H2(Ω) and we say that
the problem has a singularity (or singular solution). For problems with Dirichlet and
Neumann boundary conditions meeting at the corner, solutions may have components
of the form p ∼ r

π

(2ω) . Thus, for mixed boundary conditions, singularities may occur
at corners with ω > π/2. We now explore this issue in more detail.

Define the power of the singularity to be α = π/ω for Dirichlet or Neumann
boundary conditions and α = π/(2ω) for mixed boundary conditions. The solution
to Poisson’s equation may be written as

p(r, θ) = p0(r, θ) + s(r, θ),

where p0(r, θ) ∈ H2(Ω) and s(r, θ) ∈ H1+m(Ω) for m < α. The singular part of the
solution has the form

s(r, θ) = rα(κ1 sin(αθ) + κ2 cos(αθ)),

where the values of κ1 and κ2 depend on boundary conditions (see [17, 18]).

For the FOSLS formulation of this problem, we may similarly decompose unknown
u = ∇p as

u(r, θ) = u0(r, θ) + ∇s(r, θ),

where ∇s(r, θ) has the form

∇s(r, θ) = αrα−1

(

κ1 sin(α− 1)θ + κ2 cos(α− 1)θ
κ1 cos(α− 1)θ − κ2 sin(α− 1)θ

)

.

Thus, the unknown u(r, θ) is in Hk(Ω) only for k < α.

For example, consider Poisson’s equation posed on the simple domain in fig-
ure 2.1. Let the solution to this boundary value problem in polar coordinates be
p = χ(r)r

2
3 sin(2θ/3), where χ(r) is a smooth transition function that is 1 on a plat-

form near the origin and vanishes at the boundaries not adjacent to the origin. Then,
p = 0 on ∂Ω and

∆p =
1

r
∂r(r∂rp) +

1

r2
∂2

θθp

=
(

r
2
3χ′′(r) + 7

3r
−1
3 χ′(r)

)

sin(2θ/3),

and, thus, it is clear that ∆p ∈ L2(Ω), but p /∈ H2(Ω). We say this problem fails to
provide full lifting of the data (from L2(Ω) to H2(Ω) e.g.). The solution, u = ∇p, is,
thus, not in H1(Ω).

3. Weighted-norm least squares. As before, let Ω be a domain with a corner
of interior angle ω at the origin, and we may, without loss of generality, further assume
diam(Ω) ≤ 1. For f ∈ L2(Ω), let p satisfy











−∆p = f, in Ω,

p = 0, on ΓD,

n · ∇p = 0, on ΓN ,

(3.1)
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where n is the outward unit normal to Ω and ∂Ω = Γ̄D ∪ Γ̄N . When this problem
is H2 regular, the normal FOSLS methodology is to introduce the new unknown,
u = ∇p, and rewrite system (3.1) as



















































u −∇p = 0, in Ω,

−∇ · u = f, in Ω,

∇× u = 0, in Ω,

τ · u = 0, on ΓD,

n · u = 0, on ΓN ,

p = 0, on ΓD,

n · ∇p = 0, on ΓN .

(3.2)

Here, τ is the counter-clockwise unit tangental vector to Ω. Since this system can be
posed completely in terms of u, we may decouple the equations in (3.2), solve for u
first, and then recover p from u. To this end, define the two L2-norm functionals,

G(u; f) = ‖∇ · u + f‖2 + ‖∇ × u‖2,

G2(p;u) = ‖u −∇p‖2,

and the spaces,

V = {v ∈ H1(Ω) : τ · v = 0 on ΓD, n · v = 0 on ΓN},
W = {q ∈ H1(Ω) : q = 0 on ΓD}.

Thus, the two-stage solution process is to minimize G(v; f) over V and then, given
the minimizer, u, minimize G2 over W:

(1) G(u; f) = inf
v∈V

G(v; f),

(2) G2(p;u) = inf
q∈W

G2(q;u).
(3.3)

The goal of the FOSLS methodology is, generally, to formulate functionals whose
quadratic part is equivalent to the H1 norm whenever possible. The second stage
functional is H1 equivalent and the solution we seek is always in H1. The first stage
functional, however, is not always H1 equivalent. For domains with reentrant corners,
there is no H1 sequence of functions that converges to the solution in the H(div) ∩
H(curl) norm. To illustrate, consider the example above where p = χ(r)r

2
3 sin(2θ/3)

and u = ∇p. A simple computation reveals that ∇·u,∇×u ∈ L2(Ω), but u /∈ H1(Ω).

Define the weighted functional by

Gw(u; f) = ‖w(∇ · u + f)‖2 + ‖w∇× u‖2, (3.4)

where the weight function has the form w = rβ for some β > 0.

Define the weighted Sobolev norm, ‖ · ‖k,β , on Ω in terms of the standard L2

norm, ‖ · ‖0, by

‖q‖k,β = (
∑

|j|≤k

‖rβ−k+|j|Djq‖2
0)

1/2, (3.5)
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where Dj is the standard distributional derivative of order j. Similarly, define the
weighted seminorm by

|q|k,β = (
∑

|j|=k

‖rβ−k+|j|Djq‖2
0)

1/2 (3.6)

and the associated weighted Sobolev space by

Hk
β (Ω) = {q : ‖q‖k,β <∞}. (3.7)

Define the div/curl operator, L, and vector f by L =

(

∇·
∇×

)

and f =

(

f
0

)

. We

may now write the weighted functional from (3.4) as

Gw(u; f) = ‖Lu − f‖2
0,β .

The weighted-norm least-squares minimization problem for the first-stage solution is
then: find u ∈ V such that

Gw(u; f) = inf
v∈V

Gw(v; f).

The second-stage solution for p remains as described above. We seek values of β that
make H1(Ω) dense in H(div) ∩ H(curl) in the weighted functional norm and result
in the most accurate discretizations possible.

For the discrete problem, we may choose any finite dimensional subset of H1 over
which to minimize the weighted functional. Let Ph denote the space of C0 piecewise
polynomial (or tensor product) elements on triangles (or quadrilaterals) of meshsize
h and Vh the subspace of Ph that satisfies the appropriate boundary conditions on
Ω:

Vh = {vh ∈ Ph : τ · vh = 0 on ΓD, n · vh = 0 on ΓN}.

The discrete weighted-norm least-squares minimization problem is, then, to minimize
the discrete functional: find uh ∈ Vh such that

Gw(uh; f) = min
v

h∈Vh

Gw(vh; f). (3.8)

By unweighting the equations near the singularity, the functional is freed from
trying to approximate the solution (which is not in H1(Ω)) in the H1 sense near
the singularity. But, away from the singularity, the weighted functional retains the
same character as the normal non-weighted functional. We now consider the choice
of weight parameter β and its relation to weighted and nonweighted a priori error
bounds on the approximated solution.

4. Poincaré Bounds and Regularity Estimates. In this section, we estab-
lish several theoretical results in weighted Sobolev spaces and error bounds for the
weighted-norm method.

Here, we establish several Poincaré bounds in the domain Ωw. We first prove
a result for the scalar pure Neumann and pure Dirichlet problems, and then for the
scalar mixed boundary condition problem. These results lead to a Poincaré inequality
for the vector case.
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Lemma 4.1 Take Ω = Ωw and let β > 0, ε > 0 and γ = β−3/2−ε. Further, assume
that γ 6= −2. For functions q ∈ H1

β(Ω), with rβ−ε∇q, rγ+1∇q ∈ L2(Ω), that can be
chosen to satisfy

∫∫

Ω

rγ q(r, θ) r dr dθ = 0, (4.1)

we have the bound:

‖q‖0,β−1 ≤ C(ε)‖∇q‖0,β−ε, (4.2)

where C(ε) depends on ε, β, and Ω and C(ε) → ∞ as ε→ 0.

Proof. For any two points (r, θ) and (r0, θ0) in Ω, write q(r, θ) as

q(r, θ) = q(r0, θ0) +

∫ r

r0

∂q(r̂, θ)

∂r̂
dr̂ +

∫ θ

θ0

∂q(r0, θ̂)

∂θ̂
dθ̂.

Multiplying both sides of the equation by rγ+1
0 , integrating with respect to r0 and θ0

over Ω, and Fubini’s theorem yield

Rγ+2ω

γ + 2
q(r, θ)

=

∫ ω

0

∫ R

0

∫ r

r0

rγ+1
0

∂q(r̂, θ)

∂r̂
dr̂ dr0 dθ0 +

∫ ω

0

∫ R

0

∫ θ

θ0

rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ̂ dr0 dθ0

= ω

∫ r

0

∫ r̂

0

rγ+1
0

∂q(r̂, θ)

∂r̂
dr0 dr̂ − ω

∫ R

r

∫ R

r̂

rγ+1
0

∂q(r̂, θ)

∂r̂
dr0 dr̂

+

∫ R

0

∫ θ

0

∫ θ̂

0

rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ0 dθ̂ dr0 −

∫ R

0

∫ ω

θ

∫ ω

θ̂

rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ0 dθ̂ dr0

=
ω

γ + 2

∫ R

0

r̂γ+2 ∂q(r̂, θ)

∂r̂
dr̂ − ωRγ+2

γ + 2

∫ R

r

∂q(r̂, θ)

∂r̂
dr̂

+

∫ R

0

∫ ω

0

θ̂ rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ̂ dr0 − ω

∫ R

0

∫ ω

0

rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ̂ dr0.

Note that above q is, by assumption, sufficiently smooth to apply Fubini’s theorem.
By the triangle inequality we have that

∣

∣

∣

∣

Rγ+2ω

γ + 2
q(r, θ)

∣

∣

∣

∣

≤ ω

γ + 2

∫ R

0

r̂γ+2

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂ +
ωRγ+2

γ + 2

∫ R

r

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

+ 2ω

∫ R

0

∫ ω

0

rγ+1
0

∣

∣

∣

∣

∣

∂q(r0, θ̂)

∂θ̂

∣

∣

∣

∣

∣

dθ̂ dr0.
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Now, squaring each side and using (a+ b+ c)2 ≤ 3(a2 + b2 + c2) we get,

|q(r, θ)|2 ≤ 3

R2(γ+2)

(

∫ R

0

r̂γ+2

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

)2

+ 3

(

∫ R

r

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

)2

+
12(γ + 2)2

R2(γ+2)

(

∫ R

0

∫ ω

0

rγ+1
0

∣

∣

∣

∣

∣

∂q(r0, θ̂)

∂θ̂

∣

∣

∣

∣

∣

dθ̂ dr0

)2

.

(4.3)

Multiply each side of (4.3) by r2β−1 and integrate with respect to r and θ over Ω. We
consider each of the terms on the resulting right-hand side separately. First,

∫ ω

0

∫ R

0

r2β−1

(

∫ R

0

r̂γ+2

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

)2

dr dθ

≤ R

∫ ω

0

∫ R

0

∫ R

0

r2β−1 r̂2γ+4

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂ dr dθ

=
R2β+1

2β

∫ ω

0

∫ R

0

r̂2γ+3

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

r̂ dr̂ dθ

≤ R2β+1

2β
‖∇q‖2

0,γ+ 3
2
.

We now consider the second term in (4.3). Since by the Schwarz inequality,

(

∫ R

r

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

)2

=

(

∫ R

r

r̂(ε−1)/2r̂(1−ε)/2

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

)2

≤
∫ R

r

r̂ε−1 dr̂

∫ R

r

r̂1−ε

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂

=
Rε

ε

∫ R

r

r̂1−ε

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂,

we can apply Fubini’s theorem to bound the second term:

∫ ω

0

∫ R

0

r2β−1

(

∫ R

r

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

)2

dr dθ

≤ Rε

ε

∫ ω

0

∫ R

0

∫ R

r

r2β−1 r̂1−ε

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂ dr dθ

=
Rε

ε

∫ ω

0

∫ R

0

∫ r̂

0

r2β−1 r̂1−ε

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr dr̂ dθ

=
Rε

2εβ

∫ ω

0

∫ R

0

r̂2β−ε

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

r̂ dr̂ dθ

=
Rε

2εβ
‖∇q‖2

0,β− ε

2

≤ Rε

2εβ
‖∇q‖2

0,β−ε,
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The third term can be bounded similarly:

∫ ω

0

∫ R

0

r2β−1

(

∫ R

0

∫ ω

0

rγ+1
0

∣

∣

∣

∣

∣

∂q(r0, θ̂)

∂θ̂

∣

∣

∣

∣

∣

dθ̂ dr0

)2

dr dθ

≤
(

∫ R

0

∫ ω

0

r2β−1 dr dθ

)

Rω

∫ ω

0

∫ R

0

r2γ+2
0

∣

∣

∣

∣

∣

∂q(r0, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

dr0 dθ̂

=
R2β+1ω2

2β

∫ ω

0

∫ R

0

r2γ+3
0

∣

∣

∣

∣

∣

1

r0

∂q(r0, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

r0 dr0 dθ̂

=
R2β+1ω2

2β
‖∇q‖2

0,γ+ 3
2
.

Putting the three terms together and substituting γ = β − 3/2− ε we may now write
the bound

∫ ω

0

∫ R

0

r2β−2 |q(r, θ)|2 r dr dθ

≤
(

3R−2ε

2β
+

3Rε

2εβ
+

6(β + 1
2 − ε)2R−2εω2

β

)

‖∇q‖2
0,β−ε,

and the lemma follows by taking the square root of both sides.
In what follows, let χ be a smooth function of r where χ = 1 for r < η and χ = 0

for r > 2η. We take η to be sufficiently small to ensure that supp(χ) ⊂ Ω.

Lemma 4.2 Take Ω = Ωw and let q be a scalar function in H1
β(Ω), where β > 0.

The following bound holds for χ as defined above:

‖χq‖0,β−1 ≤ 1

β
‖∇(χq)‖0,β . (4.4)

Proof. Hardy’s inequality for f(t) defined for t > 0 with lim
t→0

f(t) = 0 gives

(see [20]):

∫ ∞

0

f2

t2
dt ≤ 4

∫ ∞

0

|f ′|2 dt. (4.5)

The lemma follows after a change of variables, t = r−2β , a substitution f(r) = χq(r, θ)
for fixed θ, and an integration on both sides with respect to θ.

Lemma 4.3 Take Ω = Ωw and let either q ∈ H1
β(Ω) with q = 0 on ∂Ω or q ∈

H1
β(Ω)/R with n · ∇q = 0 on ∂Ω. Then

‖q‖0,β−1 ≤ C‖∇q‖0,β (4.6)

for β > 0 where C depends only on Ω, and β.

Proof. First, if q = 0 on ∂Ω, write q = q(r, θ) as

q(r, θ) =

∫ θ

0

∂q(r, θ̂)

∂θ̂
dθ̂.
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Square both sides and multiply by r2β−1:

r2β−1 |q(r, θ)|2 = r2β−1

∣

∣

∣

∣

∣

∫ θ

0

∂q(r, θ̂)

∂θ̂
dθ̂

∣

∣

∣

∣

∣

2

≤ r2β+1ω

∫ ω

0

∣

∣

∣

∣

∣

1

r

∂q(r, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

dθ̂.

Integrate both sides with respect to r and θ over Ω:

∫ ω

0

∫ R

0

r2β−2 |q(r, θ)|2 r dr dθ ≤ ω

∫ ω

0

∫ R0

0

r2β+1

∫ ω

0

∣

∣

∣

∣

∣

1

r

∂q(r, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

dθ̂ dr dθ

≤ ω2

∫ ω

0

∫ R0

0

r2β

∣

∣

∣

∣

∣

1

r

∂q(r, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

r dr dθ̂.

The lemma follows since the right side is bounded by C‖∇q‖2
0,β .

Now, if q ∈ H1
β(Ω)/R then it may be chosen to satisfy

∫∫

Ω

rγ q r dr dθ = 0 (4.7)

for γ chosen as in lemma 4.1. By the triangle inequality and lemma 4.2 we get

‖q‖0,β−1 ≤ ‖χ q‖0,β−1 + ‖(1 − χ)q‖0,β−1

≤ C‖∇(χq)‖0,β +

(

∫ ω

0

∫ R

η

(

r

η

)2

r2β−2(1 − χ)2 q2 r dr dθ

)
1
2

≤ C (‖∇(q)‖0,β + ‖q‖0,β) .

Apply lemma 4.1 with ε = 1 to the ‖q‖0,β term on the right side and the lemma
follows.

For the problem with mixed boundary conditions, consider Ωw partitioned into
subdomains Ω0 = {(r, θ) : r ≤ 1

2R0, 0 ≤ θ ≤ ω} and Ω1 = Ω\Ω0, as shown in
figure 4.1.

Ω0

1
2
R0

Ω1

R0 R

Fig. 4.1. Wedge-shaped domain, Ωw, partitioned into subdomains Ω0 and Ω1.
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Lemma 4.4 Consider domain Ω = Ωw, as pictured in figure 4.1, and let q ∈ H1
β(Ω)

vanish on the line segment of ∂Ω corresponding to θ = 0 and r < R0. Then, there is
a constant, C, dependent only on Ω, β, and R0, such that

‖q‖0,β−1 ≤ C‖∇q‖0,β (4.8)

for β > 0.

Proof. For points (r, θ) in Ω0 we may derive the bound,

‖q‖0,β−1,Ω0
≤ C‖∇q‖0,β,Ω0

, (4.9)

completely analogous to the proof of lemma 4.3. Now, consider points (r, θ) in Ω1.
We may write q = q(r, θ) as

q(r, θ) =

∫ r

r̃

∂q(r̂, θ)

∂r̂
dr̂ +

∫ θ

0

∂q(r̃, θ̂)

∂θ̂
dθ̂,

where the point (r̃, 0) is on the part of ∂Ω1 where q vanishes. By the Schwarz in-
equality, the triangle inequality and inequality (2.1) we have the bound

|q(r, θ)|2 ≤ 2(R− 1

2
R0)

∫ r

r̃

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂ + 2ω

∫ θ

0

∣

∣

∣

∣

∣

∂q(r̃, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

dθ̂. (4.10)

We now expand the limits in the integrals, multiply each side by r2β−1, integrate with
respect to r over ( 1

2R0, R), integrate with respect to θ over (0, ω), and integrate with
respect to r̃ over ( 1

2R0, R0), by Fubini’s theorem:

(
1

2
R0)

∫ ω

0

∫ R

1
2 R0

r2β−1|q(r, θ)|2 dr dθ

≤ 2(R− 1

2
R0)

∫ R0

1
2 R0

∫ ω

0

∫ R

1
2 R0

∫ R

1
2 R0

r2β−1

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂ dr dθ dr̃

+ 2ω

∫ R0

1
2 R0

∫ ω

0

∫ R

1
2 R0

∫ θ

0

∣

∣

∣

∣

∣

∂q(r̃, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

dθ̂ dr dθ dr̃.

(4.11)

We use the inequalities,

1

2
R0 ≤ r̃ ≤ R0, r̃ ≤ r̂ ≤ r ≤ R,

to derive the following simple bounds:

1 ≤
(

2r̂

R0

)

, r ≤
(

2R

R0

)

r̂, r ≤
(

2R

R0

)

r̃. (4.12)
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By applying the bounds in (4.12) and Fubini’s theorem, we may now write (4.11) as

(
1

2
R0)

∫ ω

0

∫ R

1
2 R0

r2β−2|q(r, θ)|2r dr dθ

≤ (R− 1

2
R0)

2R0

∫ ω

0

∫ R

1
2 R0

(

2r̂

R0

)2(
2R

R0

)2β−1

r̂2β−1

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂ dθ

+ 2ω2(R− 1

2
R0)

∫ R0

1
2 R0

∫ ω

0

(

2R

R0

)2β−1

r̃2β−1

∣

∣

∣

∣

∣

∂q(r̃, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

dθ̂ dr̃

≤ 22β+1(R− 1

2
R0)

2R−2β
0 R2β−1

∫ ω

0

∫ R

1
2 R0

r̂2β

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

r̂ dr̂ dθ

+ 22βω2(R− 1

2
R0)

(

R

R0

)2β−1 ∫ R

1
2 R0

∫ ω

0

r̃2β

∣

∣

∣

∣

∣

1

r̃

∂q(r̃, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

r̃ dθ̂ dr̃,

which directly implies

‖q‖0,β−1,Ω1
≤ C‖∇q‖0,β,Ω1

, (4.13)

where

C = 22β+1(R− 1

2
R0)R

2β−1R−2β−1
0

(

2(R− 1

2
R0) +

ω2

R0

)

.

Combining inequalities (4.9) and (4.13) completes the lemma.
We now consider a similar Poincaré inequality for the vector case. Again, consider

Ω = Ωw, where ∂Ω is partitioned into Dirichlet and Neumann boundaries, ΓD and ΓN

respectively. The following lemma is valid for the pure Dirichlet and Neumann cases
and for the mixed boundary condition cases when ΓD includes a part of the boundary
adjacent to the origin and ω 6= 3π

2 .

Lemma 4.5 Take Ω = Ωw and let u ∈ H1
β(Ω)2 satisfy τ ·u = 0 on ΓD and n ·u = 0

on ΓN . Assume that for the mixed boundary condition case that ω 6= 3π/2. Then
there is a constant, C, dependent only on Ω, β and the length of the segments of ΓD

and ΓN adjacent to the origin, such that

‖u‖0,β−1 ≤ C‖∇u‖0,β (4.14)

for β > 0.

Proof. First, consider the case when τ · u = 0 on ∂Ω. Denote the part of ∂Ω
aligned with θ = 0 as Γ1 and the part of ∂Ω aligned with θ = ω as Γ2. Thus, u1 = 0
on Γ1 and τxu1 + τyu2 = 0 on Γ2. Since u1 and τxu1 + τyu2 satisfy the conditions in
lemma 4.4, we may use

‖u1‖0,β−1 ≤ C‖∇u1‖0,β

and

‖τxu1 + τyu2‖0,β−1 ≤ C‖∇(τxu1 + τyu2)‖0,β .
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Further, take τy 6= 0, since τy = 0 corresponds to either ω = π, for which the result
holds trivially since the boundary is smooth, or ω = 2π, which we do not consider.
Now,

‖u‖2
0,β−1 = ‖u1‖2

0,β−1 + ‖u2‖2
0,β−1

= ‖u1‖2
0,β−1 +

1

τ2
y

‖τxu1 − τxu1 + τyu2‖2
0,β−1

≤ (1 + 2
τ2
x

τ2
y

)‖u1‖2
0,β−1 +

2

τ2
y

‖τxu1 + τyu2‖2
0,β−1

≤ C(‖∇u1‖2
0,β + ‖∇(τxu1 + τyu2)‖2

0,β)

≤ C‖∇u‖2
0,β .

The case when n·u = 0 on ∂Ω is analogous since u2 = 0 on Γ1 and nxu1+nyu2 = 0 on
Γ2. Also, when ω 6= π

2 ,
3π
2 , the case for mixed boundary conditions follows similarly

using the result of lemma 4.4. The case for mixed boundary conditions when ω = π/2,
follows from appealing to symmetry in the the pure Dirichlet problem for ω = π.

Remark 4.6 Lemma 4.5 can be directly extended to more generally shaped domains.
The proof of the scalar Poincaré bounds in lemmas 4.1, 4.2, 4.3 and 4.4 are simplified
when the domain has the shape of Ωw with only one irregular boundary point. Since
we are primarily interested in a local result, proving lemma 4.5 in the simple domain
is sufficient for our purposes.

Consider the following scalar Poisson problem in Ωw:










∆p = f, in Ω,

p = 0, on ΓD,

n · ∇p = 0, on ΓN .

(4.15)

We refer to system (4.15) as the pure Dirichlet problem when ∂Ω = ΓD; the
pure Neumann problem when ∂Ω = ΓN ; and the mixed boundary condition problem
when ΓD includes the part of ∂Ω coinciding with one of either θ = 0 or θ = ω, and
ΓN = ∂Ω\ΓD with ΓN 6= ∅.

The following regularity results can be found in [23] and [21].

Lemma 4.7 Assume |1−β| < π/ω for the pure Dirichlet problem, 0 < |1−β| < π/ω
for the pure Neumann problem and |1 − β| < π/2ω for the mixed boundary condition
problem. Then, for every f ∈ H0

β(Ω), there exists a unique solution to (4.15), p ∈
H2

β(Ω) for the pure Dirichlet and mixed boundary condition cases and p ∈ H2
β(Ω)/R

for the pure Neumann problem. Moreover, there exists a constant, C, independent of
p, such that

‖p‖2,β ≤ C‖f‖0,β . (4.16)

Proof. See Chapter 1 of [23] for the Dirichlet and Neumann problems and Chapter
2 of [21] for the mixed boundary problem.

Define the subspace of functions in H1
β(Ω) satisfying the appropriate boundary

conditions by

Vβ = {v ∈ H1
β(Ω) : τ · v = 0 on ΓD, n · v = 0 on ΓN}.
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We now prove a regularity result for functions in Vβ . Recall that the power of the
singularity is defined as α = π/ω for Dirichlet or Neumann boundary conditions and
α = π/(2ω) for mixed boundary conditions.

Lemma 4.8 Consider domain Ω = Ωw. Then there is a positive constant, C, inde-
pendent of u, such that, for |1 − β| < α, the following bound holds for all u ∈ Vβ:

‖u‖1,β ≤ C‖Lu‖0,β . (4.17)

Proof. From lemma 4.7 we know that any u ∈ Vβ has the decomposition

u = ∇φ+ ∇⊥ψ, (4.18)

where φ, ψ ∈ H2
β(Ω) satisfy

{

∆φ = ∇ · u, in Ω,

φ = 0, on ∂Ω,
(4.19)

and
{

∆ψ = ∇× u, in Ω,

n · ∇ψ = 0, on ∂Ω.
(4.20)

Then, by applying lemma 4.7 to problems (4.19) and (4.20) we have

‖u‖1,β = ‖∇φ+ ∇⊥ψ‖1,β ≤ ‖∇φ‖1,β + ‖∇⊥ψ‖1,β

≤ ‖φ‖2,β + ‖ψ‖2,β ≤ C(‖∇ · u‖0,β + ‖∇ × u‖0,β) ≤ C‖Lu‖0,β ,

which completes the proof.

5. Error Bounds. Let T h = ∪N
i=1τi be a quasi-uniform triangulation of polyg-

onal domain Ω. Let Ih represent standard interpolation onto a piecewise polynomial
finite element space of degree k. From finite element theory, we have the following
interpolation bounds.

Lemma 5.1 Let Ω be a polygonal domain. There exists a constant, C, independent
of v, such that, for all v ∈ Hm(Ω),





∑

τ∈T h

‖v − Ihv‖2
s,τ





1/2

≤ Chm−s|v|m (5.1)

for 0 ≤ s ≤ m and 1 < m. Here, Ih denotes interpolation by a piecewise polynomial
of degree k = m− 1. (Note: here the norm ‖ · ‖s,τ is the standard Hs(τ) norm.)

Proof. See [9] or [7].
We now consider a weighted interpolation bound for functions on domains with

a polygonal corner at the origin. Define the modified interpolation operator, Ih
0 , by

Ih
0 u|τ =

{

Ihu =
∑n

i=0 u(ai)φi , if τ does not intersect the origin,
∑n

i=1 u(ai)φi , if τ intersects the origin,

where Ih is a standard polynomial interpolation operator, φi are basis functions
corresponding to the n + 1 nodal points, ai, and a0 is the origin, (0, 0). Thus, the
modified interpolation has a value of zero at the origin and resembles Ih away from
the origin.
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Lemma 5.2 Let Ω be a polygonal domain. There exists a constant, C, independent
of u, such that, for all u ∈ Hm

β (Ω) satisfying equation (4.8),





∑

τ∈T h

‖u− Ih
0 u‖2

1,β,τ





1/2

≤ Chm−1‖u‖m,β , (5.2)

for 1 < m and β > 0, where Ih
0 is the modified interpolation operator onto piecewise

polynomials of degree k = m− 1 defined above.

Proof. Define K0 = {τ | τ̄ ∩ (0, 0) 6= ∅} as the set of elements adjacent to the

origin. On T h\K0, we have h ≤ rmin ≤ r =
√

x2 + y2 ≤ rmax ≤ rmin +
√

2h with
rmin = inf{r|(x, y) ∈ τ} and rmax = sup{r|(x, y) ∈ τ} in τ , and

‖u− Ih
0 u‖2

1,β,τ = ‖u− Ihu‖2
1,β,τ

=

∫

τ

r2β |∇(u− Ihu)|2 + r2(β−1)|u− Ihu|2dτ

≤ r2β
max

∫

τ

|∇(u− Ihu)|2dτ + r2β
maxr

−2
min

∫

τ

|u− Ihu|2dτ

≤ Cr2β
maxh

2(m−1)|u|2m,0,τ + Cr2β
maxr

−2
minh

2m|u|2m,0,τ

= Cr2β
maxh

2(m−1)(1 + r−2
minh

2)|u|2m,0,τ ≤ Cr2β
maxh

2(m−1)|u|2m,0,τ

≤ Ch2(m−1)r2β
maxr

−2β
min

∫

τ

r2β |Dmu|2dτ

≤ Ch2(m−1)

(

rmin +
√

2h

rmin

)2β
∫

τ

r2β |Dmu|2dτ

≤ Ch2(m−1)

∫

τ

r2β |Dmu|2dτ.

We now consider the case for which τ ∈ K0. Let δ ∈ C∞ be a cut-off function
defined by

δ(r) =

{

1, if r ≤ h/3,
0, if r > 2h/3,

with |δ(m)| ≤ ch−m, where δ(m) is the mth derivative of δ. By the triangle inequality,

‖u− Ih
0 u‖1,β,τ ≤ ‖δu− Ih

0 (δu)‖1,β,τ + ‖(1 − δ)u− Ih
0 ((1 − δ)u)‖1,β,τ . (5.3)

By the definition of δ we have Ih
0 ((1 − δ)u) = Ih((1 − δ)u) and Ih

0 (δu) = 0. For the
second term in (5.3), we apply lemmas 4.4 and 5.1, the properties in δ, and Fubini’s
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theorem to obtain

‖(1 − δ)u− Ih
0 ((1 − δ)u)‖2

1,β,τ = ‖(1 − δ)u− Ih((1 − δ)u)‖2
1,β,τ

≤ C‖∇((1 − δ)u− Ih((1 − δ)u))‖2
0,β,τ ≤ Ch2β

∫

τ

|∇((1 − δ)u− Ih((1 − δ)u))|2dτ

≤ Ch2(β+m−1)

∫

τ

|Dm((1 − δ)u)|2dτ ≤ Ch2(β+m−1)

∫

τ

∑

|j|≤m

|Dm−j(1 − δ)Dju|2dτ

≤ Ch2(β+m−1)





∫∫ 2h

3

h

3

∑

|j|≤m−1

|h|j|−mDju|2dτ +

∫∫ r(θ)

h

3

|(1 − δ)Dmu|2dτ





≤ Ch2(β+m−1)





∑

|j|≤m−1

∫∫ 2h

3

h

3

h−2βr2(β+|j|−m)|Dju|2dτ +

∫∫ r(θ)

h

3

(r/h)2β |Dmu|2dτ





= Ch2(m−1)
∑

|j|≤m

∫

τ

r2(β+|j|−m)|Dju|2dτ = Ch2(m−1)‖u‖2
m,β,τ .

Using the properties of δ and Fubini’s theorem result in a similar bound for the first
term in (5.3):

‖δu− Ih
0 (δu)‖2

1,β,τ = ‖δu‖2
1,β,τ =

∫

τ

r2β |∇(δu)|2 + r2(β−1)|δu|2dτ

≤ C

∫

τ

r2β(|∇δ · u|2 + |δ∇u|2) + r2(β−1)|δu|2dτ

≤ C

∫ ∫ 2h

3

h

3

r2βh−2|u|2dτ + C

∫ ∫ 2h

3

0

r2β |∇u|2 + r2(β−1)|u|2dτ

≤ C

∫ ∫ 2h

3

h

3

r2(β−1)|u|2dτ + C

∫ ∫ 2h

3

0

r2β |∇u|2 + r2(β−1)|u|2dτ

≤ C

∫

τ

r2(m−1)(r2(β−m+1)|∇u|2 + r2(β−m)|u|2)dτ ≤ Ch2(m−1)‖u‖2
m,β,τ .

Thus we have

∑

τ∈Th

‖u− Ih
0 u‖2

1,β,τ ≤ Ch2(m−1)
∑

τ∈Th

‖u‖2
m,β,τ ≤ Ch2(m−1)‖u‖2

m,β ,

and the lemma follows.

Lemma 5.3 Assume equation (4.14) holds in Ω. Then, for all uh ∈ Vh,

‖uh‖0,β ≤ Ch−η‖uh‖0,β+η (5.4)

for β > −1 and η > 0.

Proof. Using lemma 4.5 and an inverse inequality, we may write

‖uh‖0,β ≤ C‖∇uh‖0,β+1 ≤ Ch−1‖uh‖0,β+1,
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which establishes (5.4) for η = 1. Repeated application of this inequality thus vali-
dates (5.4) for any positive integer. Now consider

‖uh‖2
0,β = 〈rβuh, rβuh〉 = 〈rβ−1/2uh, rβ+1/2uh〉

≤ ‖uh‖
0,β−1/2

‖uh‖
0,β+1/2

≤ Ch−1‖uh‖2

0,β+1/2
.

Taking the square root establishes (5.4) for η = 1/2. Repeating these steps leads
to (5.4) for all η = ηn = kn/2

`n for any nonnegative integers kn and `n. For any
η > 0, choose a monotonically decreasing sequence, {ηn}, such that ηn > η and
limn→∞|ηn − η| = 0. Now, gn = (rβ+ηnuh)2 is a monotonically increasing function
that converges to g = (rβ+ηuh)2 pointwise everywhere. Thus, by the Lebesgue mono-
tone convergence theorem, we have

‖uh‖2
0,β+η =

∫

gdx = lim
n

∫

gndx = lim
n

‖uh‖2
0,β+ηn

and, therefore,

‖uh‖0,β = lim
n

‖uh‖0,β

≤ lim
n
Ch−ηn‖uh‖0,β+ηn

= (lim
n
Ch−ηn)(lim

n
‖uh‖0,β+ηn

)

= Ch−η‖uh‖0,β+η,

which completes the proof.
Define an irregular boundary point of polygonal domain Ω to be a point on ∂Ω

where interior angle ω satisfies ω > π when Dirichlet or Neumann boundary conditions
are applied on both sides of the point or ω > π/2 when one Dirichlet boundary and
a Neumann boundary meet at the corner. We now present error bounds for the
numerical solution in weighted and unweighted norms.

Theorem 5.4 Let Ω be a polygonal domain with one irregular boundary point of
interior angle ω and let f ∈ L2(Ω). Suppose u ∈ V satisfy Lu = f . If uh ∈ Vh is
chosen to minimize the weighted functional,

Gw(uh; f) = ‖Luh − f‖2
0,β = inf

v
h∈Vh

‖Lvh − f‖2
0,β ,

for |1 − β| < α, then the approximation error, u − uh, satisfies the following bounds:

‖u − uh‖1,β ≤ Chα+β−1‖u‖α+β,β , (5.5)

Gw(u − uh;0)
1/2 ≤ Chα+β−1‖u‖α+β,β , (5.6)

‖u − uh‖0,β ≤ Chs+β‖u‖α+β,β , (5.7)

‖u − uh‖0 ≤ Chs‖u‖α+β,β , (5.8)

where s < α, for α+β ≤ k+1 with k the degree of the piecewise polynomial elements
in Vh.
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Proof. By lemmas 4.8 and 5.2, we have

‖u − uh‖1,β ≤ C‖L(u − uh)‖0,β ≤ C‖L(u − Ih
0 u)‖0,β

≤ C‖u − Ih
0 u‖1,β ≤ Chα+β−1‖u‖α+β,β ,

which establishes both (5.5) and (5.6) since we may write

‖L(u − uh)‖0,β = Gw(u − uh;0)
1/2.

Note that lemmas 4.8 and 5.2 are satisfied for |1 − β| < α and α+ β ≤ 2.
For the weighted L2-norm, we write

‖u − uh‖2
0,β =

∑

τ∈T h

‖u − uh‖2
0,β,τ .

The Cauchy inequality yields, for any ε ∈ (0, 1),

‖u − uh‖2
0,β,τ =

∫

τ

r2β |u − uh|2dτ ≤
(∫

τ

1dτ

)1−ε(∫

τ

(

r2β |u − uh|2
)

1
ε dτ

)ε

≤ Ch2−2ε

(∫

τ

(

rβ |u − uh|
)

2
ε dτ

)
ε

2 ·2

= Ch2−2ε‖rβ(u − uh)‖2

L
2
ε (τ)

.

Since H1(Ω) is continuously imbedded into Lq(Ω) for all q ∈ [1,∞),

‖u − uh‖2
0,β =

∑

τ∈T h

‖u − uh‖2
0,β,τ ≤ Ch2−2ε

∑

τ∈T h

‖rβ(u − uh)‖2

L
2
ε (τ)

≤ Ch2−2ε‖rβ(u − uh)‖2

L
2
ε (Ω)

≤ Ch2−2ε‖rβ(u − uh)‖2
H1(Ω)

≤ Ch2−2ε‖u − uh‖2
1,β .

Thus, by (5.5), we have

‖u − uh‖0,β ≤ Ch1−ε‖u − uh‖1,β ≤ Chs+β‖u‖α+β,β ,

where any s < α.
We now consider the bound on ‖u − uh‖0. Let K0 = {τ | τ̄ ∩ (0, 0) 6= ∅} and

K1 = T h\K0. First, we consider the case β < 1. If τ ∈ K0, then r ≤ Ch and
r1−β ≤ Ch1−β . Thus, we have

‖u − uh‖2
0,τ ≤ Ch2(1−β)‖u − uh‖2

0,β−1,τ ≤ Ch2(1−β)‖u − uh‖2
1,β,τ . (5.9)

If τ ∈ K1, we use the technique above to get

‖u − uh‖2
0,τ ≤ Ch2(1−ε)‖u − uh‖2

L
2
ε (τ)

.

Again, since H1 is continuously imbedded into Lq for all q ∈ [1,∞), we have
∑

τ∈K1

‖u − uh‖2
0,τ ≤ Ch2−2ε

∑

τ∈K1

‖u − uh‖2

L
2
ε (τ)

≤ Ch2−2ε‖u − uh‖2

L
2
ε (K1)

≤ Ch2−2ε‖u − uh‖2
H1(K1)

= Ch2−2ε

∫

K1

r−2βr2β (|u − uh|2 + |∇(u − uh)|2) dΩ

≤ Ch2(1−β−ε)‖u − uh‖2
1,β,K1

. (5.10)
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Hence by (5.9), (5.10), and (5.5) we have

‖u − uh‖2
0 =

∑

τ∈K0

‖u − uh‖2
0,τ +

∑

τ∈K1

‖u − uh‖2
0,τ ≤ h2(1−β−ε)‖u − uh‖2

1,β

≤ Ch2s ‖u‖2
α+β,β ,

where s < α. The proof for β ≥ 1 follows analogously.

Remark 5.5 For the optimal finite element convergence of O(h) with respect to the
weighted functional and H1 norms, we select β = 2−α. But theorem 5.4 also requires
that β < 1 + α. Thus, when α ∈ [1/2, 1), we may use a weighting with β = 2− α and
expect optimal rates, but when α ∈ (0, 1/2), our theory only guarantees at best O(2α)
convergence using β = 1 + α. Numerical results, however, indicate that values of β
larger than the theory allows can be used to recover optimal rates. We explore this in
the next section.

6. Computational results. In this section, we present some numerical exam-
ples of the weighted-norm procedure to validate the error bounds in the previous
section.

As a test problem, we minimize the weighted functional on the following L-shaped
domain: Ω = (−0.5, 0.5)2 \ [0, 0.5)× (−0.5, 0], which yields α = π/ω = 2/3. Function

f is chosen so that the solution of this test problem is u = ∇(χ(r)r
2
3 sin(2θ/3)), where

χ(r) = 1 for r < 1/8, χ(r) = 0 for r > 3/8, and χ(r) is C2 smooth. Again, note that
f ∈ L2(Ω) but u /∈ H1(Ω).

Define the following measures of the accuracy of the computed solution, uh:

nonweighted functional norm G
1/2 = (‖∇ · uh − f‖2

0 + ‖∇ × uh‖2
0)

1/2,

nonweighted L2 norm of the error ε0 = ‖u − uh‖0,

nonweighted H1 seminorm of the error ε1 = |u − uh|1,
weighted functional norm G

1/2

w = Gw(uh; f)
1/2,

weighted L2 norm of the error ε0w = ‖u − uh‖0,β ,

weighted H1 seminorm of the error ε1w = |u − uh|1,β .

Since α = 2/3, we choose the optimal weight parameter, β = 2 − α = 4/3, for
our computations. Table 6.1 summarizes discretization error and convergence rates
for β = 4/3.

Asymptotic convergence rates in Ω are found to be approximately O(h) for G
1/2
w

and ε1w, O(h2) for ε0w and O(h
2
3 ) for ε0. The approximation does not converge in

either the ε1 or G
1/2 measures since u /∈ H1(Ω).

To distinguish between behavior near to and away from the singularity, we con-
sider the error of the solution above on a partitioning of Ω. Define Ω0 = Ω ∩ ( 3

8 ,
5
8 )2

and Ω1 = Ω\Ω0; see figure 6.1.
Table 6.2 summarizes the asymptotic discretization accuracy obtained at the finest

mesh size in subdomains Ω0 and Ω1. Away from the singularity we observe optimal
accuracy in all measures. As expected, near the singularity, the solution fails to
converge in the nonweighted functional and H1 norms. The nonweighted L2 error
achieves accuracy of approximately O(h

2
3 ) near the singularity.
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h G
1/2
w Ratio Rate ε1w Ratio Rate

8−1 5.52 3.81
16−1 4.34 1.27 0.35 1.47 2.59 1.37
32−1 2.34 1.85 0.89 6.66e-01 2.21 1.14
64−1 1.19 1.97 0.98 2.97e-01 2.24 1.16
128−1 5.98e-01 1.99 0.99 1.41e-01 2.11 1.08
256−1 3.00e-01 1.99 0.99 6.74e-02 2.09 1.06
512−1 1.50e-01 2.00 1.00 3.31e-02 2.04 1.03

h ε0w Ratio Rate ε0 Ratio Rate
8−1 3.08e-01 3.72e-01
16−1 1.35e-01 2.28 1.19 1.93e-01 1.93 0.95
32−1 4.07e-02 3.32 1.73 8.93e-02 2.16 1.11
64−1 1.11e-02 3.67 1.88 4.93e-02 1.81 0.86
128−1 2.98e-03 3.72 1.90 3.00e-02 1.64 0.71
256−1 7.84e-04 3.80 1.93 1.87e-02 1.60 0.68
512−1 2.06e-04 3.81 1.93 1.18e-02 1.58 0.66

Table 6.1

Convergence of discretization error for weighted-norm FOSLS.

Ω0

Ω1

Fig. 6.1. L-shaped domain Ω and subdomains Ω0 and Ω1.

G
1/2
w G

1/2 ε1w ε1 ε0w ε0

Ω1 O(h) O(h) O(h) O(h) O(h2) O(h2)

Ω0 O(h) O(1) O(h) O(1) O(h2) O(h
2
3 )

Ω O(h) O(1) O(h) O(1) O(h2) O(h
2
3 )

Table 6.2

Accuracy in Ω0, Ω1, and Ω with β = 2 − α.

Figure 6.2 shows the first component of the exact solution, u1, and the standard
FOSLS approximation uh

1 . Figure 6.3 shows the error of the first component of the
approximated solution for the standard FOSLS and the weighted-norm FOSLS meth-
ods. We see that the error in the approximation in standard FOSLS is highest near the
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Fig. 6.2. Exact solution component u1 and solution component uh

1
approximated by standard

FOSLS on the h = 32−1 mesh.
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(a) Standard FOSLS.
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(b) Weighted-norm FOSLS, β = 2 − α.

Fig. 6.3. Reduction of the pollution effect by the weighted-norm procedure. Each plot is the

error of solution component uh

1
on the h = 32−1 mesh.

singularity, but remains large even away from the corner point. In the weighted-norm
FOSLS implementation, the error remains large near the singularity, as we expect,
but is now concentrated only near the corner point. The pollution effect is removed
by the weighting procedure.

There are many boundary value problems not directly covered by the theory
presented here that are of interest. For example, Poisson’s equation with mixed
boundary conditions on the domain used above has a value of α = 1/3. To recover
optimal convergence for this problem, the weighted-norm method requires a value of
β larger than theorem 5.4 allows. In other elliptic equations (e.g., Stokes or the linear
elasticity equations), the value of α is generally smaller than for Poisson’s equation
for the same domain and boundary condition type. In each of these cases, a larger β
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value is necessary for optimal convergence. This leads us to consider using larger β
than the theory allows.

Consider the same example problem as above on uniform mesh sizes of h =
1/8, 1/16, ..., 1/512, and values of β ranging from 1/3 to 23/6.

Figure 6.4 plots the convergence rate at the finest level for: the weighted functional

norm, G
1/2
w ; the weighted L2 norm, ε0w; and the L2 norm, ε0. While the functional

0 0.33 1 1.66 3 4
Β

0

0.67

1

2

Convergence Rates vs. Β

L2 error

weighted functional norm

weighted L2 error

Fig. 6.4. Convergence rates versus β. The shaded region indicates values of β for which the

assumptions of theorem 5.4 are satisfied.

norm retains optimal accuracy for large values of β, the solution fails to converge in
the weighted and nonweighted L2 measures for β & 3. This indicates that, although
the weighted-norm approach seems to be more robust than the theory allows, large
values of β should still be used with caution.

The method presented here is applicable to a wide range of problems and provides
an efficient alternative to more specialized techniques for treating singularities in
boundary value problems. Further numerical results for other problems including
systems and in three dimensions can be seen in a companion paper.
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