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FOSLL* FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS∗

EUNJUNG LEE† , THOMAS A. MANTEUFFEL‡, AND CHAD R. WESTPHAL§

Abstract. In previous work, the first-order system LL∗ (FOSLL∗) method was developed for
linear partial differential equations. This approach seeks to minimize the residual of the equations in
a dual norm induced by the differential operator, yielding approximations accurate in L2(Ω) rather
than H1(Ω) orH(Div). In this paper, the general framework of FOSLL∗ is extended to a wide range of
nonlinear problems. Four approaches to propagating an inexact Newton iteration based on a FOSLL∗
approximation are presented, and theory for robust convergence in L2(Ω) is established. Numerical
results are presented for two formulations of the steady incompressible Navier–Stokes equations and
for a diffusion equation with reduced regularity due to a discontinuous diffusion coefficient.
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1. Introduction. We consider approximating the solution to nonlinear partial
differential equations (PDE) by combining least-squares minimization principles with
an efficient nonlinear outer iteration. In particular, we focus on problems for which
standard L2 least-squares approaches do not produce a robust approximation in the
L2 norm. By weakening the variational problem with the first-order system LL∗

(FOSLL∗) approach, it is possible to enhance overall L2 convergence by first finding
a smooth preimage of the solution, then using a postprocessing step to reconstruct
the approximate solution. In a nonlinear setting, this approach requires an additional
level of investigation that has not been considered in the literature before.

To illustrate the discretization framework, first consider the first-order system
least-squares (FOSLS) approach to linear PDE. Let Lu = f denote a first-order
PDE system, possibly occurring directly from an application (e.g., the first-order
stress/velocity/pressure form of Stokes equations) or possibly reformulated from a
higher-order problem by introducing additional unknowns. The solution is found by
minimizing the FOSLS functional, F(u; f) := ‖Lu − f‖2, in an appropriate Hilbert
space, V . The choice of V depends on the particular problem, but is generally chosen
based on the preimage of L2(Ω) under the operator L, that is, the set of functions,
u, such that Lu ∈ L2 and that satisfy appropriate boundary conditions and assump-
tions required by the FOSLS framework. Typical examples are products of H1(Ω),
H(Div), H(Curl), and H(Div)∩H(Curl). Discrete approximation is accomplished by
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restricting the minimization to an appropriate finite-dimensional subspace, Vh ⊂ V .
An important property for the FOSLS framework is that the homogeneous func-

tional norm, ‖Lu‖, is coercive and continuous in the Hilbert space, V ; that is, there
exist constants, 0 < c0 ≤ c1, such that

(1.1) c0‖u‖V ≤ ‖Lu‖ ≤ c1‖u‖V ∀ u ∈ V .
When L satisfies (1.1), the operator L is called V-elliptic. This guarantees a unique so-
lution of the associated weak problem via the Riesz representation theorem. Moreover,
the discrete minimization inherits these properties and, thus, involves a symmetric
positive definite linear system. This also implies that the discrete system is stable:
the Ladyzhenskaya–Babuška–Brezzi (LBB) stability condition is automatically sat-
isfied, and the finite element spaces for each variable can be chosen independently.
Continuity of the functional implies that discrete error bounds may be established by
standard interpolation bounds in V . In addition, with sufficient regularity of L∗L, the
L2 norm of the error converges at an enhanced rate [35]. Background on least-squares
finite element methods can be found in [9, 10, 16, 18, 19].

However, the FOSLS methodology also has some limitations. When the solution
of the original problem is not sufficiently smooth, for example, due to discontinuous
coefficients, nonsmooth domain boundary, or certain boundary conditions, the V norm
equivalence in (1.1) and its associated properties may be compromised. For example,
the ratio c1/c0 may become large or the space V may change. Certain components of
the solution may be in H(Div) ∩H(Curl) but not in H1(Ω) [6, 30, 31]. In the latter
case, the use of standard H1-conforming finite element spaces with a standard L2-
FOSLS functional will not result in convergence of the discrete approximation. These
difficulties may be overcome by a number of remedies. The finite element space can
be enhanced so that the limit is dense in H(Div)∩H(Curl) [6, 5]. In some cases, the
problem can be formulated in H(Div) or H(Curl) rather than H1(Ω), allowing the use
of Raviart–Thomas or Nédélec finite element spaces (see, e.g., [39, 40]). Additionally,
problems with boundary singularities can be treated with a weighted least-squares
approach (see, e.g., [32, 33]). Each of these approaches admits convergence in a
weaker norm than H1(Ω), but requires extra consideration in implementation and in
pairing the discretization with a robust solver for the resulting algebraic systems.

As an alternative to the standard L2 least-squares approach, many H−1 norm
approaches have been introduced, where the error is essentially controlled in L2(Ω)
rather than in Sobolev subspaces of L2(Ω) (e.g., see [8, 13, 12]). In practice, the nega-
tive norms must be approximated, and in many cases the resulting algebraic systems
have poor conditioning relative to the analogous FOSLS approach. The FOSLL∗ ap-
proach introduces a dual norm induced by the problem operator and results in a com-
putable variational problem that naturally minimizes the L2 error. In [20, 32, 36, 21],
this approach is presented and studied in the context of scalar elliptic problems and
applications in electrostatics. In [21], the FOSLL∗ method is extended to H(Div) for-
mulations of second-order, elliptic problems, and a hybrid FOSLS-FOSLL∗ approach
is given in [34], where approximations are nearly optimal with respect to a graph
norm that balances the error in the L2 norm and H1 seminorm.

In this paper, we expand the general FOSLL∗ methodology to nonlinear problems,
where the nonlinear PDE is linearized via Newton’s method. Combining a Newton
linearization and a least-squares discretization has been used successfully in many
contexts (e.g., see [3, 22, 25, 37, 39, 40]). An issue of both theoretical and practical
importance for such nonlinear problems is that, in general, FOSLL∗ yields a discon-
tinuous approximation that is no longer in the domain of the operator. This potential



FOSLL∗ FOR NONLINEAR PDE S505

lack of smoothness of the iterates is a major consideration in this paper, since a part
of the premise of a FOSLL∗ approach is to sacrifice some smoothness of the approx-
imation in favor of more robust L2 convergence. We present four approaches for the
continuation of the iterates, either allowing the freedom of discontinuous solutions or
introducing measures to ensure continuity of iterates. Our numerical results suggest
that preserving smoothness works well when the exact solution has sufficiently local
smoothness, while allowing a discontinuous approximation appears superior when the
solution is discontinuous.

The idea of weakening the variational problem by allowing discontinuous approx-
imations is a popular approach in discontinuous Galerkin methods [24, 29], and the
goal of seeking better direct control of the L2 error is realized in the recent advent
of discontinuous Petrov–Galerkin (DPG) [23, 26] methods. The general FOSLL∗

methodology shares some obvious similarities with these approaches.
The organization of this paper is as follows. Section 2 establishes basic notation

and recalls some well-known theory needed for our theoretical results. In section 3,
the main algorithmic details are presented, and we discuss four alternatives for contin-
uing the nonlinear iteration. Theoretical results for nonlinear convergence and finite
element convergence when the Newton iterates have reduced regularity are presented
in sections 4 and 5, respectively. Numerical results are given in section 6, and brief
concluding remarks are found in section 7.

2. Notation and definitions. Let Ω be an open, bounded, Lipschitz-continuous
subset of R

d, d = 2, 3. For each integer, m ≥ 0, and real p with 1 ≤ p ≤ ∞,
Wm,p(Ω) denotes the standard Sobolev space with corresponding norm ‖ · ‖Wm,p(Ω).
For fractional-order Sobolev spaces, we denote by W s,p(Ω), with s = m + σ and
0 < σ < 1, a Banach space with the norm

‖u‖W s,p(Ω) =

⎛⎝‖u‖pWm,p(Ω) +
∑

|α|=m

∫
Ω

∫
Ω

|∂αu(x)− ∂αu(y)|p
‖x− y‖d+σp

dxdy

⎞⎠
1
p

.

Denoting C ∞
0 (Ω) as the space of C ∞(Ω) functions with compact support, we define

W s,p
0 (Ω) with s > 0 as the closure of C ∞

0 (Ω) in the W s,p(Ω) norm and W−s,p′
(Ω) as

the dual space of W s,p
0 (Ω) with 1/p+1/p′ = 1. The spaceW s,2(Ω) is usually denoted

as Hs(Ω), and W 0,p(Ω) is denoted as Lp(Ω). For L2(Ω), we omit the subscript in the
norm, ‖ · ‖, and the L2 inner product, 〈·, ·〉, which also denotes the duality pairing
between spaces and their dual. We use D(K) to indicate the domain of operator K.

We will make use of the following well-known result regarding imbedding of spaces
(see, e.g., Chapter 4 of [1]).

Lemma 1. Let Ω ⊂ R
d be a domain having the cone property and let 0 < r <∞

and 1 ≤ p <∞.
(i) If rp < d, then W r,p(Ω) ↪→ Lq(Ω) for p ≤ q ≤ dp/(d− rp).
(ii) If rp = d, then W r,p(Ω) ↪→ Lq(Ω) for p ≤ q <∞.
Where not denoted explicitly, we use the c with or without subscript to denote a

generic positive constant, possibly different at different occurrences.

3. Main ideas. We consider a system of nonlinear first-order PDE,

(3.1) L(U) = F,

where D(L) incorporates boundary conditions onU. In this section, we first briefly in-
troduce Newton’s method as an outer iteration to define a sequence of linear problems
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related to (3.1), and then consider the FOSLS and FOSLL∗ methods for numerically
approximating the solutions to each linearized problem. In particular, we focus on
the resulting Newton-FOSLL∗ approach and highlight the differences between it and
the more well-studied Newton-FOSLS approach.

The Gâteaux derivative of the operator, L(U), is given by

(3.2) L′(U)W = lim
α→0

L(U + αW)− L(U)

α
.

If the Gâteaux derivative is linear, this is also known as the Fréchet derivative, which
is a linear operator acting on the function W. Higher Fréchet derivatives are defined
analogously. The basic idea of Newton’s method is that, given an approximation, Un,
we seek the next approximation by

(3.3) Un+1 = Un + L′(Un)
−1(F− L(Un)),

which may be viewed as a fixed point iteration. By defining δU = Un+1 −Un, we
may view the process of one Newton iteration as solving

(3.4) L′(Un)δU = F− L(Un)

for δU ∈ D(L), then updating with Un+1 = Un + δU.
Note that this outer linearization scheme is formulated on the continuous level.

We now consider approaches for approximating δU on the discrete level.

3.1. FOSLS. A FOSLS approach to approximating δU is to define the func-
tional,

(3.5) F(δU) := ‖L′(Un)δU − (F− L(Un))‖2,
and seek a numerical approximation, δUh ∈ Vh, where Vh is a finite element subspace
of D(L), such that δUh minimizes F over Vh.

Suppose that the norm induced by L′(Un) is equivalent to the H1 norm, that is,
that there are positive constants, c0 and c1, such that

(3.6) c0‖V‖H1(Ω) ≤ ‖L′(Un)V‖ ≤ c1‖V‖H1(Ω) ∀ V ∈ H1(Ω) ∩D(L).

Further, assume that Vh admits an interpolation operator, Ih, with the approximation
property

(3.7) ‖V − IhV‖Hk(Ω) ≤ ch1+s−k‖V‖H1+s(Ω)

for 0 ≤ k ≤ s ≤ q and all V ∈ H1+s(Ω), for some q > 0, where h > 0 is a
discretization parameter [11, 14]. The discretized Newton step is, thus, well defined.
Given Un, denote δU as the exact Newton increment and Un+1 as the exact next
iterate. Error bounds on their finite element approximations, δUh and Uh

n+1, follow
directly from (3.6) and the minimization of F :

‖Uh
n+1 −Un+1‖H1(Ω) = ‖δUh − δU‖H1(Ω) ≤ c−1

0 ‖L′(Un)(δU
h − δU)‖

≤ c1/c0‖IhδU− δU‖H1(Ω) ≤ c hs‖δU‖H1+s(Ω)

for 0 < s ≤ q. Similar results can be established when V ellipticity is in a product
norm that includes H(Div) or H(Curl) [16, 39, 40].
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Now, if Un ∈ Vh ⊂ D(L), then Un+1 ∈ Vh ⊂ D(L) and the next iteration is well
defined. This Newton-FOSLS approach has been applied in a variety of settings [4, 3,
22, 25, 37, 39, 40] and tends to be successful when the original system is sufficiently
regular and the equivalence between ‖ · ‖H1(Ω) and ‖L′(Un) · ‖ is strong (i.e., c0 and
c1 are near 1). The absence of these favorable conditions motivates us to consider a
FOSLL∗ discretization of (3.4). In particular, we seek an approach that yields more
direct control of the error in the L2 norm, rather than the H1 norm through (3.6), or
the V norm through (1.1) when V is a weaker norm.

3.2. FOSLL*. To define the FOSLL∗ approach to approximating δU, we first
define L′(Un)

∗ as the adjoint of L′(Un), where

〈L′(Un)
∗W,Z〉 = 〈W,L′(Un)Z〉

for all Z ∈ D(L′(Un)) and for all W ∈ D(L′(Un)
∗). Rather than to directly seek an

approximation to δU, we first seek W such that L′(Un)
∗W = δU, which will have a

solution under the very weak assumption that L′(Un) is coercive in L2 [34]. To this
end, define the functional,

(3.8)
G(W) := ‖L′(Un)

∗W − δU‖2
= ‖L′(Un)

∗W − L′(Un)
−1(F− L(Un))‖2.

The minimization of G over D(L′(Un)
∗) is equivalent to finding W ∈ D(L′(Un)

∗)
such that

(3.9)
〈L′(Un)

∗W,L′(Un)
∗Z〉 = 〈δU,L′(Un)

∗Z〉 = 〈L′(Un)δU,Z〉
= 〈F− L(Un),Z〉 ∀ Z ∈ D(L′(Un)

∗).

An important feature to recognize here is that, in the functional and variational
problem above, δU represents the exact Newton step, but G is minimized without
explicitly using δU. The Newton update is given by

Un+1 = Un + L′(Un)
∗W.

Under proper smoothness assumptions, the FOSLL∗ functional, G(W), will be
equivalent to the L2 norm of the error, and approximations will have strong control
over the error in the L2 norm.

The discrete problem is analogous. Define a finite element space,Wh ⊂ D(L′(Un)
∗),

where Wh satisfies an approximation property as in (3.7). Minimizing G over Wh is
done by finding Wh ∈ Wh such that

(3.10) 〈L′(Un)
∗Wh,L′(Un)

∗Zh〉 = 〈F− L(Un),Z
h〉 ∀ Zh ∈ Wh.

The discrete Newton step is, thus, given by

Un+1 = Un + L′(Un)
∗Wh.

Despite its merit in finding an L2 approximation to problems with low regularity,
continuation of the Newton iteration by using an approximate solution to the discrete
FOSLL∗ system has a limitation. Suppose that Wh ⊂ C 0, but Wh 
⊂ C 1, which is
the case with standard finite element spaces. Then, in general, the Newton-FOSLL∗

approach described above will have Un+1 
∈ C 0 and, in general, not in D(L). Con-
tinuing to the next step requires the evaluation of L(Un+1), which may not be well
defined globally. To address this issue, we consider several modifications that result
in a well-defined iteration.
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3.2.1. CCC 1 elements. For many nonlinear PDE, taking Un ∈ C 0 and using
Wh ⊂ C 1 ensures that Un+1 = Un + L′(Un)

∗Wh ∈ C 0, and the iteration can
proceed normally since L(Un) will always be well defined. This can be accomplished
in practice by using specialized elements such as the Argyris triangular element, the
Bogner–Fox–Schmidt rectangular element, or others described in [14, 11, 38, 41].

Let δU = L′(Un)
∗W be the exact Newton step such that U = Un + δU, and

let Wh ∈ Wh be the solution of (3.10) so that the approximation of the correction
satisfies δUh = L′(Un)

∗Wh ∈ C 0. Assuming L′(Un)
∗ satisfies a continuity bound

like (1.1), where H1(Ω) ⊂ V , we have

‖δU− δUh‖ = ‖L′(Un)
∗(W −Wh)‖ ≤ ‖L′(Un)

∗(W − IhW)‖
≤ c ‖W − IhW‖H1(Ω) ≤ c hs‖W‖H1+s(Ω) ≤ c hs‖δU‖Hs(Ω)(3.11)

for 0 < s ≤ q, where Ih is an interpolation operator into Wh.
This approach has the obvious advantage of being able to control the smoothness

of the iteration directly through the approximation properties of the finite element
spaces. However, such spaces are not common in practice, and furthermore, they
generally lead to more dense linear systems that are more difficult for iterative solvers
to handle efficiently than those from more standard spaces. We, therefore, focus on
the more practical alternative approaches below.

3.2.2. L2 projections. Once δUh = L′(Un)
∗Wh /∈ C 0 is computed, it may be

projected into D(L) via an L2-orthogonal projection. By choosing a finite element
space X h ⊂ D(L) in which to represent the Newton step, we define ΠhδUh to satisfy

‖ΠhδUh − δUh‖ ≤ ‖Vh − δUh‖ ∀ Vh ∈ X h,

and the iteration proceeds with

Uh
n+1 = Un +ΠhδUh = Un +ΠhL′(Un)

∗Wh.

This approach ensures continuity of iterates, but requires additional work to perform
the projection.

Let δU = L′(Un)
∗W ∈ Hr(Ω) for r > 0 be the exact Newton step such that

Un+1 = Un+ δU, and let Wh ∈ Wh be the solution of (3.10) so that the approxima-
tion of the correction satisfies δUh = L′(Un)

∗Wh. Using approximation properties
of Wh, assuming X h admits a bound like (3.7), and assuming L′(Un)

∗ is H1-elliptic,
we have

‖δU−ΠhδUh‖ ≤ ‖δU− δUh‖+ ‖δUh −ΠhδUh‖
≤ ‖L′(Un)

∗(W −Wh)‖+ ‖(I −Πh)L′(Un)
∗Wh‖

≤ c1 h
r‖W‖H1+r(Ω) + c2 h

s‖Wh‖H1+s(Ω)

≤ c hr‖δU‖Hr(Ω) + c2 h
s‖Wh‖H1+s(Ω)

for some 0 < r, s ≤ q, which indicates that the projection preserves the convergence
to the solution. Even though the projected approximation, Uh

n+1, is in H1(Ω), the
convergence remains in L2(Ω). The implication of this is that, even if the exact
solution is not in H1(Ω), the approximations still converge in L2(Ω), which is the
motivating reason for using FOSLL∗. Similar bounds hold when V ellipticity holds in
a weaker norm than H1(Ω).
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3.2.3. Extended system. If, as previously, we wish to have the discrete rep-
resentation of the Newton step in a C 0 finite element space, then we may couple
the FOSLL∗ solution for W with the L2 projection for δU, approximating these
simultaneously.

Define the extended functional

E(W, δU) = ‖L′(Un)
∗W − L′(Un)

−1(F− L(Un))‖2 + ‖L′(Un)
∗W − δU‖2,

to be minimized for W ∈ D(L′(Un)
∗) and δU ∈ D(L). If W and δU are the

minimizers, then δU = L′(Un)
∗W. The discrete version is to minimize over Wh ∈

Wh ⊂ D(L′(Un)
∗) and δUh ∈ X h ⊂ D(L).

Under the same assumptions used in subsection 3.2.2, an error bound can be
derived as follows:

‖δU− δUh‖2 = ‖δU− L′(Un)
∗Wh + L′(Un)

∗Wh − δUh‖2
≤ 2

(‖L′(Un)
−1(F− L(Un))− L′(Un)

∗Wh‖2 + ‖L′(Un)
∗Wh − δUh‖2)

= 2E(Wh, δUh) ≤ 2E(IhW, Ih(δU))

= 2
(‖L′(Un)

∗(W − IhW)‖2 + ‖L′(Un)
∗IhW − L′(Un)

∗W + δU− Ih(δU)‖2)
≤ c1

(
hs‖W‖H1+s(Ω) + hs‖δU‖Hs(Ω)

) ≤ c hs‖δU‖Hs(Ω)

for some 0 < s ≤ q, where Ih is an interpolation operator. Again, we note that the
approximations are in D(L), but the convergence is in L2(Ω).

3.2.4. Weak functional and weak-weak form. Subsections 3.2.2–3.2.3 above
examine ways in which smoothness of iterates may be preserved in the Newton-
FOSLL∗ framework. Here we consider a type of formulation that does not require the
special considerations discussed above. If the system (3.1) can be written as

(3.12) L(U) = L0U+ L1N1(U) +N2(U),

where L0, L1 are linear differential operators and N1(U),N2(U) are nonlinear opera-
tors which involve no derivatives of U, then we can restate the minimization. First,
note that

(3.13) L′(U)V = L0V + L1N ′
1(U)V +N ′

2(U)V,

where N ′
1(U),N ′

2(U) involve no derivatives of U. Thus, the minimization of (3.8) is
equivalent to finding W ∈ D(L′(Un)

∗) such that
(3.14)

〈L′(Un)
∗W,L′(Un)

∗Z〉 = 〈F−N2(Un),Z〉 − 〈Un, L
∗
0Z〉 − 〈N1(Un), L

∗
1Z〉

for all Z ∈ D(L′(Un)
∗). Then, as above,

(3.15) Un+1 = Un + δUn = Un + L′(Un)
∗W.

Discrete approximation follows in the natural way by restricting (3.14) to a finite
element space, Wh. If Wh is a typical C 0 finite element space of piecewise polyno-
mials, then δUn = L′(Un)

∗Wh ∈ H1/2−ν(Ω) for ν > 0. In this case, the sequence of
approximate solutions is of reduced regularity, that is, Un ∈ Hε(Ω) for some ε > 0.
(We remark that, if Uh

n are piecewise smooth, then products of dependent variables
are also in H1/2−ν(Ω).)
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We now pose the broader question: givenUn ∈ Hε(Ω), under what conditions can
the exact Newton iteration be continued, and under what conditions will it converge?
If Un ∈ Hε(Ω), F−N2(Un) ∈ Hε−1(Ω), and N1(Un) ∈ Hε(Ω), then the right-hand
side of (3.14),

(3.16) b(Z) = 〈F−N2(Un),Z〉 − 〈Un, L
∗
0Z〉 − 〈N1(Un), L

∗
1Z〉,

is a bounded linear functional on H1−ε(Ω). If L′(Un)
∗ has sufficient regularity, then

we can expect W ∈ H1+ε(Ω), which yields δUn = L′(Un)
∗W ∈ Hε(Ω), and the

iterates remain in Hε(Ω). In section 4, we establish conditions and prove convergence
of the Newton-FOSLL∗ iteration under reduced regularity of the iterates. In section 5,
convergence of the discrete form of Newton-FOSLL∗ is established.

In many cases it is possible to choose the formulation of the PDE system to
match (3.12), so that the additional considerations in controlling the smoothness
of iterates are not necessary. The numerical tests in section 6 describe three semi-
linear PDE systems, which are of the form (3.12) with N1(U) = 0, and for which
N2(U

h
n) ∈ H1/2−ν(Ω).

4. Convergence of the Newton-FOSLL* iteration. In this section, we ex-
amine the convergence of the Newton-FOSLL∗ iteration in the Hε norm under ap-
propriate conditions on the linearized problem and its adjoint. In two dimensions,
convergence is established for 0 < ε ≤ 1, while in three dimensions, convergence is
established for 1/2 ≤ ε ≤ 1. As discussed above, C 0 finite element spaces yield iter-
ates in H1/2−ν(Ω) for ν > 0. This gap in the theory for three-dimensional problems
remains an open question.

Let U be the solution of (3.1), and define the open ball, Bε
R
(U) = {V ∈ Hε(Ω) :

‖U−V‖Hε(Ω) < R}. We assume that there is an R > 0 such that for Un ∈ Bε
R
(U),

where ε ∈ (0, 1], L(Un) ∈ Hε−1(Ω), L′(Un) is bijective from Hε(Ω) to Hε−1(Ω),
and L′(Un)

∗ is bijective from Hε+1(Ω) to Hε(Ω). That is, assume for V ∈ Hε(Ω) ∩
D(L′(Un)) and W ∈ Hε+1 ∩ D(L′(Un)

∗) that there exist positive constants α0, α1

and β0, β1, dependent only on ε and Ω, such that

α0‖V‖Hε(Ω) ≤ ‖L′(Un)V‖Hε−1(Ω) ≤ α1‖V‖Hε(Ω),(4.1)

β0‖W‖Hε+1(Ω) ≤ ‖L′(Un)
∗W‖Hε(Ω) ≤ β1‖W‖Hε+1(Ω),(4.2)

uniformly for Un ∈ Bε
R
(U).

In addition, we assume that for any Un ∈ Bε
R
, L(U) admits a Taylor expansion

F = L(U) = L(Un) + L′(Un)(U−Un) +
1

2
L′′(Ũ)[U−Un,U−Un]

for Ũ = γU+ (1− γ)Un with γ ∈ [0, 1] such that the second Fréchet derivative of L
is bounded in the following way: there is a positive constant c, independent of Un,
such that

(4.3) ||L′′(Ũ)[Z,Z]||Hε−1(Ω) ≤ c ||Z2||Hε−1(Ω)

for any Z ∈ Hε(Ω).
The following result establishes quadratic convergence of the Newton-FOSLL*

iteration.
Theorem 1. Let Ω be an open, bounded, Lipschitz-continuous subset of Rd, d =

2, 3. Let U be the solution of (3.1), and let Un be the current approximation of
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the Newton-FOSLL* iteration in Bε
R
(U) = {V ∈ Hε(Ω) : ‖U − V‖Hε(Ω) < R} for

0 < ε ≤ 1 if d = 2 and 1/2 ≤ ε ≤ 1 if d = 3. Assume that (4.1), (4.2), and (4.3) hold
uniformly for every V ∈ Bε

R
(U). Let

Un+1 = Un + L′(Un)
∗W,

where W ∈ H1+ε(Ω) ∩D(L′(Un)
∗) satisfies

〈L′(Un)
∗W,L′(Un)

∗Z〉 = 〈F− L(Un),Z〉(4.4)

= 〈F−N2(Un),Z〉 − 〈Un, L
∗
0Z〉 − 〈N1(Un), L

∗
1Z〉

for all Z ∈ H1+ε(Ω) ∩ D(L′(Un)
∗). Then, for any initial approximation, U0, suffi-

ciently close to U in the Hε(Ω) norm, the sequence {Un}∞n=0 is quadratically conver-
gent to U in the Hε(Ω) norm.

Proof. The Taylor expansion of L(U) around the current approximationUn yields

F = L(U) = L(Un) + L′(Un)(U −Un) +
1

2
L′′(Ũ)[U−Un,U−Un],

where Ũ = γU+ (1− γ)Un for some γ ∈ [0, 1]. Since W is the solution of (4.4), the
inequalities (4.1) and (4.3) imply

‖U−Un+1‖Hε(Ω) = ‖U−Un − L′(Un)
∗W‖Hε(Ω)

= ‖U−Un − L′(Un)
−1(F− L(Un))‖Hε(Ω)

=

∣∣∣∣∣∣∣∣12L′(Un)
−1L′′(Ũ)[U −Un,U−Un]

∣∣∣∣∣∣∣∣
Hε(Ω)

≤ c1

∣∣∣∣∣∣L′′(Ũ)[U−Un,U−Un]
∣∣∣∣∣∣
Hε−1(Ω)

≤ c2 ‖(U−Un)
2‖Hε−1(Ω)

= c2 sup
V ∈ H1−ε(Ω)

V �= 0

∣∣〈(U−Un)
2,V

〉∣∣
‖V‖H1−ε(Ω)

.(4.5)

Hölder’s inequality implies

∣∣〈(U−Un)
2,V

〉∣∣ ≤ (∫
Ω

|U−Un|2sdx
) 1

s
(∫

Ω

|V|tdx
) 1

t

= ‖U−Un‖2L2s(Ω)‖V‖Lt(Ω)

with 1/s+ 1/t = 1. In R
2, we take s = 2/(2− ε) and t = 2/ε, and in R

3, we choose
s = 6/(5− 2ε) and t = 6/(1 + 2ε). If 0 < ε ≤ 1 in R

2 or 1/2 ≤ ε ≤ 1 in R
3, Lemma 1

can be applied and yields

(4.6) ‖V‖Lt(Ω) ≤ c3‖V‖H1−ε(Ω) and ‖U−Un‖L2s(Ω) ≤ c4‖U−Un‖Hε(Ω).

By applying (4.6) to (4.5) we get

‖U−Un+1‖Hε(Ω) ≤ c ‖U−Un‖2Hε(Ω) ≤ cR2.

Thus, for any Un ∈ Bε
R
(U) with R ≤ θ/c for some fixed θ ∈ (0, 1), we may be assured

that Un+1 ∈ Bε
R
(U) and that, as n→ ∞, the iteration converges quadratically.

The above theorem shows that we have convergence of the Newton iteration
with less-regular approximations than the conventional Newton iteration requires.
The convergence of the Newton-FOSLL∗ iteration in a finite-dimensional subspace is
derived in the following section.
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5. Finite element convergence. In this section we show that, for sufficiently
small h, the discrete iteration stays in the attraction basin of Newton’s method. As
above, assume the hypotheses of Theorem 1 hold, let Un ∈ Hε(Ω) be the current
approximation to U, and let W ∈ H1+ε(Ω) ∩ D(L′(Un)

∗) satisfy

(5.1) 〈L′(Un)
∗W,L′(Un)

∗Z〉 = 〈F−N2(Un),Z〉 − 〈Un, L
∗
0Z〉 − 〈N1(Un), L

∗
1Z〉

for all Z ∈ H1+ε(Ω) ∩ D(L′(Un)
∗). Then, let the exact Newton iterate be given by

(5.2) Un+1 = Un + δUn = Un + L′(Un)
∗W.

Now, let Wh ∈ Wh ⊂ H1+ε(Ω) satisfy
(5.3)〈L′(Un)

∗Wh,L′(Un)
∗Zh

〉
= 〈F−N2(Un),Z

h〉 − 〈Un, L
∗
0Z

h〉 − 〈N1(Un), L
∗
1Z

h〉
for all Zh ∈ Wh, and define

(5.4) Uh
n+1 = Un + L′(Un)

∗Wh

as the approximate Newton iterate. Using (3.7), (4.2),

‖W −Wh‖H1(Ω) ≤ β−1
0 ‖L′(Un)

∗(W −Wh)‖ ≤ β−1
0 ‖L′(Un)

∗(W − IhW)‖
≤ β1
β0

‖W − IhW‖H1(Ω) ≤ c hs‖W‖H1+s(Ω)

for 0 < s ≤ q. Since Un+1 −Uh
n+1 = L′(Un)

∗(W−Wh), it immediately follows that

(5.5) ‖Un+1 −Uh
n+1‖ ≤ c hs‖W‖H1+s(Ω).

In the following theorem, we show that, if h is sufficiently small, the discrete
iterate remains in the basin of attraction of Newton’s method in the Hε norm.

Theorem 2. Assume that Ω, U, Bε
R
(U), ε, Un, and Un+1 are the same as

in Theorem 1, and let Uh
n+1 be the discrete iterate given in (5.3) and (5.4). For

sufficiently small h,

(5.6) ‖U−Uh
n+1‖Hε(Ω) < R,

where R > 0 is established in the proof of Theorem 1.
Proof. By the proof of Theorem 1 and the triangle inequality, we have

‖U−Uh
n+1‖Hε(Ω) ≤ c̃ R2 + ‖Un+1 −Uh

n+1‖Hε(Ω).

The triangle inequality, (4.2), an inverse inequality (see, e.g., Chapter 4 of [14]), (5.5),
and (3.7) imply

‖Un+1−Uh
n+1‖Hε(Ω) = ‖L′(Un)

∗(W −Wh)‖Hε(Ω)

≤ ‖L′(Un)
∗(W − IhW)‖Hε(Ω) + ‖L′(Un)

∗(IhW −Wh)‖Hε(Ω)

≤ β1‖W − IhW‖H1+ε(Ω) + c1h
−ε‖L′(Un)

∗(IhW −Wh)‖
≤ c2h

s−ε‖W‖H1+s(Ω) + c1h
−ε‖L′(Un)

∗(IhW −W +W −Wh)‖
≤ c2h

s−ε‖W‖H1+s(Ω) + c3h
−ε‖L′(Un)

∗(W − IhW)‖
≤ chs−ε‖W‖H1+s(Ω).
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Suppose h is small enough so that h ≤ R2/(s−ε). Then, we have

‖U−Uh
n+1‖Hε(Ω) ≤ c̃ R2 + cR2‖W‖H1+s(Ω),

and choosing R such that (c̃+ c‖W‖H1+s(Ω))R ≤ 1 yields the result (5.6).
For the projection technique (subsection 3.2.2) and the extended system (sub-

section 3.2.3) the iterates will be finite element functions, and, in general, Uh ∈
H3/2−ν(Ω) for ν > 0. If U ∈ H1+ε(Ω), then the error, U−Uh, will be in the larger of
those two spaces. In either case, Theorem 2 guarantees that the iteration can proceed.
In this context, the functional is minimized over a finite element space. Convergence
to that minimum will be linear with rate O(hs). Further background in the conver-
gence of inexact Newton methods in the nonlinear least-squares context can be found
in Chapter 10 of [27].

With the weak-weak FOSLL∗ method (subsection 3.2.4), on the other hand, the
correction step yields δUh = L′(Un)

∗Wh. With standard finite element spaces,
δU ∈ H1/2−ν(Ω). Thus, the error will also satisfy U −Uh ∈ H1/2−ν(Ω). As in the
projected and extended methods, convergence to the minimum over finite element
spaces will be linear with rate O(hs).

In two dimensions, Theorem 2 holds for U −Uh ∈ Hε(Ω) for any ε > 0, which
guarantees that if the discrete problem is solved to sufficient accuracy, the iteration
can proceed. However, in three dimensions, the theorem holds only for ε ≥ 1/2. This
gap may only be theoretical; the theorem may not be sharp. In any case, we leave
that issue for future research.

6. Computational examples. In this section, we present three examples that
illustrate the general methodology of the proposed Newton-FOSLL∗ iteration. These
examples illuminate the process of setting up the adjoint system and demonstrate the
strengths and weaknesses of some of the options of the approaches.

The first computational example uses a vorticity formulation of the steady incom-
pressible Navier–Stokes equations and has full regularity and a known exact solution.
This allows direct computation of the approximation error and confirms the theory
developed above, namely, quadratic convergence of Newton’s method and finite el-
ement discretization convergence rates. We also directly compare the accuracy and
efficiency of the weak-weak, projection, and extended functional approaches to the
nonlinear iteration.

The second computational example develops a mixed H1×H(Div) finite element
approach to a velocity gradient formulation for Navier–Stokes, applying the projection
approach to continuation. A test problem of flow over a backwards facing step shows
excellent mass conservation, a difficult challenge for standard least-squares methods.
The size of the salient corner recirculation eddy is computed for a range of Reynolds
numbers and is found to be in good agreement with results in the literature. Since all
three methods perform essentially the same, only results for the projection method
are presented.

The third computational example involves a problem with low regularity and
illustrates how the FOSLL∗ approach can approximate discontinuous solutions. The
operator has a discontinuous diffusion coefficient and nonlinearity in a convection-like
term. This example also illustrates the use of a nonlinear nested iteration approach for
increased efficiency. In this problem, the exact solution is discontinuous. Projection
onto D(L) would require enforcing a jump condition across the discontinuities. The
weak-weak form does not require knowledge of the discontinuities; thus, results for
only this approach are presented.
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6.1. Two-dimensional Navier–Stokes: Vorticity formulation. For the first
example, we consider a vorticity formulation of the steady, incompressible Navier–
Stokes equations. This form admits a reformulation with the nonlinearity in zeroth-
order terms, thus allowing for direct comparison of the weak-weak, the projection,
and the extended functional approaches outlined in subsections 3.2.4, 3.2.2, and 3.2.3,
respectively. Further, to clearly demonstrate the convergence predicted in our theory,
this problem is posed on a straightforward convex domain with a known smooth exact
solution, making it possible to directly compute convergence rates. Consider

(6.1)

{
Δu− λu · ∇u−∇p = f in Ω,

∇ · u = 0 in Ω,

equipped with boundary conditions n · u = 0 and ∇ × u = 0 on ∂Ω. Here, u is the
velocity, p is the pressure, f represents body forces, λ is the dimensionless Reynolds
number, and n is the outward unit normal to the domain boundary ∂Ω. Using the
vorticity field, ω = −∇×u, and the total pressure, P = (λ/2)|u|2 + p, we can rewrite
(6.1) in the form L(U) = LU+N (U) = F with

(6.2)

⎡⎣ I ∇× 0
∇⊥ 0 −∇
0 ∇· 0

⎤⎦⎡⎣ ω
u
P

⎤⎦+ λ

⎡⎢⎢⎣
0[−ωu2
ωu1

]
0

⎤⎥⎥⎦ =

⎡⎣ 0
f
0

⎤⎦ ,
where u = (u1, u2)

t and ∇⊥ denotes the adjoint of ∇× in R
2. The boundary con-

ditions are thus n · u = 0 and ω = 0 on ∂Ω. Taking the Fréchet derivative of the
operator yields

L′(U)V = LV+N ′(U)V,

where

N ′(U)V =

⎡⎢⎢⎣
0 0 0 0

−u2 0 −ω 0
u1 ω 0 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
v1
v2
v3
v4

⎤⎥⎥⎦ ,
which can be shown to satisfy (4.1) if we also require p ∈ L2

0(Ω). Now,

N ′′(U)[V,Z] = [0,−(v1z3 + v3z1), (v1z2 + v2z3), 0]
t ,

which clearly satisfies (4.3). The corresponding adjoint operator is

L′(U)∗W =

⎡⎣ I ∇× 0
∇⊥ 0 −∇
0 ∇· 0

⎤⎦
⎡⎢⎢⎣

w1[
w2

w3

]
w4

⎤⎥⎥⎦+ λ

⎡⎢⎢⎣
0 −u2 u1 0
0 0 ω 0
0 −ω 0 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
w1

w2

w3

w4

⎤⎥⎥⎦ ,
with boundary conditions w1 = 0 and n · (w2, w3)

t = 0 on ∂Ω, which satisfy (4.2)
if we also require w4 ∈ L2

0(Ω). Following (3.14), the weak-weak form becomes the
following: given iterate Un, find Wh ∈ Wh such that〈L′(Un)

∗Wh,L′(Un)
∗Zh

〉
=

〈
F−N (Un),Z

h
〉− 〈

Un, L
∗Zh

〉
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for every Zh ∈ Wh. Then, the next iterate is given by

Un+1 = Un + L′(Un)
∗Wh.

For this test problem, define Ω = (0, 2)× (0, 1) and let

u =

[
sin(πx) cos(πy)

− cos(πx) sin(πy)

]
and f =

[ −2π2u1 − λπ sin(πx) cos(πx)
−2π2u2 − λπ sin(πy) cos(πy)

]
be the exact solution to system (6.1) and corresponding function, f . For this test we
use λ = 10 and discretize Ω with a uniform triangulation of mesh size, h. Options for
finite element spaces for Wh and Uh are described below.

Weak-weak form. Following the method outlined in subsection 3.2.4, we approx-
imate Wh = (w1, w2, w3, w4)

t using P2 elements (conforming piecewise quadratics
on triangles) and represent each U = (ω, u1, u2, P )

t using P1dc elements (discontin-
uous piecewise linears). With these choices, the error bound predicted in (5.5) is
‖U−Uh‖ ∼ O(h2).

Projection. For the projection method outlined in subsection 3.2.2, we use P2
elements for Wh at each iteration and project L′(Un)

∗Wh onto the space of P2
elements to continue to the next iteration, as described in subsection 3.2.2. Since
this projection has O(h3) interpolation error, we should still expect an overall error
of ‖U−Uh‖ ∼ O(h2).

Extended. For the extended approach, as presented in subsection 3.2.3, we si-
multaneously solve for Wh and δUh using P2 elements. Again, we expect to see an
overall error of ‖U−Uh‖ ∼ O(h2).

To compare these three approaches we consider a sequence of Newton iterates
on different mesh resolutions. For each iterate we compute the L2 norm of the error
(error = ‖Uh

n−U‖), based on the exact solution. Using a measure of computational
cost relative to one Newton iteration of the weak-weak approach on the coarsest mesh
(h−1 = 16), we take the relative cost of the projection and extended approaches as
twice that of the weak-weak approach since each has twice the number of unknowns
in the resulting linear system solve. With this we define a rough estimate of efficiency
as eff = (error ∗ cost)−1 (larger is better).

Table 1 shows the results for six nonlinear steps per level, each computed inde-
pendently from an initial guess of zero. We find that each approach reflects well the
theory in sections 4 and 5. On each mesh, the nonlinear iteration converges rapidly
to within discretization error, and the discretization accuracy is O(h2) in each case,
though the errors in the weak-weak approximations are larger by nearly an order of
magnitude. For this problem, where the exact solution is very smooth, the extra
smoothness imposed by the projection and extended approaches seems to be a good
investment in computational resources, with the projection approach showing the
highest peak efficiency, even though, compared with the weak-weak approach, each
iteration is more expensive and at least one more nonlinear iteration is required to
converge to the level of discretization error.

6.2. Two-dimensional Navier–Stokes: Velocity gradient formulation.
We now consider a different formulation of the Navier–Stokes equations, one that
is more practical than the previous example for many applications. Consider again
system (6.1). Introducing the velocity gradient, σ = ∇u, (6.1) can be reformulated
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Table 1

Convergence of Newton-FOSLL∗ for system (6.1) with λ = 10 (h is the meshsize parameter, n is
the nonlinear step, error = ‖Uh

n−U‖ is the L2 error, cost is the cumulative relative computational
cost, and eff is an efficiency measure). Convergence rate is computed between approximations on
the two finest levels.

Weak-weak Projection Extended

h−1 n error cost eff error cost eff error cost eff

16 1 3.95 1 0.25 3.95 2 0.13 3.95 2 0.13
16 2 0.695 2 0.72 0.518 4 0.48 0.565 4 0.44
16 3 0.244 3 1.4 0.0746 6 2.2 0.104 6 1.6
16 4 0.235 4 1.1 0.0393 8 3.2 0.0496 8 2.5
16 5 0.234 5 0.86 0.0372 10 2.7 0.0396 10 2.5
16 6 0.234 6 0.71 0.0368 12 2.3 0.0377 12 2.2
32 1 3.95 4 0.063 3.95 8 0.032 3.95 8 0.032
32 2 0.186 8 0.67 0.158 16 0.40 0.165 16 0.38
32 3 0.0610 12 1.4 0.0140 24 3.0 0.0232 24 1.8
32 4 0.0608 16 1.0 0.00943 32 3.3 0.0124 32 2.5
32 5 0.0608 20 0.82 0.00904 40 2.8 0.00978 40 2.6
32 6 0.0608 24 0.69 0.00894 48 2.3 0.00927 48 2.3
64 1 3.95 16 0.016 3.95 32 0.0079 3.95 32 0.0079
64 2 0.0473 32 0.66 0.0418 64 0.37 0.0430 64 0.36
64 3 0.0153 48 1.4 0.00350 96 3.0 0.00595 96 1.8
64 4 0.0153 64 1.0 0.00236 128 3.3 0.00318 128 2.5
64 5 0.0153 80 0.82 0.00225 160 2.8 0.00246 160 2.5
64 6 0.0153 96 0.68 0.00223 192 2.3 0.00232 192 2.2

Rate 1.99 2.00 2.00

as

(6.3)

⎧⎪⎨⎪⎩
∇ · σ −∇p− λσu = f in Ω,

−∇u+ σ = 0 in Ω,

∇ · u = 0 in Ω.

Defining U = (u,σ, p), this can be written as the 7 × 7, formally self-adjoint
system

L(U) = LU+N (U) =

⎡⎣ 0 ∇· −∇
−∇ I 0
∇· 0 0

⎤⎦⎡⎣uσ
p

⎤⎦+

⎡⎣−λσu0
0

⎤⎦ =

⎡⎣f0
0

⎤⎦ = F.

On the inflow boundary, ΓI , a parabolic velocity profile, u = g, is imposed; on the
walls, ΓW , a no slip condition, u = 0, is imposed; and on the outflow, ΓO, a developed
gradient, σ11 = σ21 = p = 0, is imposed.

By the structure of the system, it is natural to take U = (u,σ, p) ∈ V = (H1)2 ×
H(Div)2 × H1, with appropriate boundary conditions. This is similar to systems
developed in [21, 22, 17], but does not share the same V ellipticity. The tests below
indicate that it is sufficient for FOSLL∗.

We denote the structure of dual variables similarly,

Z =

([
z1
z2

]
,

[
z3 z4
z5 z6

]
, z7

)
and W =

([
w1

w2

]
,

[
w3 w4

w5 w6

]
, w7

)
,

and the adjoint L∗ = L, thus, satisfies

〈LU,Z〉 = 〈U, L∗Z〉+
∮

(n · σ)·
[
z1
z2

]
−
∮ (

n ·
[
z3 z4
z5 z6

])
·u−

∮ (
n ·

[
z1
z2

])
p+

∮
(n · u) z7.
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Velocity boundary conditions require w1 = w2 = 0 on the inflow and walls, while
developed gradient requires w3 = w5 = w7 = 0 on the outflow, which yields a self-
adjoint system. Recalling (3.9), the FOSLL∗ variational problem also requires the
addition of two boundary terms when u is nonzero on the boundary. The variational
problem we solve at each step is given by〈L′(Un)

∗Wh,L′(Un)
∗Zh

〉
=
〈
F−N (Un),Z

h
〉− 〈

Un, L
∗Zh

〉
+

∫
ΓI

(
n ·

[
zh3 zh4
zh5 zh6

])
· g−

∫
ΓI

(n · g)zh7 .

While all three continuation approaches detailed in the previous example are ap-
propriate, in this example their numerical behavior was very similar. The L2 projec-
tion approach was slightly more efficient. For the sake of brevity, only those results are
presented. For the numerical approximation, we choose P2 elements for w1, w2, and
w7 and RT1 elements for (w3, w4) and (w5, w6) (i.e., the next-to-lowest-order Raviart–
Thomas elements). We impose w1 = w2 = 0 on ΓI ∪ ΓW , and w3 = w5 = w7 = 0 on
ΓO. For the FOSLS comparison, we use P2 elements for u, p, and RT1 for σ, imposing
u = g on ΓI , u = 0 on ΓW , and n · σ = 0, p = 0 on ΓO.

As a test problem, we consider fluid flow over a backwards facing step as illustrated
by Figure 1, where the channel lengths used are L1 = L2 = 4. The diameter of the
outflow channel is chosen as H = 1.94, which matches the domain geometry used
in [7]. As stated above, inflow boundary conditions are a fully developed parabolic
profile with a mean velocity of 1, while outflow boundary conditions are developed
gradient flow.

1

H
L1

L2

r

Γ1

Γ2

Fig. 1. Domain and boundary conditions for example 2, flow across a backwards facing step.
In the tests below, L1 = L2 = 4, H = 1.94, the step is located at x = 0, Γ1,Γ2 are located at −2 and
2, respectively, and r is the reattachment point.

The domain is discretized with a total of 12860 triangles of mesh size hmax = 1/16
and hmin = 1/64, where the finer mesh is placed near the step. Using a zero initial
approximation for U, the nonlinear iteration coincides with a first approximation
consistent with Stokes equations, and we find that for λ ≤ 50 it is sufficient to use
five linearization steps for the approximation to converge.

Standard H1 or H(Div) least-squares formulations for incompressible flow prob-
lems tend to do a poor job of conserving mass in approximations, especially on coarse
mesh resolutions or when relatively low-order elements are used. FOSLL∗ formu-
lations do much better on coarse meshes since they are designed to more directly
minimize the L2 norm of the error rather than the H1 or H(Div) seminorm of the
error. To illustrate the strong mass conservation in our approach, we compute the
mass loss across the center of the upstream and downstream channels (i.e., Γ1 and
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Table 2

Reattachment point r of salient corner recirculation eddy and mass loss at Γ1 and Γ2 versus
Reynolds number for flow across a backwards facing step for nonlinear FOSLL∗. Mass loss for a
comparable FOSLS solution is shown for comparison.

Re = 2λ 0 1 10 50 100
r 0.29 0.33 0.53 1.59 2.06

FOSLL∗
mass loss Γ1 0.019% 0.021% 0.057% −0.204% 0.756%
mass loss Γ2 0.007% −0.015% −0.029% 0.756% 0.822%

FOSLS
mass loss Γ1 2.22% 2.12% 1.49% 0.61% 0.61%
mass loss Γ2 4.64% 4.44% 3.16% 1.68% 1.57%

Γ2 in Figure 1) relative to the mass flux at the inflow. Negative mass loss indicates
a higher flux than at the inflow. Table 2 shows the results for increasing λ. For
comparison we include mass loss for a comparable FOSLS solution for each λ. Using
the same mesh and approximation spaces for the unknowns, we solve according to
the Newton-FOSLS approach described in subsection 3.1 and observe a much higher
mass loss than the FOSLL∗ method for small and moderate λ.

At larger values of λ, the effect of strong L2 control (at the expense of higher norm
control) begins to show. The quality of the FOSLL∗ approximations approaches that
of the FOSLS formulation. For both FOSLS and FOSLL∗, further mesh refinement
will yield a solution that is accurate in L2 and, thus, demonstrates accurate mass
conservation. For larger λ, a hybrid FOSLS-FOSLL∗ approach, as in [34], could be
expected to perform better since it would impose a balance between the L2 and the
H1 seminorm measure of the error.

Since an analytic solution is not available for this problem we also compare a
measurement of the reattachment point, r, of the salient corner recirculation eddy to
results published in [7]. In that work, the Reynolds number used is computed relative
to a characteristic length of twice the inflow channel height, allowing a comparison
here with Re := 2λ. Table 2 summarizes r for a range of Reynolds numbers, which
are in good agreement with the streamline plots in Figure 3 of [7].

6.3. Semilinear Div-Curl system with reduced regularity. In this test we
consider an elliptic-like problem that has two distinct challenges: (1) a principal part
that induces a nonsmooth solution, and (2) a nonlinearity in first-order terms. We
apply the Newton-FOSLL∗ approach to a Div-Curl formulation of this problem, exam-
ine the resulting convergence, and present some specific algorithmic implementation
issues.

Consider the second-order system

(6.4)

{ −∇ · a∇p+ λ|a∇p|2 = f in Ω,
p = g on ∂Ω,

where Ω = (−1, 1)× (−1, 1), f ∈ L2(Ω), and g ∈ H1/2(∂Ω). The diffusion coefficient,
a, is chosen to be discontinuous across the horizontal and vertical axes in the following
way: for ε > 0,

(6.5) a =

{
ε, xy ≤ 0 (NW and SE),
1, xy > 0 (SW and NE),

where NE, NW, SW, and SE correspond to the northeast, northwest, southwest, and
southeast quadrants of Ω. For a general f ∈ L2(Ω), the solution p behaves like rα
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near the origin, where

(6.6) ε = tan2(απ/4),

and r =
√
x2 + y2, φ = arctan(y/x) are polar coordinates. Thus, p ∈ Hs(Ω) for

s < 1 + α. Note that α > 0 can be made as small as desired by choosing the
appropriate value of ε. Background on singular solutions of elliptic equations can be
found in [6, 31].

The first equation in (6.4) can be written in first-order form as⎧⎨⎩
u−∇p = 0,

−∇ · au+ λa2|u|2 = f,
∇× u = 0,

with the additional boundary condition

(6.7) τ · u = g′ on ∂Ω.

It is clear that, in general, u ∈ Hs(Ω) for s < α near the origin. In addition, since
au ∈ H(Div), u1 is discontinuous across the vertical axis, while u2 is discontinuous
across the horizontal axis. This indicates that u ∈ Hs(Ω) for s < 1/2.

While the entire system can be solved by minimizing a least-squares functional
based on the above first-order system, it can also be addressed in two stages. The
first stage is to approximately solve the Div-Curl system

(6.8)

{ −∇ · au+ λa2|u|2 = f,
∇× u = 0,

with boundary condition (6.7). The general solution to linear Div-Curl systems has
been studied in the context of FOSLS in [6, 5].

Given an approximate solution to (6.8), say uh, one can then find ph in an ap-
propriate H1-conforming finite element space, Ph, such that

ph = argmin
qh∈Ph

‖∇qh − uh‖.

The approximation, ph, inherits the accuracy of uh subject to the properties of Ph.
The purpose of this test is to demonstrate the behavior of the Newton-FOSLL∗

method on problems of reduced regularity. Towards that end, write (6.8) as

L(u) = Lu+N (u) =

[ −∂xa −∂ya
−∂y ∂x

] [
u1
u2

]
+ λa2

[
u21 + u22

0

]
=

[
f
0

]
= F.

Linearization about u yields

L′(u)v = Lv+N ′(u)v =

[ −∂xa −∂ya
−∂y ∂x

] [
v1
v2

]
+ 2λa2

[
u1 u2
0 0

] [
v1
v2

]
.

The adjoint operator applied to z is

(6.9) L′(u)∗z = L∗z+N ′(u)∗z =

[
a∂x ∂y
a∂y −∂x

] [
z1
z2

]
+ 2λa2

[
u1 0
u2 0

] [
z1
z2

]
.
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Notice that the discontinuous coefficient appears outside of the derivative in L′(u)∗.
Also, note that the leading term has formally orthogonal columns if z has support
that does not intersect a discontinuity of a.

Adjoint boundary conditions are determined by the differential part as follows:

〈∇ · au, z1〉 = −〈u, a∇z1〉+
∮
a(n× u)z1,(6.10)

〈∇ × u, z2〉 =
〈
u,∇⊥z1

〉
+

∮
(τ · u)z2

=
〈
u,∇⊥z1

〉
+

∮ (
∂g

∂τ

)
z2.(6.11)

Since τ · u is known, while n× u is not known, the adjoint boundary conditions are

(6.12) z1 = 0 on ∂Ω.

With the additional requirement that z2 ∈ L2
0(Ω), it follows that L′(U) and L′(U)∗

satisfy (4.1), (4.2), and (4.3).
To test FOSLL∗ on the above system, consider the singular function associated

with this problem,

(6.13) ψ(r, φ) = rα

⎧⎪⎪⎨⎪⎪⎩
cos(α(φ − π/4)) NE,

−β sin(α(φ − 3π/4)) NW,
− cos(α(φ − 5π/4)) SW,
β sin(α(φ − 7π/4)) SE,

where β = cot(απ/4). The singular function, ψ(r, φ), satisfies

(6.14) ∇ · a∇ψ = 0.

For this test, we let p = ψ, which yields

u = ∇ψ =

[
cos(φ) − 1

r sin(φ)

sin(φ) 1
r cos(φ)

] [
∂r
∂φ

]
ψ(r, φ) = αrα−1

[
v1
v2

]
,

where

v1 =

⎧⎪⎪⎨⎪⎪⎩
cos(φ) cos(α(φ− π/4)) + sin(φ) sin(α(φ − π/4)) NE,

−β(cos(φ) sin(α(φ − 3π/4))− sin(φ) cos(α(φ − 3π/4))) NW,
− cos(φ) cos(α(φ− 5π/4))− sin(φ) sin(α(φ − 5π/4)) SW,
β(cos(φ) sin(α(φ − 7π/4)) + sin(φ) sin(α(φ − 7π/4))) SE

and

v2 =

⎧⎪⎪⎨⎪⎪⎩
sin(φ) cos(α(φ − π/4))− cos(φ) sin(α(φ − π/4)) NE,

−β(sin(φ) sin(α(φ − 3π/4)) + cos(φ) cos(α(φ − 3π/4))) NW,
− sin(φ) cos(α(φ − 5π/4)) + cos(φ) sin(α(φ − 5π/4)) SW,
β(sin(φ) sin(α(φ − 7π/4))− cos(φ) sin(α(φ − 7π/4))) SE.

Using (6.14), the right-hand side can be computed as

(6.15) f = −∇ · a∇ψ + λa2|∇ψ|2 = λa2|∇ψ|2,
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which behaves like r2(α−1) near the origin. Note that f ∈ L2(Ω) only if α > 1/2,
which we enforce in the tests below.

Since the boundary conditions on u are not homogeneous, they must be incorpo-
rated either through superposition or the addition of a boundary term in the weak
form. Here, we appeal to (6.11) and add the term

(6.16)

∮
(τ · u)z2 =

∮
(τ · ∇ψ)z2,

to the weak form. For more details on FOSLL∗ with nonhomogeneous boundary
conditions, see [20, 36].

While all three methods described in section 3 are applicable, the weak-weak
approach from subsection 3.2.4 outperformed the projected and extended approaches.
Thus, only results for the weak-weak form are presented.

Given current iterate uh
n, we solve the discrete weak-weak problem based on (3.14),

(3.15), (6.9), and (6.15), which is to find wh ∈ Wh such that

(6.17) 〈L′(uh
n)

∗wh,L′(uh
n)

∗zh〉 = 〈F−N (uh
n), z

h〉 − 〈uh
n, L

∗zh〉+
∮
(τ · ∇ψ)zh2

for all zh ∈ Wh. The next iterate is then computed directly according to

uh
n+1 = un + L′(un)

∗wh.

A uniform triangulation of Ω is used, in which coefficient discontinuities are
aligned with the mesh. As in the previous numerical example, for Wh we use stan-
dard P2 elements with boundary conditions as described above. The approximation
for the Newton iterates, uh

n, uses P1dc elements, and the initial approximation is a
piecewise smooth function that satisfies the discontinuous boundary conditions and is
zero at the origin. The weak-weak continuation approach is clearly the most appro-
priate for this problem. Using either the projection or extended system approaches,
as in the previous example, would require special finite element spaces that enforce
a jump discontinuity across the axes. For this reason, we present results only for the
weak-weak method.

For this example we also demonstrate the use of a nested iteration approach,
where four nonlinear steps are taken on the initial coarse mesh (N = 32 elements per
side), the mesh is then uniformly refined, and the approximation is interpolated to the
new mesh. In this way, the initial nonlinear steps move the approximation into the
basin of attraction for Newton’s method, and each subsequent step can be performed
on a refined mesh; see Figure 4. More intricate nested iteration schemes are certainly
possible, but this illustrates the idea that it is generally most efficient to perform
as much computational work as possible on coarse mesh levels. (Note: if a robust
error estimator were available, it would also be possible to refine the mesh adaptively
(cf. [2, 15, 28, 34]), though we employ uniform refinement here for simplicity. The
projected and extended methods have a term that could potentially provide such an
estimate. We leave this to future development.)

Figure 2 shows the domain and initial triangulation Ωh. We also define subdo-
mains Ω1 = Ω\{(x, y) : |x| < 0.125, |y| < 0.125} and Ω2 = {(x, y) ∈ Ω : |x| >
0.125, |y| > 0.125}, as pictured in Figure 2. Measuring the error on these domains,
we are able to see the overall convergence rate, the rate excluding the singularity at
the origin, and the rate excluding the discontinuities along the coordinate axes.
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Fig. 2. Discretization of Ω with N = 32 (left) and subdomains Ω1 (center) and Ω2 (right) in
which the dark shaded parts are the regions excluded from Ω.

Fig. 3. Numerical approximation for uh
1 (top) and uh

2 (bottom) at the third nonlinear step for
α = 0.75 and N = 32 elements per side (2048 total elements).

Figure 3 shows a surface plot of a typical numerical approximation for uh, show-
ing the singular behavior at the origin and the discontinuities along the axes. The
advantage of FOSLL∗ can be clearly seen here. The PDE solve in each step is the solu-
tion of a symmetric and positive definite weak problem, done with simple conforming
piecewise polynomial elements (i.e., wh), while the subsequent approximation of uh

allows optimally accurate representation of the discontinuities. In contrast to discon-
tinuous Galerkin approaches, which also allow a discontinuous solution, the FOSLL∗

approach admits discontinuities in the postprocessing step rather than building the
discontinuity into the variational problem.

Figure 4 shows the full numerical results for λ = 1 and α = 0.55, 0.75, and
0.95, corresponding to a range of nonsmooth solutions. Convergence rates are ap-
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rate

rate

rate
rate 2 rate 2

rate 2

0.55 0.75 0.95

1
1

12 2

2

α = 0.55 α = 0.75 α = 0.95

N Ω Ω1 Ω2 Ω Ω1 Ω2 Ω Ω1 Ω2

32 0.471 0.348 0.286 0.371 0.364 0.307 0.364 0.363 0.311
32 0.219 0.0338 0.0190 0.0409 0.0201 0.0174 0.0215 0.0214 0.0189
32 0.215 0.0488 0.0334 0.0347 0.00337 0.00217 0.00211 0.00130 0.00125
32 0.215 0.0488 0.0335 0.0347 0.00339 0.00220 0.00211 0.00130 0.00124
64 0.182 0.0262 0.0177 0.0244 0.00105 6.57e-4 9.64e-4 3.33e-4 3.18e-4
128 0.146 0.0147 0.00994 0.0166 3.88e-4 2.45e-4 4.96e-4 8.52e-5 8.11e-5
256 0.115 0.00823 0.00559 0.0111 1.53e-4 9.76e-5 2.65e-4 2.18e-5 2.07e-5

Rate 0.35 0.84 0.83 0.58 1.35 1.33 0.90 1.97 1.97

Fig. 4. L2 convergence in Ω, Ω1, and Ω2, versus mesh resolution, N , for α = 0.55, 0.75, and
0.95. A nested iteration approach was employed, where four nonlinear steps were computed on the
initial coarse mesh, N = 32, while only one Newton step was required on each of the finer grids.

proximately O(hα) for the L2 error in Ω, and O(h2α) in both Ω1 and Ω2. Because
of the discontinuities along the axes, u ∈ Hs(Ω) for s < 1/2, which in turn im-
plies w ∈ Hs(Ω) for s < 3/2. The bound (5.5) would suggest O(h1/2) convergence.
Placing the finite element boundaries along the discontinuities of a allows for faster
convergence. Convergence appears to be determined by the power of the singularity
at the origin. However, the presence of the discontinuities does impact the overall
convergence to some extent. The overall convergence is slightly slower than would
be anticipated if only the singularity at the origin were present. Note also that, as
α gets closer to 1.0, this diminished rate disappears, and convergence is O(hα) in Ω
and slightly faster than O(h2α) in Ω1 and Ω2.

The approach here allows computation using relatively simple finite element
spaces and introduces the discontinuity through the postprocessing step. We note
that previous work in least-squares methods using mixed H(Div) × H1(Ω) based
functionals can also effectively treat problems with similar discontinuous solutions
(see, e.g., [39, 40]). Such approaches have a computable error indicator based on the
least-squares functional, which can be used in an adaptive refinement algorithm.

7. Conclusion. This paper presents a natural framework for combining a New-
ton linearization and a FOSLL∗ discretization approach for nonlinear PDE. This ap-
proach provides a potentially discontinuous approximation that more directly controls
the L2 norm of the error than a typical least-squares approach. While a Newton lin-
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earization provides fast convergence for the nonlinear iteration, it ostensibly requires
more smoothness than may seem available in such an approach. Several ways to
overcome this difficulty were presented in this paper. Numerical results shed insight
into the relative merits of three ways of continuing Newton’s method. The projected
method (subsection 3.2.2) and extended method (subsection 3.2.3) were more effective
in the first example, for which the solution was relatively smooth, while the weak-weak
form (subsection 3.2.4) was the natural choice in the third example, for which the so-
lution was discontinuous and of reduced regularity. The second example illustrates
how strong L2 error control yields strong mass conservation in incompressible flow
problems. Performance of a nonlinear nested iteration, combining mesh refinement
and Newton’s method, was also shown to be very effective in the third example.

As in [34], a hybrid FOSLS-FOSLL∗ approach is also possible for nonlinear prob-
lems. Such a coupling between the two approaches has the potential of providing
an optimal balance between L2 and H1 seminorm accuracy and is the subject of a
forthcoming study.
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