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A WEIGHTED LEAST SQUARES FINITE ELEMENT METHOD

FOR ELLIPTIC PROBLEMS WITH DEGENERATE AND

SINGULAR COEFFICIENTS

S. BIDWELL, M. E. HASSELL, AND C. R. WESTPHAL

Abstract. We consider second order elliptic partial differential equations
with coefficients that are singular or degenerate at an interior point of the do-

main. This paper presents formulation and analysis of a novel weighted-norm
least squares finite element method for this class of problems. We propose a
weighting scheme that eliminates the pollution effect and recovers optimal con-
vergence rates. Theoretical results are carried out in appropriately weighted
Sobolev spaces and include ellipticity bounds on the weighted homogeneous
least squares functional, regularity bounds on the elliptic operator, and error
estimates. Numerical experiments confirm the predicted error bounds.

1. Introduction

We consider partial differential equations of the form

(1.1)

{
−∇ · (r2β∇u) + r2αu = f in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R
2 is an open connected convex polygonal domain with O = (0, 0) ∈ Ω

and r = (x2 + y2)
1
2 is the Euclidean distance from O.

Problems of the type (1.1) generalize the well-studied class of strongly elliptic
scalar equations by allowing coefficients which may degenerate (i.e., go to zero)
or behave singularly (i.e., blow up) at the origin. Systems with such behavior
include applications in quantum mechanics (see [18, 28]) and some reformulations
of stochastic PDE (see e.g., [23] and references therein). Others have considered
analysis of such problems in the context of a generalization of strongly elliptic
equations (see e.g., [25, 24, 21]). Problems similar to (1.1) arise, for example, when
an elliptic problem with cylindrical or spherical symmetry is reduced to a lower
dimensional problem (see e.g., [15, 22]).

Though for this paper we only consider operators with coefficients as in (1.1), it
is straightforward to also consider coefficients that only locally behave as written,
or cases with multiple points where coefficients are singular or degenerate. Assump-
tions on the smoothness of Ω are also for clarity of presentation, so that the only
nonsmooth components of the solution are at O and not at boundary points.
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Compared with strongly elliptic equations, (1.1) will generally suffer a loss of
regularity, making it especially difficult to obtain accurate numerical approxima-
tions. In general, numerical methods for problems with a loss of regularity may
exhibit either a complete loss of convergence, or will converge slowly and with a
pronounced pollution effect. In the latter case, the underlying metric that controls
the error is unable to properly balance the error near singular points and error in
regions of Ω where solutions are smooth. In [19, 20] and [13], least squares finite
element formulations are equipped with weighted norms that induce a more optimal
underlying metric on the error for problems with corner or edge singularities.

The least squares approach has additional benefits that motivate its use; for ex-
ample, it simplifies the problem to a symmetric, positive definite linear system of
equations, and it allows the freedom to choose finite element spaces for different un-
knowns. The least squares approach can also be used in conjunction with adaptive
mesh refinement as the least squares method provides a natural error estimator for
an adaptive routine. For primary background on least squares, refer to [11, 12, 5]
and [14].

In this paper, we develop a weighted-norm least squares finite element method
for (1.1) that eliminates the pollution effect and yields optimal finite element con-
vergence rates. We show that the homogeneous problem associated with (1.1) has
a set of singular solutions when α = β − 1, and thus the focus of our analysis is on
this case. We choose weight functions based on the expected form of the singular
solutions, a simple calculation based on the coefficients of the original problem. The
general approach we present need not be restricted to the α = β− 1 case, however,
and numerical experiments in Section 4 confirm this. In [3], Arroyo, Bespalov and
Heuer consider the standard variational formulation of (1.1) and prove error esti-
mates for the numerical solution on graded meshes. Our approach achieves similar
accuracy, but inherits the attractive features of a least squares discretization and
does not require a graded mesh.

The organization of this paper is as follows. Section 2 defines notation and details
the formulation of the weighted functional. In Section 3, we establish equivalence
of the homogeneous weighted least squares functional to the appropriate norm and
prove error bounds. Numerical experiments are given in Section 4 that demonstrate
the effectiveness of the approach and support the theoretical results.

2. Problem formulation

We use standard notation for the L2 norm, ‖ · ‖, and inner product, 〈·, ·〉, and
use ‖ · ‖k;Ω to denote the norm corresponding to the Sobolev space Hk(Ω), omit-
ting subscript Ω when the domain is clear by context. For noninteger k, Hk(Ω)
represents the standard interpolation space (see e.g., [2]).

Define the weighted Sobolev norm by

‖v‖k,w;Ω =

⎛
⎝∑

|j|≤k

‖rw−k+|j|Djv‖20;Ω

⎞
⎠

1/2

and semi-norm by

|v|k,w;Ω =

⎛
⎝∑

|j|=k

‖rwDjv‖20;Ω

⎞
⎠

1/2

.
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For k = 0, 1, we have ‖v‖0,w;Ω = ‖rwv‖0;Ω, ‖v‖1,w;Ω = (‖rw∇v‖20;Ω+‖rw−1v‖20;Ω)
1
2

and |v|1,w;Ω = ‖rw∇v‖0;Ω. The weighted Sobolev space Hk
w(Ω) is thus defined by

Hk
w(Ω) = {v ∈ L2(Ω) : ‖v‖k,w;Ω < +∞}.

The dual spaces are defined by duality in the natural way. Let

D1
w = {v ∈ H1

w(Ω) : v = 0 on ∂Ω},
and define its dual, H−1

w (Ω), by the norm

‖v‖−1,w;Ω = sup
φ∈D1

−w

|〈v, φ〉|
‖φ‖1,−w;Ω

.

By introducing the flux variable σ = −r2β∇u, we may expand system (1.1) to the
first-order system,

(2.1)

⎧⎪⎨
⎪⎩

∇ · σ + r2αu = f in Ω,

σ + r2β∇u = 0 in Ω,

u = 0 on ∂Ω.

The corresponding nonweighted functional is

(2.2) G(u,σ; f) = ‖∇ · σ + r2αu− f‖2 + ‖σ + r2β∇u‖2,
which yields less than optimal global discretization rates for these problems. Instead
we consider the weighted least squares functional

(2.3) Gw(u,σ; f) = ‖rw1(∇ · σ + r2αu− f)‖2 + ‖rw2(σ + r2β∇u)‖2,
and investigate appropriate values for w1 and w2 to recover better rates of conver-
gence and eliminate the pollution effect. Because convergence rates are based not
only on the smoothness of the solution but also on the finite element space itself,
we first consider the nullspace of (1.1).

We start by using asymptotic analysis to simplify the problem. Considering the
homogeneous form of system (1.1),

(2.4)

{
−∇ · (r2β∇u) + r2αu = 0 in Ω,

u = 0 on ∂Ω,

we look for singular solutions of the form u = g(θ)rλ. Using the polar form of the
gradient,

∇u =
∂u

∂r
r̂ +

1

r

∂u

∂θ
θ̂,

where r̂ and θ̂ are unit vectors in the r and θ directions, simple calculations reveal
that

(2.5)
g′′ + (2β + λ)λg

g
= r2α−2β+2.

Since the left side of equation (2.5) depends only on θ, and the right side depends
only on r, we obtain

(2.6)
2(α− β + 1) = 0,

g′′ + [(2β + λ)λ− 1]g = 0,

which yields the restriction α = β − 1.
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Letting η2 = (2β + λ)λ− 1, we see that

(2.7) g = c1 cos(ηθ) + c2 sin(ηθ) for η = 0, 1, 2, . . . .

This restriction on η gives

(2.8) λn = −β ±
√
β2 + (1 + n2) for n = 0, 1, 2, . . . .

By invoking the boundary condition of u = 0, we arrive at families of singular
solutions in the nullspace of (2.4) of the form:

(2.9) un = (r−β+
√

β2+(1+n2) − r−β−
√

β2+(1+n2))g(θ).

We thus see that locally there exist two families of solutions. The family associ-
ated with the positive square root in (2.9) contains functions in H1(Ω) and the fam-
ily with the negative square root contains functions that are not in L2(Ω). What we
may conclude from this is that for sufficiently smooth f there is at most one solution
to (1.1) in H1(Ω) (however, solutions may not be in H2(Ω)). Hereafter, we gener-

ally consider solutions with local behavior of the form rλ for λ = −β+
√
β2 + 1 > 0

and also take α = β − 1.
Now, given α and λ in terms of just β, we proceed to choose the weights for

the functional. It is natural to choose weights that make the terms inside the least
squares functional have the same power singularity as the solution. Recall the
weighted least squares functional, (2.3), with flux variable σ = −r2β∇u. If the
solution has the form u ∼ rλ, then the second term of the functional will have the
form

rw2σ ∼ rw2+2β+λ−1,

and the first term will look like

rw1∇ · σ ∼ rw1+2β+λ−2.

Thus, since we want to make these terms match the smoothness of the solution, we
need

w1 + 2β + λ− 2 = λ and w2 + 2β + λ− 1 = λ,

which is true for the choice of weights

w1 = 2− 2β and w2 = 1− 2β.

In computation we typically choose weights according to this hueristic, which re-
quires only a simple calculation based on the coefficients of the original problem.
Additionally, in Section 3 we show that this choice of weights for the functional
induces an equivalent weighted norm in which the error is minimized at optimal
rates.

Thus, the least squares functional we focus on is

(2.10) Gw(u,σ; f) = ‖rw1(∇ · σ + r2β−2u− f)‖2 + ‖rw2(σ + r2β∇u)‖2,
with w1 = 2−2β and w2 = 1−2β and the associated minimization problem is then
to find (u,σ) ∈ V ×W such that

Gw(u,σ; f) = inf
(v,τ )∈V×W

Gw(v, τ ; f),

where
V = {v ∈ H1

1 (Ω) : v = 0 on ∂Ω},
W = {τ : rw2τ ∈ L2(Ω), rw1∇ · τ ∈ L2(Ω)}.
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This minimization problem directly leads to the following symmetric variational
problem: find (u,σ) ∈ V ×W such that

a ((u,σ), (v, τ )) = F (v, τ )

for all (v, τ ) ∈ V ×W , where a(·, ·) and F (·) are defined by

a ((u,σ), (v, τ )) :=〈r2w1(∇ · σ + r2β−2u),∇ · τ + r2β−2v〉
+ 〈r2w2(σ + r2β∇u), τ + r2β∇v〉

and
F (v, τ ) := 〈f, rw1(∇ · τ + r2β−2v)〉.

Let Th be a regular triangulation of Ω with a meshsize of O(h), where on element
K we denote hK = diam(K). Denote by Pk(K) the standard space of polynomials
of degree ≤ k on element K, and consider the Raviart-Thomas space of degree k
on element K defined by

RTk(K) = Pk(K) + xPk(K),

where x = (x, y)T . For this paper we define the spaces

Vh = {v ∈ V ∩ C0(Ω) : v|K ∈ P1(K) ∀ K ∈ Th},
Wh = {τ ∈ W : τ |K ∈ RT0(K) ∀ K ∈ Th}.

The discrete minimization problem is to find (uh,σh) ∈ Vh ×Wh such that

Gw(u
h,σh; f) = min

(vh,τh)∈Vh×Wh
Gw(v

h, τh; f).

This leads to a symmetric, positive definite linear system of equations that can
be efficiently solved by a wide range of solvers. In particular, multigrid methods
generally provide a robust solver for least squares discretizations. Though not the
focus of this paper, it is important to remember that a successful numerical method
should include an efficient solver for the resulting algebraic system. For expanded
studies on the connection between least squares discretizations and multigrid solvers
see [26, 8, 27], or [16] for an overview of the foundations connecting finite element
discretizations to the associated linear system.

3. Theoretical results

A general regularity result for strongly elliptic operators is established in [4],
which we use to establish a weighted regularity bound for (1.1) for the case α = β−1.
We first consider the following H1

w estimate for strongly elliptic operators.

Theorem 3.1. Let P be a strongly elliptic operator with smooth coefficients where
Pu ∈ H−1

w (Ω) for u ∈ V. Then for any w ∈ R

‖u‖1,w ≤ C(‖Pu‖−1,w + ‖u‖0,w−1).

Proof. Theorem 3.7 in [4] proves this result with an additional trace term on the
right side. Since we consider u ∈ V , the trace term vanishes and the result follows
directly. �

We now consider a similar bound for our operator.

Theorem 3.2. Let Lu := −∇ · (r2β∇u) + r2β−2u. For u ∈ V there is some C > 0
such that

‖u‖1,1 ≤ C(‖r1−2βLu‖−1,0 + ‖u‖).

Licensed to Univ of Delaware. Prepared on Tue Jan 29 15:07:09 EST 2013 for download from IP 128.4.208.201.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



678 S. BIDWELL, M. E. HASSELL, AND C. R. WESTPHAL

Proof. Note that for p > 0, ‖x + y‖2 ≥ (1 − p)‖x‖2 −
(
1− p

p

)
‖y‖2, which, with

p = 2
3 and the facts ∇(ru) = r∇u+ (∇r)u and ‖(∇r)u‖ = ‖u‖, we have

(3.1)

‖ru‖21,0 = ‖∇(ru)‖2 + ‖u‖2

= ‖r∇u+ (∇r)u‖2 + ‖u‖2

≥ 1

3
‖r∇u‖2 − 1

2
‖(∇r)u‖2 + ‖u‖2

≥ 1

3
‖r∇u‖2 + 1

2
‖u‖2

≥ 1

3
‖u‖21,1.

Now for any λ1, λ2, a straightforward calculation yields the identity

(3.2) rλ1∇ · (rλ2∇u) = Δ(rλ1+λ2u)− (∇rλ1+λ2 + rλ2∇rλ1) · ∇u−Δrλ1+λ2u,

a decomposition that can be found in [3]. From this identity and a few simple
calculations, we write r1−2βLu = −Δ(ru) + L1u, where L1u := (2− 2β)∇u · ∇r +
2r−1u, which allows us to consider

−Δ(ru) = r1−2βLu− L1u.

Applying Theorem 3.1 with w = 0, along with the triangle inequality, thus gives

(3.3)

‖ru‖1,0 ≤ C(‖ −Δ(ru)‖−1,0 + ‖ru‖0,−1)

= C(‖r1−2βLu+ L1u‖−1,0 + ‖u‖)
≤ C(‖r1−2βf‖−1,0 + ‖(2− 2β)∇r · ∇u‖−1,0 + ‖2r−1u‖−1,0 + ‖u‖).

We now bound the second and third terms on the right-hand side of (3.3). For the
second term, using the definition of the weighted dual space, we have

(3.4)

‖(2− 2β)∇u · ∇r‖−1,0 ≤ C‖∇u‖−1,0 = C sup
φ∈H1

0

|〈∇u, φ〉|
‖φ‖1,0

= C sup
φ∈H1

0

|〈u,∇ · φ〉|
(‖∇φ‖2 + ‖r−1φ‖2) 1

2

≤ C‖u‖.

Similarly for the third term,

(3.5)

‖2r−1u‖−1,0 ≤ C sup
φ∈H1

0

|〈r−1u, φ〉|
‖φ‖1,0

= C sup
φ∈H1

0

|〈u, r−1φ〉|
(‖∇φ‖2 + ‖r−1φ‖2) 1

2

≤ C‖u‖.
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Thus, from (3.3), combined with the bounds in (3.4) and (3.5), we have

(3.6) ‖ru‖1,0 ≤ C(‖r1−2βLu‖−1,0 + ‖u‖),
and together with (3.1), this gives the desired result. �

The following results establish the equivalence of Gw(u,σ; 0)
1
2 to the norm

|||(u,σ)|||1,w1,w2
:= (‖u‖21,1 + ‖σ‖20,w2

+ ‖∇ · σ‖20,w1
)

1
2

for w2 = 1 − 2β, w1 = 2 − 2β and all (u,σ) ∈ V × W . Since Gw(u
h,σh; f) =

Gw(u − uh,σ − σh; 0), this equivalence implies that minimizing the functional is
equivalent to minimizing the error in this norm.

Theorem 3.3. For w1 = w2 + 1 = 2 − 2β there exists a positive constant C such
that

C|||(u,σ)|||1,w1,w2
≤ Gw(u,σ; 0)

1
2 + ‖u‖

for all (u,σ) ∈ V ×W.

Proof. We first recall the definition of the homogeneous functional

Gw(u,σ; 0) = ‖rw1(∇ · σ + r2β−2u)‖2 + ‖rw2(σ + r2β∇u)‖2.
Then Theorem 3.2 and the triangle inequality give
(3.7)

‖u‖1,1 ≤ C‖r1−2β(−∇ · (r2β∇u) + r2β−2u)‖−1,0 + c‖u‖
≤ C‖rw2∇ · (r2β∇u+ σ)‖−1,0 + C‖rw2(∇ · σ + r2β−2u)‖−1,0 + c‖u‖.

We individually consider the first and second terms on the right side above. For
the first term, integration by parts and the Cauchy-Schwarz inequality give

(3.8)

‖rw2∇ · (r2β∇u+ σ)‖−1,0 = sup
φ∈D1

0

|〈r2β∇u+ σ,∇(rw2φ〉|
‖φ‖1,0

= sup
φ∈D1

0

|〈rw2(r2β∇u+ σ),∇φ+ (w2∇r)r−1φ〉|
‖φ‖1,0

≤ C‖rw2(r2β∇u+ σ)‖.
The second term can be bounded similarly,

(3.9)

‖rw2(∇ · σ + r2β−2u)‖−1,0 = sup
φ∈D1

0

|〈rw2(∇ · σ + r2β−2u), φ〉|
‖φ‖1,0

= sup
φ∈D1

0

|〈rw2+1(∇ · σ + r2β−2u), r−1φ〉|
‖φ‖1,0

≤ ‖rw1(∇ · σ + r2β−2u)‖.
Combining equations (3.7), (3.8), and (3.9) gives

(3.10) ‖u‖1,1 ≤ C(G(u,σ; 0)
1
2 + ‖u‖).
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It follows from the triangle inequality and (3.10) that

(3.11)

‖σ‖0,w2
+ ‖∇ · σ‖0,w1

≤ ‖σ + r2β∇u‖0,w2

+ ‖r2β∇u‖0,w2
+ ‖∇ · σ + r2β−2u‖0,w1

+ ‖r2β−2u‖0,w1

≤ Gw(u,σ; 0)
1
2 + ‖r∇u‖+ ‖u‖

≤ Gw(u,σ; 0)
1
2 + ‖u‖1,1

≤ C(Gw(u,σ; 0)
1
2 + ‖u‖),

which, together with (3.7), implies the desired result. �

Theorem 3.4. If w1 = w2 + 1 = 2 − 2β > 0, then there exists positive constants
c0 and c1 such that

c0|||(u,σ)|||1,w1,w2
≤ Gw(u,σ; 0)

1
2 ≤ c1|||(u,σ)|||1,w1,w2

for all (u,σ) ∈ V ×W.

Proof. Using the triangle inequality, we have

(3.12)

Gw(u,σ; 0) = ‖rw1(∇ · σ + r2β−2u)‖2 + ‖rw2(σ + r2β∇u)‖2

≤ C(‖rw1∇ · σ‖2 + ‖rw1+2β−2u‖2 + ‖rw2σ‖2 + ‖rw2+2β∇u‖2)
= C|||(u,σ)|||21,w1,w2

.

Taking the square root of both sides completes the upper bound. For the lower
bound we recall the weak coercivity proved in Theorem 3.3 and use a modified
compactness argument, a technique which is established in Lemma 3.3 and Theorem
3.4 in [20]. For this, we need only to establish that H1

1 (Ω) is compactly embedded
in H0

w1
(Ω) and that the operator induced by the functional is injective for u ∈ V

to H0
w1

(Ω). Chapter 6 of [17] establishes the compact imbedding, provided that

w1 > 0. (It is also interesting to note that H1
1 (Ω) is not compactly embedded in

H0
0 (Ω) = L2(Ω), which necessitates the use of a modified compactness argument

rather than a standard compactness argument.) To show injectivity we recall the
asymptotic analysis in Section 2. Solutions to the homogeneous system (2.4) are
of the form (2.9), which are not contained in V . Since the operator is linear, we
have that for problem (1.1), f ∈ H0

w1
(Ω) implies a unique solution in V . Thus,

injectivity is established and the lower bound follows. �
In what follows, we focus on numerical approximations, but we must first briefly

recall several interpolation properties for Vh ×Wh. Let Ih be the standard inter-
polation operator onto Pk(K), where, for all v ∈ Hm(K),

(3.13) ‖v − Ihv‖s;K ≤ Chm−s
K |v|m;K

holds for 0 ≤ s ≤ m and 1 < m ≤ k+1. Details of this classical result can be found
in [7] or [9].
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Define the modified interpolation operator, Ih
0 , by

Ih
0 v|K =

⎧⎪⎪⎨
⎪⎪⎩

Ihv|K , if K ∩ O = ∅,∑
ai∈K
ai �=O

v(ai)φi, if K ∩ O �= ∅,

where ai are the nodal points corresponding to the basis functions, φi. Thus, the
modified interpolation has a value of zero at O and is identical to Ih away from O.
From [19, 20], if w > 0, then Ih

0 satisfies

(3.14)
∑

K∈Th

‖v − Ih
0 v‖21,w;K ≤ Ch2‖v‖22,w

for v ∈ H2
w(Ω).

Let Ih be the standard interpolation operator from H(div) ∩ Lp(Ω) onto RTk

with p > 2. Then the following approximation properties of RTk hold (see, e.g.,
[10, 6]) for any τ ∈ Hm(K) with 1 ≤ m ≤ k + 1,

(3.15) ‖τ − Ihτ‖s;K ≤ Chm−s
K |τ |m;K with s = 0, 1,

and

(3.16) ‖∇ · (τ − Ihτ )‖0;K ≤ Chm
K |∇ · τ |m;K

if ∇ · τ ∈ Hm(K). For any τ and ∇ · τ being only in Hμ(K) with μ < 1, we use
the following approximation properties:

(3.17) ‖τ − Ihτ‖0;K ≤ Chμ
K |τ |μ;K for μ > 1/2

and

(3.18) ‖∇ · (τ − Ihτ )‖0;K ≤ Chμ
K |∇ · τ |μ;K for μ > 0.

where in each case C depends on μ and the shape of K. The bound in (3.17)
follows by a direct appeal to the methods in the proof of Theorem 3.1 in [6], which
corresponds to the case μ = 1. We omit the details for the sake brevity, but note
that to accomplish this adaptation we must make use of the fractional seminorm
definition

|τ |2μ;K :=

∫
K

∫
K

|τ (x)− τ (y)|2
|x− y|2+2μ

dxdy

and the corresponding trace theorem

‖τ‖0;∂K ≤ C‖τ‖μ;K for μ > 1/2.

The bound in (3.18) follows by the well-known commutativity property ∇ · Ihτ =
Πh∇ · τ , where Πh is the L2-projection onto piecewise polynomials of degree less
than or equal to k − 1. Applying standard approximation properties of Πh con-
firms (3.18) for ∇ · τ ∈ Hμ(K).

For further details on interpolation in Raviart-Thomas spaces, refer to [1].
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Theorem 3.5. Assume that τ and ∇ · τ are in H1
w(Ω) ∩ Hμ(Ω). Then for any

w ≥ 0, there exists a positive constant C such that

(3.19) ‖τ − Ihτ‖0,w ≤ Chm (|τ |1,w + |τ |μ)
and that

(3.20) ‖∇ · (τ − Ihτ )‖0,w ≤ Chm (|∇ · τ |1,w + |∇ · τ |μ) ,
where m = min{1, w + μ} and C depends only on k, w, and the shape of Ω.

Proof. See Theorem 3.2 in [13]. �
We may now prove error bounds.

Theorem 3.6. Let (u,σ) be the solution of system (2.1) where u ∈ V ∩ H2
1 (Ω),

σ ∈ H1
w2

(Ω)2 ∩Hμ(Ω)2 and ∇ ·σ ∈ H1
w1

(Ω)∩Hμ(Ω). If (uh,σh) is the minimizer

of the weighted functional (2.10) over Vh ×Wh with w1 = w2 + 1 = 2 − 2β, then
the following error estimate holds,

|||(u− uh,σ − σh)|||1,w1,w2
≤ Chm,

where m = min{1, w1 + μ,w2 + μ}.

Proof. For any (v, τ ) ∈ Vh×Wh, it follows from Theorem 3.4 and the orthogonality
property that

c0|||(u− uh,σ − σh)|||21,w1,w2
≤ G(u− uh,σ − σh; 0)

= G(u− v,σ − τ ; 0) ≤ c1|||(u− v,σ − τ )|||21,w1,w2
,

which implies

|||(u− uh,σ − σh)|||21,w1,w2
≤ c1

c0
min

(v,τ )∈Vh×Wh
|||(u− v,σ − τ )|||21,w1,w2

≤ C

(
inf

v∈Vh
‖u− v‖21,1 + inf

τ∈Wh
‖σ − τ‖20,w2

+ inf
τ∈Wh

‖∇ · (σ − τ )‖20,w1

)
.

This, with the approximation properties in (3.14), (3.19), and (3.20) results in

|||(u−uh,σ−σh)|||21,w1,w2
≤ Ch2m

(
‖u‖22,1 + |σ|21,w2

+ |σ|2μ + |∇ · σ|21,w1
+ |∇ · σ|2μ

)
,

which, under the smoothness assumptions on u and σ, remains bounded and com-
pletes the proof. �

4. Numerical results

In this section, we present some numerical experiments using the weighted-norm
least squares approach to provide empirical evidence for the theoretical results
provided in Section 3. For these examples, we select Ω = (−1, 1)×(−1, 1) and choose
f so that u = (1− x2)(1− y2)rλ, which satisfies the Dirichlet boundary condition
on ∂Ω and allows locally nonsmooth behavior near the origin. For simplicity we
compute all values on uniform triangulations of Ω. We use P1 ×RT0 finite element
spaces for (uh,σh), imposing Dirichlet boundary conditions on uh strongly.

In order to distinguish convergence rates over all of Ω from convergence rates
near the origin, we define the following local region around the origin

Bδ = {(x, y) ∈ Ω : max{|x|, |y|} < δ} ,
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which is simply a square centered at the origin. For all computations here we choose

δ = 0.4. Notation for error measures are as follows: G
1/2
w represents the weighted

least squares functional, ‖u− uh‖ represents the global L2 error between the exact
and computed solutions over all of Ω, and ‖u − uh‖Ω\Bδ

represents the L2 norm

over the domain with the singularity removed. Comparing these two L2 norms is
thus an indicator of the severity of the pollution effect. We denote the total number
of elements by N , and convergence rates are computed with respect to N− 1

2 .

For the first three examples we choose α = β − 1 and λ = −β +
√
β2 + 1 as

discussed in Section 2. Tables 4.1, 4.2 and 4.3 summarize results for β = 0.5, β = 1
and β = 1.25, respectively, contrasting convergence behavior for a nonweighted
least squares approach with the weighted approach as developed in this paper.
In each case the nonweighted results show predictably disappointing results: slow
convergence, even in regions away from the origin where the solution is smooth.
But the weighted functional minimization is able to recover optimal convergence
(i.e., the same as the interpolant), in regions with a nonsmooth solution as well
as where the solution is smooth. Thus, the approach in this paper attenuates the
pollution effect caused by the loss of regularity in solutions.

Nonweighted functional results

N G1/2 rate ‖u− uh‖ rate ‖u− uh‖Ω\Bδ
rate

1800 0.315 —— 7.00E-03 —— 2.40E-04 ——
5000 0.190 0.99 4.12E-03 1.04 1.06E-03 1.59
9800 0.136 0.99 3.08E-03 0.87 6.88E-04 1.29
16200 0.106 0.99 2.51E-03 0.81 5.14E-04 1.16
24200 0.0867 0.99 2.14E-03 0.79 4.11E-04 1.11
39200 0.0683 0.99 1.77E-03 0.78 3.17E-04 1.08
57800 0.0563 0.99 1.52E-03 0.78 2.57E-04 1.07
80000 0.0479 0.99 1.34E-03 0.78 2.16E-04 1.07

Optimal - 1 - ≈1.62 - 2

Weighted functional results, w1 = 1, w2 = 0

N G
1/2
w rate ‖u− uh‖ rate ‖u− uh‖Ω\Bδ

rate
1800 0.276 —— 7.56E-03 —— 2.59E-03 ——
5000 0.166 1.00 3.35E-03 1.59 9.41E-04 1.98
9800 0.119 1.00 1.96E-03 1.59 4.82E-04 1.99
16200 0.0924 1.00 1.32E-03 1.59 2.92E-04 1.99
24200 0.0756 1.00 9.56E-04 1.59 1.96E-04 1.99
39200 0.0594 1.00 6.51E-04 1.59 1.21E-04 1.99
57800 0.0489 1.00 4.78E-04 1.60 8.25E-05 1.99
80000 0.0416 1.00 3.68E-04 1.60 5.97E-05 1.99

Optimal - 1 - ≈1.62 - 2

Table 4.1. Convergence of approximations for nonweighted least
squares functional vs. using a weighted functional for β = 0.5,
α = −0.5 and λ = 0.62.
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Non-weighted functional results

N G1/2 rate ‖u− uh‖ rate ‖u− uh‖Ω\Bδ
rate

1800 0.367 —— 1.26E-02 —— 3.06E-03 ——
5000 0.220 1.00 9.84E-03 0.48 1.14E-03 1.93
9800 0.157 1.00 8.17E-03 0.55 6.00E-04 1.91
16200 0.123 1.00 7.03E-03 0.60 3.73E-04 1.89
24200 0.100 1.00 6.19E-03 0.63 2.56E-04 1.87
39200 0.0788 1.00 5.30E-03 0.65 1.64E-04 1.86
57800 0.0649 1.00 4.65E-03 0.67 1.15E-04 1.84
80000 0.0551 1.00 4.17E-03 0.68 8.54E-05 1.82

Optimal - 1 - ≈1.41 - 2

Weighted functional results, w1 = 0, w2 = −1

N G
1/2
w rate ‖u− uh‖ rate ‖u− uh‖Ω\Bδ

rate
1800 0.364 —— 6.05E-03 —— 2.82E-03 ——
5000 0.219 1.00 2.78E-03 1.52 1.02E-03 1.99
9800 0.156 1.00 1.68E-03 1.49 5.20E-04 2.00
16200 0.122 1.00 1.16E-03 1.47 3.15E-04 2.00
24200 0.0995 1.00 8.68E-04 1.46 2.11E-04 2.00
39200 0.0782 1.00 6.12E-04 1.45 1.30E-04 2.00
57800 0.0644 1.00 4.62E-04 1.44 8.83E-05 2.00
80000 0.0547 1.00 3.66E-04 1.44 6.38E-05 2.00

Optimal - 1 - ≈1.41 - 2

Table 4.2. Convergence of approximations for nonweighted least
squares functional vs. using a weighted functional for β = 1, α = 0
and λ = 0.41.

In Table 4.4, we consider β = 0.5, α = −0.25, a case not covered by the theory
developed in this paper since α �= β − 1. For this problem we consider λ = 0.62
and choose w1 = 1.0, w2 = 0.5 to achieve results similar to the other cases.

The final numerical result provides a more direct comparison to the approach by
Arroyo, Bespalov and Heuer. For this example we consider Example B2 in [3] with
parameters β = 0, α = −1, and λ = 0.5. We choose weights w1 = 1.5, w2 = 0.5
based on this weak singularity. The range of mesh sizes are chosen from the same
range as in B2 and we also compute the error with respect to the normalizedH1

0.6(Ω)
norm,

Eh =
‖u− uh‖1,0.6

‖u‖1,0.6
.

This is a norm with a strong enough weight to guarantee O(h) convergence.
Table 4.5 shows that our results have the expected O(h) convergence with respect
to the weighted functional norm as well as approximately O(h) in the Eh measure.
Not only do our results have the same asymptotic behavior as the approach in [3],
but the actual values for Eh are in close agreement. It is also interesting to note

that, as we may expect, Eh and G
1/2
w are good indicators of the convergence for such

a problem, but G
1/2
w may be used with confidence on more challenging problems

where the exact solution is not known.
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Nonweighted functional results

N G1/2 rate ‖u− uh‖ rate ‖u− uh‖Ω\Bδ
rate

1800 0.419 —— 3.87E-02 —— 3.39E-03 ——
5000 0.252 1.00 3.18E-02 0.39 1.27E-03 1.93
9800 0.180 1.00 2.69E-02 0.50 6.62E-04 1.92
16200 0.140 1.00 2.34E-02 0.55 4.09E-04 1.92
24200 0.115 1.00 2.09E-02 0.58 2.78E-04 1.91
39200 0.0900 1.00 1.81E-02 0.60 1.76E-04 1.91
57800 0.0741 1.00 1.60E-02 0.62 1.21E-04 1.91
80000 0.0630 1.00 1.45E-02 0.63 8.92E-05 1.90

Optimal - 1 - ≈1.35 - 2

Weighted functional results, w1 = −0.5, w2 = −1.5

N G
1/2
w rate ‖u− uh‖ rate ‖u− uh‖Ω\Bδ

rate
1800 0.440 —— 6.09E-03 —— 3.17E-03 ——
5000 0.264 1.00 2.83E-03 1.50 1.15E-03 1.99
9800 0.189 1.00 1.74E-03 1.45 5.86E-04 2.00
16200 0.147 1.00 1.22E-03 1.42 3.55E-04 2.00
24200 0.120 1.00 9.17E-04 1.41 2.38E-04 2.00
39200 0.0945 1.00 6.56E-04 1.39 1.47E-04 2.00
57800 0.0778 1.00 5.01E-04 1.38 9.96E-05 2.00
80000 0.0661 1.00 4.01E-04 1.38 7.20E-05 2.00

Optimal - 1 - ≈1.35 - 2

Table 4.3. Convergence of approximations for nonweighted least
squares functional vs. using a weighted functional for β = 1.25,
α = 0.25 and λ = 0.35.

In summary, our numerical experiments confirm the theory developed in this
paper and show that we may achieve analogous results to other finite element ap-
proaches. The weighted norm approach developed here inherits many advantages of
the least squares approach. The linear systems are symmetric positive definite and
are generally easy to solve with standard iterative methods. There is no need for
graded meshes or enhancing the finite element spaces; instead, the weighted norm
itself defines an appropriate metric to balance the error across the domain which
eliminates the pollution effect. In addition, the weighted functional provides a nat-
ural and free error measure in an appropriate weighted norm. We have shown that
the severity of the singular solutions can be characterized by the coefficients of the
original problem. Thus the appropriate local weight functions can be constructed
simply, and implementation is a straightforward modification of the original L2

least squares functional. And while the theory is developed in weighted Sobolev
spaces, practical implementation of the approach may be achieved with standard
finite element tools.
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Nonweighted functional results

N G1/2 rate ‖u− uh‖ rate ‖u− uh‖Ω\Bδ
rate

1800 0.317 —— 1.23E-02 —— 2.48E-03 ——
5000 0.192 0.99 8.94E-03 0.62 8.70E-03 2.05
9800 0.138 0.99 7.34E-03 0.58 4.61E-04 1.89
16200 0.107 0.99 6.34E-03 0.58 3.04E-04 1.66
24200 0.0880 0.99 5.64E-03 0.59 2.28E-04 1.45
39200 0.0694 0.98 4.88E-03 0.60 1.69E-04 1.24
57800 0.0574 0.98 4.34E-03 0.61 1.37E-04 1.10
80000 0.0489 0.98 3.92E-03 0.62 1.16E-04 1.03

Optimal - 1 - ≈1.62 - 2

Weighted functional results, w1 = 1.0, w2 = 0.5

N G
1/2
w rate ‖u− uh‖ rate ‖u− uh‖Ω\Bδ

rate
1800 0.278 —— 7.85E-03 —— 2.70E-03 ——
5000 0.167 1.00 3.43E-03 1.62 9.79E-04 1.98
9800 0.119 1.00 1.99E-03 1.62 5.02E-04 1.99
16200 0.0928 1.00 1.32E-03 1.62 3.05E-04 1.98
24200 0.0759 1.00 9.54E-04 1.63 2.05E-04 1.98
39200 0.0597 1.00 6.44E-04 1.63 1.27E-04 1.98
57800 0.0491 1.00 4.68E-04 1.64 8.68E-05 1.97
80000 0.0418 1.00 3.58E-04 1.64 6.31E-05 1.96

Optimal - 1 - ≈1.62 - 2

Table 4.4. Convergence of approximations for nonweighted least
squares functional vs. using a weighted functional for β = 0.5,
α = −0.25 and λ = 0.62.

N Eh rate G
1/2
w rate

50 0.253 —— 1.19 ——
200 0.141 0.84 0.643 0.89
968 0.0616 1.05 0.300 0.97
2592 0.0365 1.06 0.186 0.98
3872 0.0294 1.07 0.153 0.98
10952 0.0168 1.08 0.0918 0.98
14792 0.0143 1.08 0.0793 0.98

Table 4.5. Weighted norm and weighted functional convergence
for β = 0, α = −1, and λ = 0.5.
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