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Abstract. This paper develops a new finite element approach for the efficient approximation
of classical solutions of the elliptic Monge-Ampère equation. We use an outer Newton-like lin-
earization and a first-order system least-squares reformulation at the continuous level to define a
sequence of first-order div-curl systems. For problems on convex domains with smooth and appro-
priately bounded data, this framework gives robust results: convergence of the nonlinear iteration in
a small number of steps, and optimal finite element convergence rates with respect to the meshsize.
Numerical results using standard piecewise quadratic or cubic elements for all unknowns illustrate
convergence results.
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1. Introduction and Background. In this paper we develop a finite element
method for the fully nonlinear elliptic Monge-Ampère equation given by{

det(D2u) = f in Ω

u = g on ∂Ω,
(1.1)

where Ω is a Lipschitz smooth convex domain in R2 with boundary ∂Ω, D2u is the
Hessian matrix of the unknown u, and det(D2u) = uxxuyy−u2xy is its determinant. We
assume that f and g are sufficiently smooth and that f is positive almost everywhere in
Ω. We focus here on problems with smooth solutions, where generally u ∈ H2(Ω) for
reasons inherent to both the linearization approach and the underlying finite element
discretization used. While the well-known regularity conditions of linear second-order
elliptic problems do not apply here, there is a vibrant ongoing research on regularity
for this and closely related problems; see, for example [25, 13, 8, 27].

While this remains a challenging numerical problem, the literature reflects many
successful numerical approaches developed recently. The review article [16], gives a
thorough summary of the relevant applications, numerical challenges, and history to-
date of the work on this and other closely related fully nonlinear problems. Among the
challenges, the two main features we focus on here is the treatment of the nonlinear
iteration and the discretization method developed. Applications of problems relating
to (1.1) include various topics in differential geometry, the prescribed Gauss curvature
problem, and the optimal mass transport problem in the design of lenses and reflectors;
see [2, 26] for example.

A considerable amount of work for this problem has been developed recently
in the context of finite difference discretizations. In [24], Oberman considers the
Monge-Ampère operator as a function of the eigenvalues of the Hessian and uses a
wide finite difference scheme to approximate the eigenvalues, resulting in convergence
to a viscosity solution independent of the regularity of the problem. The iteration
requires an explicit time stepping scheme subject to a CFL condition. Taking a
more traditional discretization approach, in [3], Benamou, Froese, and Oberman pose
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two finite difference approaches. The first directly uses a standard central difference
scheme to discretize (1.1) as a system of quadratic equations, where a locally convex
solution is found by the selection of the appropriate root at each step. Their second
approach involves rearranging terms in (1.1) and linearizing the equation by freezing
some of the terms from a previous iteration (a trick first noted in [14]). This is a
type of Picard iteration and results in a simple sequence of Poisson solves discretized
by finite differences. The two approaches are able to handle some problems with
nonsmooth components, but may require a large number of iterations to converge.
Additionally, in [1], Awanou considers regularization of nonsmooth data and standard
finite difference discretizations proving convergence to viscosity solutions.

In the context of finite x2 element methods, which can be more sensitive to regu-
larity issues, many notable approaches have been proposed recently as well. In [15] for
example, Dean and Glowinski discuss two finite element approaches. The first formu-
lates the problem in a constrained optimization framework that leads to a saddle-point
problem, which is solved by iterating between two discretized biharmonic problems.
Their second formulation directly poses a least-squares solution as the minimizer of
the residual of (1.1) in the L2 norm and requires the introduction of a time dis-
cretization to which an operator splitting technique is applied. At each discretized
time step the problem uses a mixed finite element formulation leading to iterating
between solving a nonlinear system of algebraic equations and a discrete variational
problem involving products of second order derivatives. In work following the spirit
of this second approach, in [7], Caboussat, Glowinski, and Sorensen again begin by
the idea of minimizing the residual of (1.1), leading to an relaxation type of itera-
tion between two discrete minimization problems. Since the discretization involves
second order derivatives of finite element functions, a special smoothing procedure is
required to retain smoothness between iterations. In [6], Brenner, Gudi, Neilan, and
Sung develop a C0 penalty method that is able to achieve discretization convergence
rates that are essentially optimal for finite element spaces up to degree 4. While
the approach we develop in this paper shares some of the same overall motivating
ideas to many of these methods, our approach handles the linearization via Newton’s
method completely at the continuous level as an outer iteration, then reformulates
each subsequent linearized step as the least-squares solution of a div-curl system. We
also note that our approach does not require any computation of edge terms and only
uses simple conforming Lagrange finite element spaces.

The use of Newton’s method in this context as an outer iteration is, of course, not
new. It is well known that the linearized Monge-Ampère operator is a second-order
elliptic operator with coefficients from the second derivatives of the previous iteration.
In [22], Loeper and Rapetti prove convergence of the Newton iteration assuming peri-
odic boundary conditions. In that paper, they illustrate the approach by discretizing
each step with a simple second-order finite difference scheme on a uniform Cartesian
grid. For their test cases they find that only a few Newton steps (approximately 10)
are required to converge to the level of discretization error. Similarly, in [17], Froese
and Oberman use an outer Newton linearization and an inner wide-stencil finite differ-
ence discretization. For smooth problems, they also find that fewer than 10 iterations
is needed, while singular problems may require more. While in this paper we han-
dle the inner iteration quite differently, we observe the same robust convergence in
Newton’s method as an outer iteration. Additionally, in [20], Lakkis and Pryer utilize
Newton’s method coupled with a Galerkin nonvariational finite element method.

There are many strong examples in the literature of using least squares finite
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element methods based on a div-curl system. Additionally, examples of combin-
ing a Newton outer iteration with a well-formulated least squares discretization can
be found in [12, 23]. The general framework for div-curl least squares functional
minimization is established in [9, 10], and [18] provides a general overview of the
least-squares finite element approach.

In section 2, we give details on the main numerical approach that we focus on
in this paper. In section 3 we provide three numerical examples that illustrate the
compelling features of the method, comparing results to other published works as
available. All computations are done in FreeFem++ [19]. And finally, in section 4
we discuss extensions of the methodology presented here and give brief concluding
thoughts on extensions of the basic idea presented here.

2. Numerical Methods. In this section we give details of the numerical algo-
rithm for approximating solutions to (1.1). We assume throughout that Ω is a Lips-
chitz smooth convex domain in R2. We use standard Sobolev spaces L2(Ω)d, H1(Ω)d,
H(div) and H(curl), where d = 1, 2, or 2× 2, and generally omit the dimension when
it is clear by context. For V ∈ H1(Ω)2, we use the quantities

∇ · V = ∂x(V1) + ∂y(V2),

∇× V = ∂x(V2)− ∂y(V1), and

∇V =

(
∂x(V1) ∂y(V1)
∂x(V2) ∂y(V2)

)
.

For A,B ∈ L2(Ω)2×2, we use A : B =
∑2
i,j=1AijBij to denote the Frobenius product,

and use

∇ ·A =

(
∂x(A11) + ∂y(A12)
∂x(A21) + ∂y(A22)

)
,

where, if components of A are defined element-wise, then components of ∇ · A are
also taken element-wise.

As a motivating numerical approach, we review an idea presented in [14, 3], which
provides motivation for the new approach. In particular, we focus on the linearization
and discretization procedures as the two main components of the overall algorithms.

Motivating Idea: (Picard/Galerkin). This method reformulates (1.1) to allow a
simple outer Picard iteration to define a sequence of linear problems that can each be
solved by a straightforward Galerkin finite element closure.

Combining uxxuyy−u2xy = f from (1.1) with the identity (∆u)2 = (uxx+uyy)2 =
u2xx + 2uxxuyy + u2yy results in (∆u)2 = u2xx + u2yy + 2u2xy + 2f . Solving for ∆u and
using the positive square root to be consistent with convexity, the right-hand side can
be frozen so that the equation is linearized:

∆u =
(
ũ2xx + ũ2yy + 2ũ2xy + 2f

)1/2
,

where ũ is a current approximation and u is the new approximation. In [3] this is
analyzed as a fixed-point iteration and shown to converge for problems with solutions
in H2(Ω). In practice, discretizing with finite differences and with finite elements
have similar results overall for smooth problems. The number of nonlinear iterations
depends on the smoothness of the solutions and finite element mesh redistribution can
speed up convergence for less smooth examples. We focus here on the finite element
approach.
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To provide a frame of reference we implement this Picard/Galerkin approach in
the following way. Let Ωh be a quasiuniform triangulation of Ω with n elements per
side and meshsize parameter defined as h = 1/n. Let Vh represent the standard La-
grangian finite element spaces of order p = 2 or 3 (denoted as P2 and P3 respectively),
equipped with Dirichlet boundary conditions. We also denote ũh ∈ Vh as the current
approximation to u and define

F (ũh) :=
(
(ũhxx)2 + (ũhyy)2 + 2(ũhxy)2 + 2f

)1/2
on each element. Each iteration is the variational problem:

Find uh ∈ Vh such that 〈∇uh,∇vh〉 = 〈−F (ũh), vh〉 ∀vh ∈ Vh. (2.1)

It should be noted here that on each element if ũh is continuous P2/P3 then the second
derivative terms in F are discontinuous and P0/P1. Thus, for variational problem
2.1, F (ũh) is computed element-wise. Since this linearization results in a sequence
of Poisson solves with data in L2(Ω), the overall algorithm is described simply in
algorithm 1.

Algorithm 1 Picard/Galerkin Framework

(0) Initialize ũh = 0.
(1) Define F (ũh) and solve problem (2.1) for uh.
(2) ũh ← uh.
(3) Test for convergence, repeat from (1) or stop.

Algorithm 1 has some attractive features, most notably its simplicity and diver-
gence structure. Each step is a straightforward Poisson solve and the finite element
framework provides a natural way to incorporate mesh refinement/redistribution.
However, the required number of iterations in the outer linearization may be large.
Additionally, since F (ũh) is discontinuous, standard finite element theory indicates
that discretization rates will likely be no better than O(h2), even when the solution
and domain are smooth (e.g., see [5]). Below, to address these concerns, we develop
a new approach that combines a Newton linearization with a first-order system least-
squares finite element discretization.

Proposed Method: (Newton/Least Squares). Applying a Newton linearization
to the first equation in (1.1) about current convex approximation ũ and rearranging
terms, we arrive at

∇ · (A(ũ)∇u) = f + det(D2ũ), (2.2)

where u is the new approximation and the coefficient matrix is the cofactor matrix of
D2ũ,

A(ũ) =

(
ũyy −ũxy
−ũxy ũxx

)
.

We note here that when ũ is convex A(ũ) is definite since det(A(ũ)) = ũxxũyy− ũ2xy >
0. As a continuous problem with sufficient smoothness assumptions, the Newton
iteration would be relatively straightforward. In a standard finite element setting,
however, there are immediate practical difficulties. Most notably, unless ũh is repre-
sented as a C2 function, then A(ũh) will be discontinuous and the standard Galerkin
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closure (using integration by parts) will introduce additional boundary terms on each
element. Instead, we develop a div-curl least-squares variational problem that al-
lows piecewise discontinuous coefficients and retains smoothness of the iterates by the
use of a flux variable. Define U = ∇u and Ũ = ∇ũ, and note that we may write
∇ · (A(ũ)∇u) = ∇ · (ÃU) and ∇ × Ũ = ∂x(Ũ2) − ∂y(Ũ1) = 0, which uses Ã taken
symmetrically as

Ã =

(
∂yŨ2 − 1

2 (∂yŨ1 + ∂xŨ2)

− 1
2 (∂yŨ1 + ∂xŨ2) ∂xŨ1

)
.

It thus follows that ∇ · Ã = 0, which means that

∇ · (ÃU) = Ã : ∇U + (∇ · Ã) · ∇U = Ã : ∇U

= ∂y(Ũ2)∂x(U1)− 1

2
(∂y(Ũ1) + ∂x(Ũ2))(∂y(U1) + ∂x(U2)) + ∂x(Ũ1)∂y(U2).

Thus, (2.2) may be replaced by the system
Ã : ∇U = F(Ũ),

∇× U = 0,

U −∇u = 0,

where F(Ũ) = f +det(Ã) = f +∂x(Ũ1)∂y(Ũ2)− 1
4 (∂y(Ũ1) +∂x(Ũ2))2. With sufficient

smoothness, F(Ũ) ∈ L2(Ω), but for problems with reduced regularity this inclusion
isn’t guaranteed. It is important to note here that this system does not require
the computation of any second derivative values numerically, and that the effective
diffusion matrix, which involves first derivatives of computed solutions, is on the
outside of the derivative operator. This allows the method to avoid inheriting the
difficulties associated with nonsmooth components that other discretizations may have
in constructing the Hessian from uh. We thus define the least squares functional

G(u, U ;F(Ũ)) = ‖Ã : ∇U −F(Ũ)‖2 + ‖∇ × U‖2 + ‖U −∇u‖2,

and the sets

V = {v ∈ H1(Ω) | v = g on ∂Ω},
W = {W ∈ L2(Ω)2 | Ã : ∇W ∈ L2(Ω),∇×W ∈ L2(Ω), τ̂ ·W = τ̂ · ∇g on ∂Ω},

where τ̂ is the counterclockwise unit tangent to the boundary of Ω. In the continuous
framework, when Ũ is sufficiently smooth, the solution space for each iterate is a
subset of H1(Ω)×H(div)∩H(curl) and Ã ∈ L2(Ω). In practice, we take Vh and Wh

from P2 or P3 in each component, equipped with the appropriate Dirichlet boundary
conditions. The solution at each Newton step is thus the minimizer of G:

(uh, Uh) = argmin
(vh,V h)∈Vh×Wh

G(vh, V h;F(Ũh)),

which is equivalent to the solution of the symmetric variational problem: Find (uh, Uh) ∈
Vh ×Wh such that

B(uh, Uh; vh, V h) = `(vh, V h) ∀ (vh, V h) ∈ Vh ×Wh, (2.3)
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where bilinear form B and functional ` are given by

B(u, U ; v, V ) = 〈Ã : ∇U, Ã : ∇V 〉+ 〈∇ × U,∇× V 〉+ 〈U −∇u, V −∇v〉,
`(v, V ) = 〈F(Ũ), Ã : ∇V 〉.

While each step in the general nonlinear iteration involves the solution of a div-curl
system, we note that linearizing about a zero initial guess is problematic since it would
yield Ã = 0. We thus begin the method with an initial step from algorithm 1. This
directly yields ũh, and we can then construct Ũh by computing ∇ũh and projecting
onto Wh. In the continuous setting, F(Ũ) here retains the same smoothness as F (ũ)
in problem 2.1, including nonsmooth cases where the data may fail to be in L2(Ω)
globally. As in problem 2.1, in the discrete setting here, F(Ũh) is computed element-
wise in variational problem 2.3.

Algorithm 2 illustrates the overall Newton/LS iterative method.

Algorithm 2 Newton/LS Framework

(0) Initialize ũh = 0.
(1) Compute uh with one step of Picard/Galerkin method (algorithm 1).
(2) Set ũh ← uh, Ũh ← ∇ũh|Wh

(3) Solve problem (2.3) for (uh, Uh) ∈ Vh ×Wh

(4) Set ũh ← uh, Ũh ← Ũh

(5) Test for convergence, repeat from (3) or stop.

As noted above, convergence of Newton’s method to the unique viscosity solution
has been established in [22, 17] under reasonable assumptions on the original problem
as long as the initial guess is sufficiently close to the exact solution. Similarly, for
example, in [23], convergence of Newton’s method is established in the context of a
reformulated div-curl system, assuming sufficient regularity and good initial guesses.
While this is for a different PDE, the basic structure is similar to the problem studied
here. As for the convergence of each linearized problem, we note that problem (2.3)
follows the structure of the div-curl least squares system studied in detail in [10].
The main notable difference is in the smoothness assumption required in establishing
the equivalence of the homogenous least squares functional to the product H1 norm
of the error. Under the general framework in [10], the coefficient matrix, A, in the
operator ∇ · (A∇u) is required to be C1,1. In the discrete setting, since we construct
Ãh from derivatives of Ũh, which are in H1-conforming spaces, we obviously have
only piecewise smooth coefficients, giving Ãh ∈ L2(Ω)2×2. While this seems like
a significant difference, we note that because we explicitly invoke ∇ · Ã = 0, the
terms involving derivatives of Ã vanish, effectively rendering the high smoothness
requirements on the coefficients unnecessary. The numerical results presented in the
next section show that the Newton/LS framework retains fast convergence in the
nonlinear iteration and optimal finite element convergence in the discretization as
long as u ∈ H2(Ω) and f ∈ L2(Ω).

3. Computational Results. In this section we provide computational exam-
ples for test problems that illustrate the robust nature of algorithm 2. In particular,
in the first example we provide an explicit comparison of algorithms 1 and 2, focus-
ing on convergence of the nonlinear iteration as well as discretization convergence for
quadratic (P2) and cubic (P3) elements. In the second example we focus on a problem
with a nearly singular solution, which is studied in [15, 3]. The third example is also
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used in several previous studies and is a case where the solution has an unbounded
second derivative.

Together, these examples demonstrate the tradeoff between the relative advan-
tages and disadvantages of algorithms 1 and 2. For smooth problems like the first
example below, the Newton/LS method has robust convergence in the nonlinear itera-
tion and optimal finite element discretization rates, while the Picard/Galerkin method
requires more nonlinear iterations and has suboptimal discretization rates. As with
many least-squares finite element methods based on first-order systems, the New-
ton/LS method is necessarily more sensitive to a loss of regularity. The second and
third examples here demonstrate how far the robustness of the Newton/LS approach
extends as smoothness is lost.

In each case, unless otherwise noted, we choose Ωh as a quasi-uniform triangula-
tion of Ω, with meshsize parameter h = 1/n.

Test Problem 1: Let Ω = (−1, 1)2 and f = (1 + x2 + y2)exp(x2 + y2), which yields
the smooth and convex exact solution

u = exp

(
1

2
(x2 + y2)

)
.

Here, we use meshes with resolutions of n = 32, 64, 128, and 256 elements per side on
Ωh. We consider the Picard/Galerkin approach from algorithm 1 and the Newton/LS
approach from algorithm 2, where all unknowns are approximated with either P2 or
P3 elements in each case. Figure 3.1 shows a contour plot of the solution components
uh, Uh1 , and Uh2 at the n = 32 resolution.

Fig. 3.1. Solution plots for Test Problem 1: uh (left), Uh
1 (middle), and Uh

2 (right) at the
n = 32 resolution.

Since this is a test problem studied by other authors, we report both the L2 error
and the maximum norm error of the computed solutions for the Newton/LS approach.
Results are shown in figures 3.2 and 3.3.

The observed convergence rate is computed by the approximations on the two
finest levels. Optimal discretization convergence rates for this smooth function are
those predicted by standard finite element interpolation estimates, which areO(h3) for
P2 and O(h4) for P3. The Picard/Galerkin approach is limited to O(h2) in both cases,
as anticipated from the formulation discussed in section 2, which is consistent with
the numerics presented in [3]. By directly approximating U = ∇u, the Newton/LS
approach enforces a higher level of smoothness in the iterates and is able to match
the optimal convergence rate in both cases.
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Picard/Galerkin
25 steps ‖u− uh‖ ‖u− uh‖∞

n P2 P3 P2 P3
32 7.11 e-04 9.46 e-05 5.96 e-04 7.76 e-05
64 1.76 e-04 2.36 e-05 1.47 e-04 1.95 e-05

128 4.18 e-05 5.85 e-06 3.54 e-05 4.85 e-06
256 1.05 e-05 1.48 e-06 8.88 e-06 1.23 e-06

rate ∼ 1.99 1.98 2.00 1.98
optimal 3 4 3 4

Fig. 3.2. Convergence of the Picard/Galerkin method in the L2 and L∞ norms using P2 and
P3 elements for Test Problem 1.

Newton/LS
8 steps ‖u− uh‖ ‖u− uh‖∞
n P2 P3 P2 P3
32 1.28 e-05 1.95 e-07 2.35 e-05 5.72 e-07
64 1.60 e-06 1.24 e-08 3.80 e-06 4.65 e-08
128 1.90 e-07 7.35 e-10 7.08 e-07 3.24 e-09
256 2.44 e-08 4.59 e-11 8.99 e-08 2.04 e-10

rate ∼ 2.96 4.00 2.98 3.99
optimal 3 4 3 4

Fig. 3.3. Convergence of the Newton/LS method in the L2 and L∞ norms using P2 and P3
elements for Test Problem 1.

Additionally, the use of Newton’s method as the outer iteration provides a much
faster convergence with respect to the number of linearization steps required than the
Picard linearization in the first method. For this problem we took 25 steps for the
Picard/Galerkin method and 8 steps for the Newton/LS method. And while each step
of the Newton/LS method is more expensive than a single step of the Picard/Galerkin
method (with three times the overall number of degrees of freedom in each step),
accuracy per computational cost still easily favors Newton/LS. Figure 3.4 shows a
convergence comparison in the L2 norm between the Picard/Galerkin and Newton/LS
approaches. The advantage of higher order convergence becomes striking, where the
error for Newton/LS is smaller for n = 32 than for the Picard/Galerkin method on a
mesh with n = 256.

Results of the proposed method for this problem compare favorably with results
in the literature. For this same test problem, in [15], the L2 errors are reported at
the ≈ 10−3 level at a resolution of n = 64 and an approximate convergence rate of 2.
In [7], the L2 errors are also reduced at O(h2) with a smallest value on the order of
10−4 at a resolution of approximately n = 128. In [24], results for two wide stencil
schemes show maximum norm errors at the 10−4 level at a resolution of n = 128, and
the convergence rates seem to be about order 1. Both methods examined in [3] have
O(h2) reduction in the maximum norm with a smallest value on the order of 10−5

at a resolution of about n = 220. And in [17], the reported results have a maximum
norm error of 5 × 10−7 at a resolution of n = 361 and a convergence rate of about
order 2.

For a slightly different smooth test problem, Brenner et al. in [6] achieve higher
order convergence at essentially optimal discretization rates using finite element spaces
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Fig. 3.4. Convergence in the L2 norm using P2 elements (left) and P3 elements (right) for
Test Problem 1.

of up to degree 4. The numerical performance of their method is comparable to the
results of the proposed method here.

Test Problem 2: In this example we consider a problem with a nearly singular
solution. Let Ω = (0, 1)2 and f = R2/(R2−x2−y2)2, which corresponds to the exact
solution

u = −
√
R2 − x2 − y2,

for R ≥
√

2. The solution here is simply a section of a spherical surface of radius R,
where u ∈ H2(Ω) and f ∈ L2(Ω) when R >

√
2.

We first consider the Picard/Galerkin approach using quasiuniform meshes with
resolutions of n = 16, 32, 64, and 128 elements per side, where in each case we take 50
iterations. Figure 3.5 summarizes the L2 error for P2 elements as R approaches the
singular limit. Similar to the first example, the L2 error converges at approximately
O(h2). As in the previous example, using P3 elements gives only slightly smaller
errors with essentially the same convergence rate. For a fixed resolution, errors grow

as R→
√

2
+

.

‖u− uh‖ Picard/Galerkin

n R = 2
√

2 + 0.1
√

2 + 0.01
√

2 + 0.001
16 1.31 e-05 8.57 e-05 4.56 e-04 2.07 e-03
32 3.28 e-06 2.04 e-05 6.91 e-05 4.82 e-04
64 8.55 e-07 5.93 e-06 1.67 e-05 1.07 e-04
128 2.01 e-07 1.33 e-06 3.43 e-06 1.97 e-05

rate ∼ 2.09 2.16 2.28 2.44

Fig. 3.5. L2 convergence for the Picard/Galerkin approach for Test Problem 2, taking 50

iterations and using P2 elements for R →
√

2
+

.

We now consider the Newton/LS approach for this problem. We first example
the relatively smooth cases R = 2 and R =

√
2+0.1. Figure 3.6 shows the L2 error at

convergence after taking 10 Newton steps for each value of R and using either P2 or
P3 elements for all unknowns. As in the previous example, discretization convergence
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rates are essentially optimal. We report up to a resolution of n = 128 here, noting
that at higher resolutions with P3 elements we begin to see slight machine precision
effects. Results for the same values of R can be compared, for example, with those in
[7], which show L2 convergence at O(h2).

Newton/LS

‖u− uh‖ R = 2 R =
√

2 + 0.1
n P2 P3 P2 P3
16 7.47 e-07 1.23 e-08 6.16 e-06 3.04 e-07
32 8.88 e-08 7.30 e-10 7.40 e-07 1.94 e-08
64 1.27 e-08 5.65 e-11 1.45 e-07 2.61 e-09
128 1.47 e-09 3.19 e-12 1.76 e-08 1.72 e-10

rate ∼ 3.11 4.15 3.04 3.92
optimal 3 4 3 4

Fig. 3.6. L2 error at convergence using P2/P3 elements for R = 2 and R =
√

2 + 0.1 for Test
Problem 2.

In addition, since the exact solution is not always known, we introduce the residual
norm measure as

R(Uh) = ‖∂x(Uh1 )∂y(Uh2 )− ∂y(Uh1 )∂x(Uh2 )− f‖,

where the norm here is computed as the sum of element-wise values. Figure 3.7
shows convergence results in this measure, which yield observed convergence rates
approximately one order less than the L2 measures in each case (similar to the H1

norm of the error, e.g.).

Newton/LS

R(Uh) R = 2 R =
√

2 + 0.1
n P2 P3 P2 P3
16 1.68 e-04 1.14 e-06 1.67 e-02 1.08 e-03
32 4.09 e-05 1.47 e-07 4.03 e-03 9.52 e-05
64 1.17 e-05 2.58 e-08 1.41 e-03 1.73 e-05
128 2.76 e-06 2.89 e-09 3.64 e-04 2.16 e-06

rate ∼ 2.08 3.16 1.95 3.00

Fig. 3.7. Residual measure at convergence using P2/P3 elements for R = 2 and R =
√

2 + 0.1
for Test Problem 2.

For the Newton/LS formulation, the singular limit of this problem represents a

challenge since ∇u becomes unbounded as R →
√

2
+

. For R =
√

2, the problem
loses smoothness with u /∈ H2(Ω), U = ∇u /∈ H1(Ω) and f /∈ L2(Ω). Since the
proposed method here directly approximates U , it will not converge when R =

√
2.

To demonstrate performance of the proposed method toward the singular limit, we
introduce an adaptive mesh refinement routine based on the locally defined least-
squares functional. Let T represent the set of elements in Ωh and define

Gτ = ‖Ãh : ∇Uh −F(Ũh)‖2τ + ‖∇ × Uh‖2τ + ‖Uh −∇uh‖2τ ,

as the least squares functional evaluated on element τ . The global functional norm is

thus denoted as G1/2 =
(∑

τ∈T Gτ
)1/2

. We use the basic framework in algorithm 2,
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Fig. 3.8. Solution plots for Test Problem 2: uh (left), Uh
1 (middle), and Uh

2 (right) for R =√
2 + 0.1 at the n = 32 resolution.

starting from a quasiuniform mesh using P2 elements for each unknown. After 5
Newton steps on the initial mesh, the mesh is refined between each of the next four
Newton steps. Refinement is done by marking the elements on which Gτ is largest,
targeting at least 5% of elements to each be divided into 4 elements. Elements adjacent
to those marked are bisected to avoid hanging nodes. All current approximations on
the coarse mesh are interpolated to the refined mesh to define the next linearized
problem, (2.3), to be solved. For more details on this nested iteration approach for
least-squares methods, see [12, 23].

Figure 3.9 illustrates the results of the adaptive mesh routine, showing Gτ on
Ωh and the resulting refined mesh at four refinement levels for the test problem with
R =

√
2 + 0.01. As expected, the refinement targets the corner where ∇u is large.

Fig. 3.9. Test Problem 2 with R =
√

2 + 0.01 solved using P2 elements and an adaptive mesh
routine. Top row: locally evaluated least squares functional values used for four levels of refinement
(larger values are colored darker). Bottom row: the mesh after each refinement step.

Figure 3.10 shows numerical convergence results for R =
√

2 + {0.1, 0.01, 0.001}.
The first row shows values of the L2 error in u and the least squares functional norm
after the first 5 Newton steps on the initial quasiuniform mesh, and the subsequent
rows show the next 4 Newton steps on adaptively refined meshes. Nτ gives the
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number of elements in the mesh used. As R approaches the singular limit of
√

2 the
method continues to converge, but with significantly larger functional values, which
is consistent with the increase in the H1 norm of U . At the finest resolution here the
smallest elements have size 1/320.

Newton/LS

R =
√

2 + 0.1 R =
√

2 + 0.01 R =
√

2 + 0.001

Nτ ‖u− uh‖ G1/2 Nτ ‖u− uh‖ G1/2 Nτ ‖u− uh‖ G1/2

944 3.13e-06 1.08e-02 944 1.94e-04 1.90e-00 944 1.02e-02 3.01e+01
1088 1.64e-06 3.14e-03 1089 8.98e-05 1.40e-00 1106 6.99e-03 3.14e+01
1252 1.35e-06 1.69e-03 1254 1.79e-05 4.84e-01 1276 4.27e-03 2.69e+01
1443 1.13e-06 1.35e-03 1446 4.05e-06 1.32e-01 1468 2.52e-03 1.33e+01
1663 1.02e-06 1.15e-03 1663 3.39e-06 3.54e-02 1689 8.98e-04 5.25e-00

Fig. 3.10. Convergence of the L2 and least squares functional in the adaptive refinement routine
in the singular limit of Test Problem 2.

Test Problem 3: As a final example we consider the case with f = 1 on Ω = (−1, 1)2

and u = 1 on ∂Ω. On this domain it can be seen that having u constant along the
polygonal boundary is inconsistent with the solution satisfying uxxuyy−u2xy = 1 since
along each boundary segment either uxx or uyy is zero. This inconsistency induces a
nonsmooth component to u along ∂Ω. This illustrates a problem where, even though
f is smooth and positive, a loss of regularity occurs since the domain is not strictly
convex and smooth. Since we do not have a known classical solution for this problem,
we instead monitor convergence in the residual norm as in the previous example as
well as the value of uh in the center of the domain.

In implementing the Newton/LS approach here we follow the same structure as
before, except that, because of the inconsistency of the problem at the boundaries, we
enforce Dirichlet conditions on uh only and do not impose any boundary conditions on
the flux variable Uh. This allows the method to have, for example, ∂x(U1) near zero
and ∂y(U2) large along the bottom boundary at y = 0. Enforcing ∂x(U1) = 0 strongly
there would force ∂y(U2) to be unbounded. We also note that since convergence rates
should be limited by the smoothness of the solution we only report results using P2
elements for all unknowns. A contour plot of the solution components at a resolution
of n = 32 is shown in figure 3.11.

Fig. 3.11. Solution plots for Test Problem 3: uh (left), Uh
1 (middle), and Uh

2 (right) at the
n = 32 resolution.
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Numerical results for test problem 3 are given in figure 3.12, using quasiuni-
form meshes with resolutions of n = 32, 64, 128, 256, and 512 elements per side. In
addition to numerical results for the Newton/LS method, we give values for the Pi-
card/Galerkin approach described in algorithm 1. For each resolution we take 100
iterations for the Picard/Galerkin approach and 20 iterations for the Newton/LS
method. For the Newton/LS method the residual norm converges at a rate of ap-
proximately 0.44, which is consistent with the reduced smoothness of this problem,
likely indicating a solution u ∈ H1(Ω)\H2(Ω). (We note that a comparable discrete
residual measure for the Picard/Galerkin approach isn’t feasible since it would require
computation of second derivatives of finite element functions.)

Since no exact solution exists for this problem, to provide a comparison to other
published methods we also report the value of the computed solution at the center of
the domain, uh(0, 0) for both approaches (see figure 3.12). In [24], Oberman develops
finite difference methods with 9 and 17-point stencils are developed and applied to
the same test problem. Under the highest resolution reported, each stencil yields an
approximation of 0.3131 for the minimum of u. Similarly, in [3], Benamou, Froese, and
Oberman develop two finite difference approaches which are applied to the same test
problem. At the highest resolution reported, their methods yield a value of 0.2621. For
comparison, they also implement the wide stencil methods of [24] and report values in
the range 0.2695 to 0.3074 at the highest resolution. Our approximations seem to be
converging to values similar to previously published results, with the Picard/Galerkin
method converging from below and the Newton/LS method converging from above.

Additionally, for this problem, the number of required iterations of the finite
difference implementations in [3] are reported to grow proportional to n2, where, for
example, at n = 141 the iteration count is on the order of 105 for each method studied.
While the Newton/LS method for this problem certainly has slower convergence than
for the smooth test problems, it seems to still be relatively robust in the number of
required nonlinear iterations.

Newton/LS P/G
n R(Uh) uh(0, 0) uh(0, 0)
32 6.98 e-02 0.3327 0.2510
64 5.29 e-02 0.3174 0.2557
128 3.83 e-02 0.3041 0.2580
256 2.75 e-02 0.2932 0.2588
512 2.03 e-02 0.2848 0.2592

rate ∼ 0.44 – –

Fig. 3.12. Residual norm and uh(0, 0) at convergence for Test Problem 3, using 20 iterations
for Newton/LS and 100 iterations for the Picard/Galerkin method.

As a final illustration, we include plots of the locally evaluated least squares
functional in figure 3.13 for the n = 32, 64, and 128 resolutions. As in the previous
test problem this indicates that the error is concentrated in the corners where U = ∇u
is large.

4. Extensions and Concluding Remarks. In this paper we have proposed a
new finite element method, based on least-squares minimization principles and New-
ton’s method, for classical smooth solutions of the elliptic Monge-Ampère equation.
In essence, by directly controlling the flux variable U = ∇u, the method here is able to
capitalize on the power of higher order finite element spaces. As a result, for smooth
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Fig. 3.13. Local least squares functional values at convergence for Test Problem 3 for the
n = 32, 64, and 128 resolutions.

problems, our approach is able to achieve optimal convergence rates using standard
conforming Lagrange finite element spaces.

While not explored in this paper, the approach here inherits a range of attractive
features inherent in the least-squares finite element framework. For example, the
linear systems produced at each step are symmetric and positive definite, and are
generally solved efficiently by multilevel iterative methods. And while the focus here
is primarily on smooth solutions, directly approximating U = ∇u makes this approach
necessarily more sensitive to reduced regularity than many other approaches. In the
least-squares context this has been successfully addressed by weighted-norm methods
(see [21, 11, 4], for example).
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