Derivatives of the identity functor

Deb Vicinsky

University of Oregon

Young Topologists Meeting University of Copenhagen 1 July 2014 Goal: to find examples of categories in which the Goodwillie derivatives of the identity functor are the objects of an operad.

Known examples:

- Based spaces (Ching)
- Spectra (Arone-Ching)
- L_n^f -local spaces (Bauer-Sadofsky)
- \mathcal{DGL}_r over \mathbb{Q} (Walter)

Theorem (in progress)

If \mathcal{M} is a pointed, left proper, simplicial, cellular or combinatorial model category in which finite homotopy limits commute with countable directed homotopy colimits, and if there is $n \in \mathbb{Z}_{\geq 0}$ such that $\Sigma^n X \simeq 0$ for all $X \in Ob(\mathcal{M})$, then the derivatives of the identity functor on \mathcal{M} exist and are trivial. We use the canonical model structure on Cat, the category of pointed small categories. Define a functor to be

- a weak equivalence if it is an equivalence of categories (equivalently, if it is fully faithful and essentially surjective).
- a cofibration if it is injective on objects.
- a fibration if it has the right lifting property with respect to acyclic cofibrations.

The zero object in Cat is the category with one object and only the identity morphism.

• Every object in Cat is cofibrant and fibrant.

• *Cat* is cofibrantly generated.

• Cat is left proper.

Definition (Quillen)

Given a cofibrant object A in a pointed category $\mathcal{M},\,\Sigma A$ is the colimit of the diagram

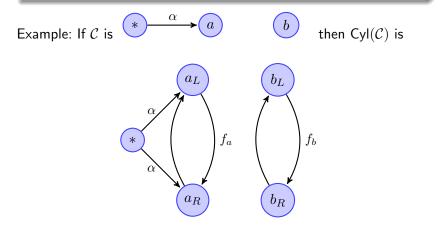
$$\begin{array}{c} A \lor A \longrightarrow \mathsf{Cyl}(A) \\ \downarrow \\ 0 \end{array}$$

where the cylinder object Cyl(A) satisfies:

Cylinder objects in Cat

Proposition

 $Cyl(C) = (C \times I)/(* \times I)$, where I is the category with two objects and a unique isomorphism between them.



Suspensions in Cat

Proposition

Given a category C, ΣC has one object A, and End(A) = F(n-1), where n is the number of components of C.

Proof: In taking the pushout of

$$0 \leftarrow \mathcal{C} \lor \mathcal{C} \to \mathsf{Cyl}(\mathcal{C}),$$

we identify all the objects of $Cyl(\mathcal{C})$ with the unique object of 0 and all the morphisms of $\mathcal{C} \vee \mathcal{C}$ with the unique morphism of 0. Given $\beta : a \to b$,

$$f_b \circ \beta = \beta \circ f_a \Rightarrow im(f_b) \circ id_{\mathbf{0}} = id_{\mathbf{0}} \circ f_a \Rightarrow im(f_a) \simeq im(f_b)$$

in the pushout. Thus we end up with one isomorphism for each component that does not contain *.

Corollary

For any category C, $\Sigma^2 C \simeq 0$.

Proof:

For any category \mathcal{C} , $\Sigma \mathcal{C}$ has one component. Thus $\Sigma^2 \mathcal{C}$ has one object A and $\operatorname{End}(A) \simeq F(0) \simeq id_A$.

Definition (Hovey)

Suppose G is a left Quillen endofunctor of a model category \mathcal{M} . A spectrum X is a sequence $\{X_n\}_{n\geq 0}$ of objects of \mathcal{M} together with structure maps $\sigma: GX_n \to X_{n+1}$ for all n.

A map of spectra $f: X \to Y$ is a collection of maps $f_n: X_n \to Y_n$ so that the following diagram commutes for all n:

$$\begin{array}{c} GX_n \xrightarrow{\sigma_X} X_{n+1} \\ Gf_n \\ Gf_n \\ GY_n \xrightarrow{\sigma_Y} Y_{n+1} \end{array}$$

Denote the category of spectra by $Sp^{\mathbb{N}}(\mathcal{M}, G)$.

In the **projective model structure**, $f : X \to Y$ is a weak equivalence or fibration in $Sp^{\mathbb{N}}(\mathcal{C}at, \Sigma)$ if and only if $f_n : X_n \to Y_n$ is a weak equivalence or fibration in $\mathcal{C}at$ for all $n \ge 0$.

However, $\Sigma: Sp^{\mathbb{N}}(\mathcal{C}at, \Sigma) \to Sp^{\mathbb{N}}(\mathcal{C}at, \Sigma)$ is not a Quillen equivalence.

Definition

A Quillen adjunction $L : \mathcal{C} \leftrightarrows \mathcal{D} : R$ is a Quillen equivalence if, for every cofibrant object X in \mathcal{C} and for every fibrant object Y in \mathcal{D} , $L(X) \to Y$ is a weak equivalence in \mathcal{D} if and only if $X \to R(Y)$ is a weak equivalence in \mathcal{C} .

Definition (Hovey)

Let S be a set of maps in a model category \mathcal{M} .

• An S-local object of \mathcal{M} is a fibrant object W such that, for every $f: A \to B$ in S, the induced map

$$map(B, W) \to map(A, W)$$

is a weak equivalence of simplicial sets.

2 An S-local equivalence is a map $g: A \to B$ in \mathcal{M} such that the induced map

$$map(B, W) \to map(A, W)$$

is a weak equivalence of simplicial sets for all $\mathcal S\text{-local}$ objects $W\!.$

The stable model structure on $Sp^{\mathbb{N}}(\mathcal{C}at, \Sigma)$ has

- the same cofibrations as in the projective model structure.
- weak equivalences are S-local equivalences, where

$$\mathcal{S} = \{ F_{n+1} \Sigma Q \mathcal{C} \xrightarrow{s_n^{Q \mathcal{C}}} F_n Q \mathcal{C} \}.$$

Here

- $F_n(\mathcal{C})$ is the spectrum $\{\ldots, 0, \mathcal{C}, \Sigma \mathcal{C}, \Sigma^2 \mathcal{C}, \ldots\}$ that is 0 below level n.
- C is a domain or codomain of a generating cofibration of Cat. • s_n^{QC} is adjoint to the identity on ΣQC .

Remark:

Hovey requires the model category to be left proper and cellular, but only to guarantee that the Bousfield localization exists.

 $Sp^{\mathbb{N}}(\mathcal{C}at, \Sigma)$ is **not** cellular (cofibrations are not effective monomorphisms), but it is combinatorial.

Theorem (Smith)

If \mathcal{M} is left proper and X-combinatorial (X some universe), and S is an X-small set of homotopy classes of morphisms of \mathcal{M} , the left Bousfield localization $L_S \mathcal{M}$ of \mathcal{M} along any set representing S exists and satisfies the following conditions.

- The cofibrations of $L_S \mathcal{M}$ are exactly those of \mathcal{M} .
- **2** The weak equivalences of $L_S \mathcal{M}$ are the S-local equivalences.

Theorem (Hovey)

 $\Sigma: Sp^N(\mathcal{C}at, \Sigma) \to Sp^N(\mathcal{C}at, \Sigma) \text{ is a Quillen equivalence with respect to the stable model structure.}$

Proposition

Every object in $Sp^{\mathbb{N}}(Cat, \Sigma)$ is weakly equivalent to the zero object in $Sp^{\mathbb{N}}(Cat, \Sigma)$.

Proof:

 $\boldsymbol{\Sigma}$ a Quillen equivalence implies

$$\Sigma^2(X) \simeq 0 \Leftrightarrow X \simeq \Omega^2(0) \simeq 0$$

for all (cofibrant) $X \in \mathsf{Ob}(Sp^{\mathbb{N}}(\mathcal{C}at, \Sigma)).$

The derivatives of the identity functor on Cat should be objects in the category of Σ_n -equivariant spectra on Cat.

Since $Sp^{\mathbb{N}}(\mathcal{C}at, \Sigma)$ is trivial, $\Sigma_n - Sp^{\mathbb{N}}(\mathcal{C}at, \Sigma)$ is trivial, so the derivatives of the identity functor on $\mathcal{C}at$ (if they exist) are trivial.

Theorem (in progress)

If \mathcal{M} is a pointed, left proper, simplicial, cellular or combinatorial model category in which finite homotopy limits commute with countable directed homotopy colimits, and if there is $n \in \mathbb{Z}_{\geq 0}$ such that $\Sigma^n X \simeq 0$ for all $X \in Ob(\mathcal{M})$, then the derivatives of the identity functor on \mathcal{M} exist and are trivial. We have found an example of a category in which doing Goodwillie calculus is possible but not helpful.

Analogy to regular calculus: consider

$$f(x) = \begin{cases} e^{-1/x^2} & \text{for } x \neq 0\\ 0 & \text{for } x = 0 \end{cases}$$

Then
$$f^{(n)}(0) = 0$$
 for all n , so $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = 0 \neq f(x)$ for $x \neq 0$.

Similarly, the Taylor tower for the identity on Cat only converges to Id(X) if X = 0.

Definition

A directed graph has

- $\bullet\,$ a set of vertices V and
- a set of edges E, where the source and target of each edge is specified.

The category $\mathcal{G}ph$ is the category of directed graphs and morphisms between them.

The zero object in Gph is the graph with one vertex and one edge.

Theorem (Bisson-Tsemo)

There is a model structure on $\mathcal{G}ph$ in which

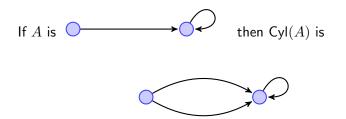
- the weak equivalences are morphisms which are bijections of n-cycles for all $n \ge 1$.
- the fibrations are surjectings. A graph morphism $f: X \to Y$ is a surjecting when the set of edges in X with source vertex x surjects onto the set of edges in Y with source vertex f(x) for all vertices $x \in X$.
- the cofibrations have the left lifting property with respect to all acyclic fibrations.

Cylinder objects in $\mathcal{G}ph$

Proposition

 $Cyl(A) = (A_L \lor A_R) / \sim$, where $v_L \sim v_R$ for all vertices $v \in A$ and $e_L \sim e_R$ if e is part of a cycle.

Example:



Proposition

 $Cyl(A) = (A_L \lor A_R) / \sim$, where $v_L \sim v_R$ for all vertices $v \in A$ and $e_L \sim e_R$ if e is part of a cycle.

Proof: We need to show

Suspensions in $\mathcal{G}ph$

Theorem

For any graph A, $\Sigma A \simeq 0$.

Proof:

In taking the pushout of the diagram below, we glue all the vertices of Cyl(A) to the vertex of 0 and all the edges of Cyl(A) to the edge of 0.

$$\begin{array}{c} A \lor A \longrightarrow \mathsf{Cyl}(A) \\ \downarrow \\ 0 \end{array}$$

• $\mathcal{G}ph$ is left proper and combinatorial. It follows that $Sp^{\mathbb{N}}(\mathcal{G}ph,\Sigma)$ is, also.

• This means we can define the stable model structure on $Sp^{\mathbb{N}}(\mathcal{G}ph,\Sigma).$

• The derivatives of the identity functor on $\mathcal{G}ph$ will be trivial if they exist.

I am currently looking at $\mathbb{Z}/2$ -Mackey functors into \mathcal{DGL}_r .

Knowing the derivatives of the identity functor on this category would tell us about $\mathbb{Z}/2\text{-equivariant}$ rational spaces.

Thanks for your attention!

G. Arone and M. Ching, *Operads and chain rules for Goodwillie derivatives*, Astérisque **338** (2011), 158 pp.

C. Barwick, On left and right model categories and left and right Bousfield localizations, Homology, Homotopy and Applications **12** (2010) 245-320.

T. Bisson and A. Tsemo, *A homotopical algebra of graphs related to zeta series*, Homology, Homotopy and its Applications **10** (2008) 1-13.

M. Ching, Bar constructions for topological operads and the Goodwillie derivatives of the identity, Geom. Topol. **9** (2005) 833-933.

M. Hovey, *Spectra and symmetric spectra in general model categories*, J. Pure Appl. Algebra **165** (2001) no. 1 63-127.

D. Quillen, *Homotopical algebra*, Lecture Notes in Mathematics **43**, Springer-Verlag 1967, iv+156 pp.

C. Rezk, A model category for categories, unpublished, 1996.

B. Walter, *Rational Homotopy Calculus of Functors.* Dissertation, Brown University (2005).