Basic IATEX Template

William J. Turner
August 21, 2007

Abstract

This paper computes the distance between two points and fits both linear and exponential functions through the two points.

1 Introduction

Consider the two points $(-1,16)$ and $(3,1)$. Section 2 computes the distance between these two points. Section 3 computes a linear equation $y=m x+b$ through the two points, and Section 4 fits a exponential equation $y=A e^{k x}$ through the two points.

2 Distance

We can use the distance formula

$$
\begin{equation*}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \tag{1}
\end{equation*}
$$

to determine the distance between any two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in \mathbb{R}^{2}. For our example, $\left(x_{1}, y_{1}\right)=(-1,16)$ and $\left(x_{2}, y_{2}\right)=(3,1)$, so plugging these values into the distance formula (1) tell us the distance between the two points is

$$
d=\sqrt{(3-(-1))^{2}+(1-16)^{2}}=\sqrt{4^{2}+(-15)^{2}}=\sqrt{241}
$$

3 Linear Fit

Consider a linear equation $y=m x+b$ through the two points. We will first determine the slope m of the line in Section 3.1, and we will then determine the y-intercept b of the line in Section 3.2.

3.1 Slope

The slope of the line passing through the two points is given by the forumula

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Plugging in our two points, we find the slope of the line between them is

$$
\begin{equation*}
m=\frac{1-16}{3-(-1)}=-\frac{15}{4} . \tag{2}
\end{equation*}
$$

3.2 Intercept

To find the y-intercept of the line, we start with the point-slope form of the line of slope m through the point $\left(x_{0}, y_{0}\right)$:

$$
y-y_{0}=m\left(x-x_{0}\right) .
$$

We plug in the point $\left(x_{0}, y_{0}\right)=(-1,16)$ and the slope we found previously (2) to obtain the equation

$$
y-16=-\frac{15}{4}(x+1)
$$

Solving for y, we find the slope-intercept form of the line:

$$
\begin{aligned}
y & =-\frac{15}{4} x-\frac{15}{4}+16 \\
& =-\frac{15}{4} x+\frac{49}{4} .
\end{aligned}
$$

Therefore, the y-intercept is $b=49 / 4$, and the equation $y=-\frac{15}{4} x+\frac{49}{4}$ describes the line through the two points.

4 Exponential Fit

Let us consider the exponential function $y=A e^{k x}$. For this function to pass through both points, we must find constants A and k that satisfy both equations $16=A e^{-k}$ and $1=A e^{3 k}$. To solve these two simultaneous equations, we first take the ratio of the two equations, which gives us a single equation involving only k :

$$
16=\frac{A e^{-k}}{A e^{3 k}}=e^{-4 k}
$$

We can take the natural logarithm of this equation to solve for k :

$$
-4 k=\ln (16)=4 \ln (2),
$$

which means $k=-\ln (2)$.
We can then use this value of k, along with either of the two points to solve for A. Let us consider the point $(-1,16)$:

$$
16=A e^{(-\ln (2))(-1)}=A e^{\ln 2}=2 A .
$$

Solving for A, we find $A=8$, and the exponential equation through both points is

$$
y=8 e^{-\ln (2) x}=82^{-x}=8\left(\frac{1}{2}\right)^{x} .
$$

