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Symbolic Computation
Sometimes called Computer Algebra

Symbols or exact arithmetic

Not floating point numbers (numerical analysis)

No round off errors

Algorithms may not be compatible

Numerical Analysis

Find approximation quickly

May never find exact solution

Symbolic Computation

Find exact solution quickly

May never approximate
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Probabilistic Algorithms

Three types:

Monte Carlo: Always fast, probably correct

Las Vegas: Probably fast, always correct

Certificate

BPP: Bounded Probabalistic Polynomial Time

Probably fast, probably correct

Atlantic City?

Schwartz-Zippel Lemma

Probability randomly choose root of polynomial
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Solving Linear Systems
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Gaussian Elimination
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Row echelon form and back substitution

Must know how matrix stored

Matrix changed in calculation

Sparse matrices may become dense

Black Box Linear Algebra – p.4/29



Black Box Matrix Model

� � �� 	 	 	 � 	 	 	 � � � � ��

� � �� � �

External view of matrix

Only matrix-vector products allowed

Independent of implementation

Implementations efficient in time or space

Not unique to symbolic computation

Can compute Krylov sequence

� � � � 	
�
 �
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Examples

Matrix storage time

Arbitrary matrix � � � � � � 	

Sparse matrix

( � nonzero entries)

� � � 	 � � � 	

Hilbert matrix

(

� � ��� � � �

	
�
 ��� 	 )

� � � 	 � � � 	

Toeplitz matrix

� � � 	 � � � �� � � � 	 �� � �� � � � 	 	
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Linearly Generated Sequences

Let

�

be a vector space over field

�

.

A sequence

� � � � �
	

�
 � � � �

is linearly generated if and only if there exist � � �
and

����� 	 	 	� ��
 � �� ��
 � � �

such that for all

 � �



��� �

� � � �
 � � � or � �
 
 � 	
�
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 � 	
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� � � �
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Generating Polynomials

The polynomial

� �� 	 � 

�� � � � � �

generates �

� � � �



�� �

� � � �
 �
�
 �

� � � 	
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 � � � � � �

� �

is an

� �� �

-module
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Minimal Generating Polynomial

If

� � � � � and � � � �� �

, then

�
�

� 	 � � � � � � � � � 	 � � � � � �

� � � � �� � � � � � � � �

is an ideal

� �� �

is a principal ideal domain

There exists a unique monic generator of minimal degree, the

minimal generating polynomial of sequence

Minimal polynomial divides all generating polynomials
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Example: Fibonacci Numbers
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�
 � � � �� �� �� 
� �� �� �� � �� 
 �� � �� 	 	 	
	

Minimal polynomial is

� � � �
	 � 	 �

� �
 � � � �
 	 � � �

�� � � 	 � � � �

	 
� 	 � also generates �

� �
 � � 
 � �
 	 � � �

� � � � � � 
 �
	 � � 
 	
	 � �

also generates �

� �
 � 
 � � � �
 � 
 	 � � �
 �

Skips first

�

elements of �
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Matrix Power Sequence

� � � � � 	
�
 � � � � � � 	 � �

��� � ��� 	 � 	

generates

� � � 	
�
 �

Cayley-Hamilton Theorem

Let

� �

be minimal polynomial of

� � � 	
�
 �

� � � �� � ��� 	 � 	
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Krylov Sequence

� � � � � � 	
�
 � � � � � � 	 � � �

� � � 	 � � � � � � � 	 � � �

� � � � � � � � 	
�
 � � � ��� � � � � � � � � � 	
�
 � � � �

Let

� �� �

be minimal polynomial of

� � � � 	
�
 �

� �� � � � � � �� � ��� 	 � 	
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Solving �

Suppose � �



��� �
� � � �

, �
� � 	 � �� � � �, and � � � � ��� 	

�
 �

If � exists, then

� �� �

satisfies requirements

� � � � � 	 � � ��� � � � ��
 � 
 � � �

� � 	
�
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�� 	
� � � � 	 � � 	
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� � 	
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� �



��� 	
� � � � ��� 	 � 	

is a solution
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Nonsingular

��� � � � 	 � � �

�� � ��� 	 � 	 ��
� � � � � �

� �� � � � 	 � � �

� � 	
�

� �



��� 	
� � � � ��� 	 � 	

is the unique solution
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Bilinear Projection Sequence

� � �
�T

� � � 	
�
 � � � �T

� � � 	 � � �

� � � 	 � � � � � �T

� � � 	 � � �

� � � � � � � � � 	
�
 � � � �� � � � � � �

�T

� � � 	
�
 � � � �

Let

� �� �
� be minimal polynomial of

�
�T

� � � 	
�
 �

� �� �
�

� � �� � � � � � ��� � ��� 	 � 	
If � chosen randomly from finite

� � � � �

, then

� �� �
�

� � �� �

with

probability at least

� 	
�� � � � �� � 	

� � �

Certificate:
� �� �

�

� � � � � 	
�
 � � �
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Computing Minimal Polynomial

Must know

��� � � � 	 �

Extended Euclidean Algorithm

� � �
� 	 � � � �� � � �

Inputs are

�
� 	 �� 	 �

� �� 	

�� � � � � � � 	
and

�� �� 	 � � � �

Stop when

�� � � � � 	 � � �� � � � ��� 	 	

Minimal polynomial is reversal of � � �� 	

Berlekamp-Massey Algorithm

From coding theory

Interpolates elements of scalar sequence

Related to Extended Euclidean Algorithm
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Berlekamp-Massey Algorithm

Input: Scalar sequence

� � �
	

�
 � � � �

with generator � with�� � �
�

	 � �

Output: Minimal polynomial

�

of sequence

1:

� � � �

Initial guess

�

2: for � � � to


 � 	 � do

� �

generates � �� 	 	 	� ��� � 	 �

3:

� � � � � � 	 � � � � � � ��� � �
4:

� � �� ��� � � � � 	 ��� � � 
 	 ��� � � � ��� � �

5: if

� � � � then

� �

does not generate � � � 	 	 	� � �
�

6: update

�

to generate � � � 	 	 	� ���

7: end if

8: end for
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Example: Fibonacci Numbers
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recursion relation
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Wiedemann’s Algorithm

� �� �
�

� � �� � � � � � ��� � ��� 	 � 	

��� � � � �� �
�

	 � �� � � �� � ��� 	 � 	 	 � �

Only need

�
�T

� � � 	 � � � 	

�� �

Require: nonsingular

� � �� � �

and

� � ��
Ensure: � � ��

such that

� � � �
1:

� �

random vector in

� �

where
�� �

2: use Berlekamp-Massey to compute

� �� �
� �� � � 	 � � � � � � ��
 � 
 �

Store only

� � � �

3:

� � 	
	

��
� � 	 � � � � �� �� � � � 
 � 
 � 	 � 	
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Back to original problem
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Back to original problem

�
�T � � � 	 � � � 	
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Singular

Kaltofen and Saunders (1991):

If

� � � �� � � � 	 � � known

� � � leading principal minor nonzero

Randomly choose �

Solve � � � nonsingular system

�
� � � �� � � � � �� � � � 	

�
� is leading � � � submatrix of

�

� �

is first � rows of
�

Then � �� � 	 � �
�

�
� � �� �

�
�

 	 � uniformly samples solution manifold
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Precondition Matrix

Want � � � leading principal minor of

� �

nonzero

� � � � �

or

� � � � �

Need efficient matrix-vector product

New linear system

� � � � �
��
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Generic Rank Profile
Wiedemann (1986):

� � � � �

,

�

parameterized and can realize any permutation

Kaltofen and Saunders (1991):

� � � ��� � ��� ,

��� unit upper triangular Toeplitz and
��� unit lower

triangular Toeplitz

Chen et al. (2002); Turner (2002):

� � � � � � � � ,

� � ,

� � based on butterfly networks

0 1 0 0 1 1 10

0 0 0 01 1 1 1

0 1 101 0 0 1

0 001 1 1 01

Generic exchange matrix mixes inputs

Turner (2002): Generalize butterfly networks to radix-

�

switches

Patton and Turner (2004): Toeplitz (or Hankel) matrix switches
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Matrix Rank

Kaltofen and Saunders (1991):

If

� � � �� � � � 	 � � (unknown)

Leading principal minors nonzero up to
�

�

� � �� � � �� 	� 	 	 	�
�

�
	

Then � � �� � � � �� 	
	 � with probability at least

� 	
� � � 	 �

	


 � � �
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Matrix Minimal Polynomial

If � chosen randomly, then

� �� � � � �

with probability at least

� 	
�� � � � � 	

� � �

� � 	

�
� � �

If � and � chosen randomly, then

� �� �
�

� � �
with probability at

least

� 	
�� � � 
 � � 	

� � �

� � 	

 �

� � �
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Rank Preconditioners
Generic rank profile preconditioner and diagonal matrix

Chen et al. (2002):

� � � �
�

� ��
�

��
�

�
� and

��
� unit lower triangular Toeplitz,

��
� upper triangular

Toeplitz

Turner (2002, 2003): Relax slightly generic rank profile

Patton and Turner (2004):
� � � � �

�
��
�
�

� 	

. . .

�
�

�
��
�


�

Toeplitz (or Hankel)

Patton and Turner (2004):

� � � � �
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Matrix Determinant

If

� �
� ��� � ��� 	 � 	

Then

�� � � � 	 � �
	 �

	 � � � � � 	
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Determinant Preconditioners
Generic rank profile preconditioner and diagonal matrix

Kaltofen and Pan (1992):

� � � � 	 � � �

� 	 unit upper triangular Toeplitz and

� � lower triangular Toeplitz

Chen et al. (2002):

� � � �
�

�
�
�

� 	

. . .
�

�
�

�
�


Turner (2002, 2003):
� � � �

�
��
��
��
��
�
�

� � 	

. . .
. . .

� � � � 	
�

�
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