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Arbitrary Radix Switches

Generalize butterfly switch to radix-p switch:



Arbitrary Radix Switches
Generalize butterfly switch to radix-p switch:

Example (Radix-p switches: p = 2,3,4)

X1 X2 X1 X2 X3 X1 X2 X3 X4
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Arbitrary Radix Switching Networks

Definition (¢-dimensional radix-p switching network)

» Recursively defined
> p'~ ! radix-p switches to merge outputs of p radix-p
subnetworks of dimension ¢ — 1

» Merges ith output of each of the subnetworks
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Arbitrary Radix Switching Networks

Lemma
Let n = p' where p > 2. The (-dimensional radix-p switching

network can switch any r indices 1 < ip < --- < i, < n into any
desired contiguous block of indices. For our purposes, wrapping
the block around the outside preserves contiguity.
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Let n = p' where p > 2. The (-dimensional radix-p switching

network can switch any r indices 1 < ip < --- < i, < n into any
desired contiguous block of indices. For our purposes, wrapping
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Example (p = 3)




Generalized Arbitrary Radix Switching Networks

Definition (Generalized radix-p switching network)
i

p np=¢p
>Letn:Zn,-where gefl,...,p—1}
i=1 U <lp <+ <ALy

» Radix-(ck + 1) switches to merge Zf-;_ll n; subnetwork with
far right nodes of p’ blocks

» Radix-c, switches to merge other nodes of p’* blocks
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Definition (Generalized radix-p switching network)
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Generalized Arbitrary Radix Switching Networks

Example (p =3, n=7=1p° +2 pt)

i




Generalized Arbitrary Radix Switching Networks

Example (p =3, n=7=1p° +2 pt)

i

Theorem

Suppose p > 2. The generalized radix-p switching network
described above can switch any r indices1 < 7 < --- < i, < n into
the contiguous block 1,2,...,r. Furthermore, it has a depth of
[log,(n)] and a total of no more than plogs(n)] [log,(n)]/p
switches of radix at most p. The network attains this bound only
when n = pl'°&(M1 or n < p.



Building Preconditioners

» Replace each switch by p x p symbolic exchange matrix Sy to
merge columns (not mix)

» Embed each exchange matrix as principal minor of n x n
identity matrix to create Sk

> Symbolic preconditioner is product: £ = [];_; Sk

» Randomly choose values for symbols to create probabilistic
preconditioner: A = AL where L = [];_; S«



Building Preconditioners
Example (p = 3)
M1k 012k 13k
Sk= |21k ok 3k
@31k 032k 033k
01,1,k 1,2 k 01,3,k

Sk = 21k 22 k 23 k

3.1 k 32 k a3 3 k




Symbolic Toeplitz Matrix

ap Qptr1 .. Q2p-1
ap_1 Qp ce. Q2p2



Symbolic Toeplitz Matrix

Qp  Qpyl Q2p—1

a, 1 o as,_o
p p p
T = , ,
o1 Qo a,

Using the lexicographic monomial ordering with
a1 <ap < < 02p-1:

m
It (det (ﬁih...,im;h,.--,jm])) = (_1)Lm/2j H Ontjmi1—k—ik
k=1



Toeplitz Exchange Matrix

Let A’ be submatrix of A affected by 7.
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Let A’ be submatrix of A affected by 7.

» A’ includes a subset of r’ of the r linearly independent
columns of A where 0 < r’ <'r.
> det((A'T), ;) = Y det(As ) det(Tr, 4)

H =Lk, km}
1<ki<--<km<n

» Every set of m < r’ columns of AT linearly independent

» Embedded Toeplitz exchange matrix 7 can move linear
independence freely within one switch.



Toeplitz Exchange Matrix

Let A’ be submatrix of A affected by 7.

» A’ includes a subset of r’ of the r linearly independent
columns of A where 0 < r’ <'r.
> det((A'T), ;) = Y det(As ) det(Tr, 4)

H =Lk, km}
1<ki<--<km<n

» Every set of m < r’ columns of AT linearly independent
» Embedded Toeplitz exchange matrix 7 can move linear
independence freely within one switch.

» Each 7y uses different symbols = first r columns of
A(I]Zk) linearly independent.



Toeplitz Exchange Matrix

Theorem

Let F be a field, let A € F"™" have r linearly independent columns,
let s be the number of switches in the generalized radix-p
switching network, and let S be a finite subset of F. Let N be the
number of random numbers required in this network. If a1, ..., ayn
are randomly chosen uniformly and independently from S, then the
first r columns of A([],_; Tk) are linearly independent with
probability at least

| rllog,(m)] _ | nflog,(n)]

Rl |5



Toeplitz Rank Preconditioner
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» ATD preconditioner for Kaltofen-Saunders rank algorithm
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Toeplitz Rank Preconditioner

» p=n= any r columns of AT linearly independent

» Some r x r principal minor of A7 nonzero

» ATD preconditioner for Kaltofen-Saunders rank algorithm
[Turner(2002), Ch.3]

» Do not need D!



Characteristic Polynomial

> det()\l — AT) — i(_l)mEm(AT))\n—m

m=0

> E,(AT) = Z det((AT)[ s, 4)

I={ityoonrim}
1<ih<--<im<n
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Characteristic Polynomial

> det()\l — AT) — i(_l)mEm(AT))\n—m
m=0
> En(AT)= > det((AT),.p)

I ={i1yeyim}
1<ip<--<im<n

» m>r= E,(AT)=0

» \"7" divides det(A — AT)



Leading Term of Characteristic Polynomial

Let
> P ={p1,...,pr} where 1 < p; <--- < p, < n be the pivot
column indices of A
» 2={q1,...,q,} where 1 < g; <--- < g, < n be the indices
of the last r linearly independent rows of A

Then, under the lexicographic monomial ordering with
A<a; <ap < - < a1,

It(det()‘l - AT)) = (_1)L3r/2j A[,@,W])‘n_r H Xnd-pmy1—k—qx
k=1
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Characteristic Polynomial

v

det(Al — AT) = A"~ "g where deg,(g) = r and A does not
divide g

» lt(g) constant in A and at most linear in each «;

v

g squarefree

fAT = \Pg where p > 1

v

v

deg,(FAT)>r+1



Degree Upper Bound

» Sylvester’s inequality: rank(A7) < r
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Degree Upper Bound

» Sylvester’s inequality: rank(A7) < r

» ) divides the n — r largest invariant factors s, (Al — AT)

> deg(FA7)<r+1

> deg(FAT)=r+1



Toeplitz Rank Preconditioner

Theorem
Let F be a field, A € F"*" have rank r withr < n—1, and S be a

finite subset of F. If

an an+1 ... ap-1
an_ a N S
T_ n:l :n ) 21: 2 anan
a1 an . an
where ai,...,ax,—1 are chosen uniformly and independently from

S, then the matrix AT has characteristic polynomial
det(M — AT) = A\"~"g(\) and minimal polynomial fAT = X\ g(\)
where g(0) # 0 and deg(fAT) = r + 1, all with probability at least

r(r+1) - n(n—1)
25|~ 215

1—
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arbitrary radix switches
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Conclusion

» Generalization of Chen et al. butterfly preconditioners to
arbitrary radix switches

» Small increase in probability bound for success
» p — n allows search for other rank preconditioners

» Monomial ordering and leading term arguments
» Toeplitz matrices as arbitrary radix exchange matrices
» Toeplitz matrix as rank preconditioner

> Better probability of success
» Asymptotically slower than butterfly preconditioner

> Apply to other matrices?
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