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Arbitrary Radix Switches

Generalize butterfly switch to radix-ρ switch:

Example (Radix-ρ switches: ρ = 2, 3, 4)
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Arbitrary Radix Switching Networks

Definition (`-dimensional radix-ρ switching network)

I Recursively defined

I ρ`−1 radix-ρ switches to merge outputs of ρ radix-ρ
subnetworks of dimension `− 1

I Merges ith output of each of the subnetworks

Example (ρ = 3, ` = 2)
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Arbitrary Radix Switching Networks

Lemma
Let n = ρ` where ρ ≥ 2. The `-dimensional radix-ρ switching
network can switch any r indices 1 ≤ i1 < · · · < ir ≤ n into any
desired contiguous block of indices. For our purposes, wrapping
the block around the outside preserves contiguity.

Example (ρ = 3)
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Generalized Arbitrary Radix Switching Networks

Definition (Generalized radix-ρ switching network)

I Let n =

p∑
i=1

ni where


ni = ci ρ`i

ci ∈ {1, . . . , ρ− 1}
`1 < `2 < · · · < `p

I Radix-(ck + 1) switches to merge
∑k−1

i=1 ni subnetwork with
far right nodes of ρ`k blocks

I Radix-ck switches to merge other nodes of ρ`k blocks
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Generalized Arbitrary Radix Switching Networks

Example (ρ = 3, n = 7 = 1 ρ0 + 2 ρ1)
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Theorem
Suppose ρ ≥ 2. The generalized radix-ρ switching network
described above can switch any r indices 1 ≤ i1 < · · · < ir ≤ n into
the contiguous block 1, 2, . . . , r . Furthermore, it has a depth of
dlogρ(n)e and a total of no more than ρdlogρ(n)edlogρ(n)e/ρ
switches of radix at most ρ. The network attains this bound only
when n = ρdlogρ(n)e or n < ρ.
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Building Preconditioners

I Replace each switch by ρ× ρ symbolic exchange matrix Sk to
merge columns (not mix)

I Embed each exchange matrix as principal minor of n × n
identity matrix to create Ŝk

I Symbolic preconditioner is product: L =
∏s

k=1 Ŝk

I Randomly choose values for symbols to create probabilistic
preconditioner: Ã = AL where L =

∏s
k=1 Ŝk



Building Preconditioners

Example (ρ = 3)

Sk =

α1,1,k α1,2,k α1,3,k

α2,1,k α2,2,k α2,3,k

α3,1,k α3,2,k α3,3,k



Ŝk =



1
. . .

α1,1,k α1,2,k α1,3,k

. . .

α2,1,k α2,2,k α2,3,k

. . .

α3,1,k α3,2,k α3,3,k

. . .

1





Symbolic Toeplitz Matrix

T =


αρ αρ+1 . . . α2ρ−1

αρ−1 αρ . . . α2ρ−2
...

...
. . .

...
α1 α2 . . . αρ



Using the lexicographic monomial ordering with
α1 ≺ α2 ≺ · · · ≺ α2n−1:

lt
(
det

(
T[i1,...,im;j1,...,jm]

))
= (−1)bm/2c

m∏
k=1

αn+jm+1−k−ik
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Toeplitz Exchange Matrix

Let A′ be submatrix of A affected by T .

I A′ includes a subset of r ′ of the r linearly independent
columns of A where 0 ≤ r ′ ≤ r .

I det((A′T )[I ,J ]) =
∑

K ={k1,...,km}
1≤k1<···<km≤n

det(A′
[I ,K ]) det(T[K ,J ])

I Every set of m ≤ r ′ columns of A′T linearly independent

I Embedded Toeplitz exchange matrix T̂ can move linear
independence freely within one switch.

I Each T̂k uses different symbols =⇒ first r columns of
A(

∏
T̂k) linearly independent.
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Toeplitz Exchange Matrix

Theorem
Let F be a field, let A ∈ Fn×n have r linearly independent columns,
let s be the number of switches in the generalized radix-ρ
switching network, and let S be a finite subset of F. Let N be the
number of random numbers required in this network. If a1, . . . , aN

are randomly chosen uniformly and independently from S, then the
first r columns of A(

∏s
k=1 T̂k) are linearly independent with

probability at least

1−
rdlogρ(n)e

|S |
≥ 1−

ndlogρ(n)e
|S |

.



Toeplitz Rank Preconditioner

I ρ = n =⇒ any r columns of AT linearly independent

I Some r × r principal minor of AT nonzero

I ATD preconditioner for Kaltofen-Saunders rank algorithm
[Turner(2002), Ch.3]

I Do not need D!
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Characteristic Polynomial

I det(λI − AT ) =
n∑

m=0

(−1)mEm(AT )λn−m

I Em(AT ) =
∑

I ={i1,...,im}
1≤i1<···<im≤n

det((AT )[I ,I ])

I m > r =⇒ Em(AT ) = 0

I λn−r divides det(λI − AT )
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Leading Term of Characteristic Polynomial

Let

I P = {p1, . . . , pr} where 1 ≤ p1 < · · · < pr ≤ n be the pivot
column indices of A

I Q = {q1, . . . , qr} where 1 ≤ q1 < · · · < qr ≤ n be the indices
of the last r linearly independent rows of A

Then, under the lexicographic monomial ordering with
λ ≺ α1 ≺ α2 ≺ · · · ≺ α2n−1,

lt(det(λI − AT )) = (−1)b3r/2cA[Q,P]λ
n−r

r∏
k=1

αn+pm+1−k−qk



Characteristic Polynomial

I det(λI − AT ) = λn−rg where degλ(g) = r and λ does not
divide g

I lt(g) constant in λ and at most linear in each αi

I g squarefree

I f AT = λpg where p ≥ 1

I degλ(f AT ) ≥ r + 1
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Degree Upper Bound

I Sylvester’s inequality: rank(AT ) ≤ r

I λ divides the n − r largest invariant factors sk(λI − AT )

I deg(f AT ) ≤ r + 1

I deg(f AT ) = r + 1
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Toeplitz Rank Preconditioner

Theorem
Let F be a field, A ∈ Fn×n have rank r with r ≤ n − 1, and S be a
finite subset of F. If

T =


an an+1 . . . a2n−1

an−1 an . . . a2n−2
...

...
. . .

...
a1 a2 . . . an

 ∈ Fn×n,

where a1, . . . , a2n−1 are chosen uniformly and independently from
S, then the matrix AT has characteristic polynomial
det(λI − AT ) = λn−rg(λ) and minimal polynomial f AT = λ g(λ)
where g(0) 6= 0 and deg(f AT ) = r + 1, all with probability at least

1− r(r + 1)

2|S |
≥ 1− n(n − 1)

2|S |
.



Conclusion

I Generalization of Chen et al. butterfly preconditioners to
arbitrary radix switches

I Small increase in probability bound for success
I ρ → n allows search for other rank preconditioners

I Monomial ordering and leading term arguments

I Toeplitz matrices as arbitrary radix exchange matrices
I Toeplitz matrix as rank preconditioner

I Better probability of success
I Asymptotically slower than butterfly preconditioner

I Apply to other matrices?
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