Preconditioners for Singular Black Box Matrices

William J. Turner
Department of Mathematics \& Computer Science Wabash College
Crawfordsville, IN 47933

ISSAC 2005 : Beijing, China
27 July 2005

WABASH
 COLLEGE

Outline

Generalized Networks
Arbitrary Radix Switching Networks
Generic Exchange Matrices

Rank Preconditioner

Arbitrary Radix Switches

Generalize butterfly switch to radix- ρ switch:

Arbitrary Radix Switches

Generalize butterfly switch to radix- ρ switch:

Example (Radix- ρ switches: $\rho=2,3,4$)

Arbitrary Radix Switching Networks

Definition (ℓ-dimensional radix- ρ switching network)

- Recursively defined
- $\rho^{\ell-1}$ radix- ρ switches to merge outputs of ρ radix- ρ subnetworks of dimension $\ell-1$
- Merges ith output of each of the subnetworks

Arbitrary Radix Switching Networks

Definition (ℓ-dimensional radix- ρ switching network)

- Recursively defined
- $\rho^{\ell-1}$ radix- ρ switches to merge outputs of ρ radix- ρ subnetworks of dimension $\ell-1$
- Merges ith output of each of the subnetworks

Example $(\rho=3, \ell=2)$

Arbitrary Radix Switching Networks

Lemma
Let $n=\rho^{\ell}$ where $\rho \geq 2$. The ℓ-dimensional radix- ρ switching network can switch any r indices $1 \leq i_{1}<\cdots<i_{r} \leq n$ into any desired contiguous block of indices. For our purposes, wrapping the block around the outside preserves contiguity.

Arbitrary Radix Switching Networks

Lemma
Let $n=\rho^{\ell}$ where $\rho \geq 2$. The ℓ-dimensional radix- ρ switching network can switch any r indices $1 \leq i_{1}<\cdots<i_{r} \leq n$ into any desired contiguous block of indices. For our purposes, wrapping the block around the outside preserves contiguity.

Example $(\rho=3)$

Generalized Arbitrary Radix Switching Networks

Definition (Generalized radix- ρ switching network)

- Let $n=\sum_{i=1}^{p} n_{i}$ where $\left\{\begin{array}{l}n_{i}=c_{i} \rho^{\ell_{i}} \\ c_{i} \in\{1, \ldots, \rho-1\} \\ \ell_{1}<\ell_{2}<\cdots<\ell_{p}\end{array}\right.$
- Radix- $\left(c_{k}+1\right)$ switches to merge $\sum_{i=1}^{k-1} n_{i}$ subnetwork with far right nodes of $\rho^{\ell_{k}}$ blocks
- Radix- c_{k} switches to merge other nodes of $\rho^{\ell_{k}}$ blocks

Generalized Arbitrary Radix Switching Networks

Definition (Generalized radix- ρ switching network)

- Let $n=\sum_{i=1}^{p} n_{i}$ where $\left\{\begin{array}{l}n_{i}=c_{i} \rho_{i} \\ c_{i} \in\{1, \ldots, \rho-1\} \\ \ell_{1}<\ell_{2}<\cdots<\ell_{p}\end{array}\right.$
- Radix- $\left(c_{k}+1\right)$ switches to merge $\sum_{i=1}^{k-1} n_{i}$ subnetwork with far right nodes of $\rho^{\ell_{k}}$ blocks
- Radix- c_{k} switches to merge other nodes of $\rho^{\ell_{k}}$ blocks

\square

Generalized Arbitrary Radix Switching Networks

Example $\left(\rho=3, n=7=1 \rho^{0}+2 \rho^{1}\right)$

Generalized Arbitrary Radix Switching Networks

Example $\left(\rho=3, n=7=1 \rho^{0}+2 \rho^{1}\right)$

Theorem
Suppose $\rho \geq 2$. The generalized radix- ρ switching network described above can switch any r indices $1 \leq i_{1}<\cdots<i_{r} \leq n$ into the contiguous block $1,2, \ldots, r$. Furthermore, it has a depth of $\left\lceil\log _{\rho}(n)\right\rceil$ and a total of no more than $\rho^{\left\lceil\log _{\rho}(n)\right\rceil}\left\lceil\log _{\rho}(n)\right\rceil / \rho$ switches of radix at most ρ. The network attains this bound only when $n=\rho^{\left\lceil\log _{\rho}(n)\right\rceil}$ or $n<\rho$.

Building Preconditioners

- Replace each switch by $\rho \times \rho$ symbolic exchange matrix \mathcal{S}_{k} to merge columns (not mix)
- Embed each exchange matrix as principal minor of $n \times n$ identity matrix to create $\hat{\mathcal{S}}_{k}$
- Symbolic preconditioner is product: $\mathcal{L}=\prod_{k=1}^{s} \hat{\mathcal{S}}_{k}$
- Randomly choose values for symbols to create probabilistic preconditioner: $\tilde{A}=A L$ where $L=\prod_{k=1}^{s} \hat{S}_{k}$

Building Preconditioners

Example ($\rho=3$)

$$
\mathcal{S}_{k}=\left[\begin{array}{lll}
\alpha_{1,1, k} & \alpha_{1,2, k} & \alpha_{1,3, k} \\
\alpha_{2,1, k} & \alpha_{2,2, k} & \alpha_{2,3, k} \\
\alpha_{3,1, k} & \alpha_{3,2, k} & \alpha_{3,3, k}
\end{array}\right]
$$

Symbolic Toeplitz Matrix

$$
\mathcal{T}=\left[\begin{array}{cccc}
\alpha_{\rho} & \alpha_{\rho+1} & \ldots & \alpha_{2 \rho-1} \\
\alpha_{\rho-1} & \alpha_{\rho} & \ldots & \alpha_{2 \rho-2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{\rho}
\end{array}\right]
$$

Symbolic Toeplitz Matrix

$$
\mathcal{T}=\left[\begin{array}{cccc}
\alpha_{\rho} & \alpha_{\rho+1} & \ldots & \alpha_{2 \rho-1} \\
\alpha_{\rho-1} & \alpha_{\rho} & \ldots & \alpha_{2 \rho-2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{\rho}
\end{array}\right]
$$

Using the lexicographic monomial ordering with $\alpha_{1} \prec \alpha_{2} \prec \cdots \prec \alpha_{2 n-1}:$

$$
\operatorname{It}\left(\operatorname{det}\left(\mathcal{T}_{\left[i_{1}, \ldots, i_{m} ; j_{1}, \ldots, j_{m}\right]}\right)\right)=(-1)^{\lfloor m / 2\rfloor} \prod_{k=1}^{m} \alpha_{n+j_{m+1-k}-i_{k}}
$$

Toeplitz Exchange Matrix

Let A^{\prime} be submatrix of A affected by \mathcal{T}.

Toeplitz Exchange Matrix

Let A^{\prime} be submatrix of A affected by \mathcal{T}.

- A^{\prime} includes a subset of r^{\prime} of the r linearly independent columns of A where $0 \leq r^{\prime} \leq r$.

Toeplitz Exchange Matrix

Let A^{\prime} be submatrix of A affected by \mathcal{T}.

- A^{\prime} includes a subset of r^{\prime} of the r linearly independent columns of A where $0 \leq r^{\prime} \leq r$.
$-\operatorname{det}\left(\left(A^{\prime} \mathcal{T}\right)_{[\mathscr{I}, \mathscr{F}]}\right)=\sum_{\substack{\mathscr{K}=\left\{k_{1}, \ldots, k_{m}\right\} \\ 1 \leq k_{1}<\cdots<k_{m} \leq n}} \operatorname{det}\left(A_{[\mathscr{F}, \mathscr{K}]}^{\prime}\right) \operatorname{det}\left(\mathcal{T}_{[\mathscr{K}, \mathscr{F}]}\right)$

Toeplitz Exchange Matrix

Let A^{\prime} be submatrix of A affected by \mathcal{T}.

- A^{\prime} includes a subset of r^{\prime} of the r linearly independent columns of A where $0 \leq r^{\prime} \leq r$.
$-\operatorname{det}\left(\left(A^{\prime} \mathcal{T}\right)_{[\mathscr{I}, \mathscr{F}]}\right)=\sum_{\substack{\mathscr{K}=\left\{k_{1}, \ldots, k_{m}\right\} \\ 1 \leq k_{1}<\cdots<k_{m} \leq n}} \operatorname{det}\left(A_{[\mathscr{F}, \mathscr{K}]}^{\prime}\right) \operatorname{det}\left(\mathcal{T}_{[\mathscr{K}, \mathscr{F}]}\right)$
- Every set of $m \leq r^{\prime}$ columns of $A^{\prime} \mathcal{T}$ linearly independent

Toeplitz Exchange Matrix

Let A^{\prime} be submatrix of A affected by \mathcal{T}.

- A^{\prime} includes a subset of r^{\prime} of the r linearly independent columns of A where $0 \leq r^{\prime} \leq r$.
$-\operatorname{det}\left(\left(A^{\prime} \mathcal{T}\right)_{[\mathscr{F}, \mathscr{F}]}\right)=\sum_{\substack{\mathscr{K}=\left\{k_{1}, \ldots, k_{m}\right\} \\ 1 \leq k_{1}<\cdots<k_{m} \leq n}} \operatorname{det}\left(A_{[\mathscr{J}, \mathscr{K}]}^{\prime}\right) \operatorname{det}\left(\mathcal{T}_{[\mathscr{K}, \mathscr{F}]}\right)$
- Every set of $m \leq r^{\prime}$ columns of $A^{\prime} \mathcal{T}$ linearly independent
- Embedded Toeplitz exchange matrix $\hat{\mathcal{T}}$ can move linear independence freely within one switch.

Toeplitz Exchange Matrix

Let A^{\prime} be submatrix of A affected by \mathcal{T}.

- A^{\prime} includes a subset of r^{\prime} of the r linearly independent columns of A where $0 \leq r^{\prime} \leq r$.
$-\operatorname{det}\left(\left(A^{\prime} \mathcal{T}\right)_{[\mathscr{I}, \mathscr{J}]}\right)=\sum_{\substack{\mathscr{K}=\left\{k_{1}, \ldots, k_{m}\right\} \\ 1 \leq k_{1}<\cdots<k_{m} \leq n}} \operatorname{det}\left(A_{[\mathscr{J}, \mathscr{K}]}^{\prime}\right) \operatorname{det}\left(\mathcal{T}_{[\mathscr{K}, \mathscr{J}]}\right)$
- Every set of $m \leq r^{\prime}$ columns of $A^{\prime} \mathcal{T}$ linearly independent
- Embedded Toeplitz exchange matrix $\hat{\mathcal{T}}$ can move linear independence freely within one switch.
- Each \hat{T}_{k} uses different symbols \Longrightarrow first r columns of $A\left(\prod \hat{\mathcal{T}}_{k}\right)$ linearly independent.

Toeplitz Exchange Matrix

Theorem
Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times n}$ have r linearly independent columns, let s be the number of switches in the generalized radix- ρ switching network, and let S be a finite subset of \mathbb{F}. Let N be the number of random numbers required in this network. If a_{1}, \ldots, a_{N} are randomly chosen uniformly and independently from S, then the first r columns of $A\left(\prod_{k=1}^{s} \widehat{T}_{k}\right)$ are linearly independent with probability at least

$$
1-\frac{r\left\lceil\log _{\rho}(n)\right\rceil}{|S|} \geq 1-\frac{n\left\lceil\log _{\rho}(n)\right\rceil}{|S|}
$$

Toeplitz Rank Preconditioner

- $\rho=n \Longrightarrow$ any r columns of $A \mathcal{T}$ linearly independent

Toeplitz Rank Preconditioner

- $\rho=n \Longrightarrow$ any r columns of $A \mathcal{T}$ linearly independent
- Some $r \times r$ principal minor of $A \mathcal{T}$ nonzero

Toeplitz Rank Preconditioner

- $\rho=n \Longrightarrow$ any r columns of $A \mathcal{T}$ linearly independent
- Some $r \times r$ principal minor of $A \mathcal{T}$ nonzero
- ATD preconditioner for Kaltofen-Saunders rank algorithm [Turner(2002), Ch.3]

Toeplitz Rank Preconditioner

- $\rho=n \Longrightarrow$ any r columns of $A \mathcal{T}$ linearly independent
- Some $r \times r$ principal minor of $A \mathcal{T}$ nonzero
- ATD preconditioner for Kaltofen-Saunders rank algorithm [Turner(2002), Ch.3]
- Do not need D !

Characteristic Polynomial

$$
\begin{aligned}
& \text { - } \operatorname{det}(\lambda I-A \mathcal{T})=\sum_{m=0}^{n}(-1)^{m} E_{m}(A \mathcal{T}) \lambda^{n-m} \\
& -E_{m}(A \mathcal{T})=\sum_{\substack{\mathscr{L}=\left\{i_{1}, \ldots, i_{m}\right\} \\
1 \leq i_{1}<\cdots<i_{m} \leq n}} \operatorname{det}\left((A \mathcal{T})_{[\mathscr{I}, \mathscr{G}]}\right)
\end{aligned}
$$

Characteristic Polynomial

$$
\begin{aligned}
& \text { - } \operatorname{det}(\lambda I-A \mathcal{T})=\sum_{m=0}^{n}(-1)^{m} E_{m}(A \mathcal{T}) \lambda^{n-m} \\
& -E_{m}(A \mathcal{T})=\sum_{\substack{\mathscr{L}=\left\{i_{1}, \ldots, i_{m}\right\} \\
1 \leq i_{1}<\cdots<i_{m} \leq n}} \operatorname{det}\left((A \mathcal{T})_{[\mathscr{I}, \mathscr{G}]}\right)
\end{aligned}
$$

- $m>r \Longrightarrow E_{m}(A \mathcal{T})=0$

Characteristic Polynomial

$$
\begin{aligned}
& \text { - } \operatorname{det}(\lambda I-A \mathcal{T})=\sum_{m=0}^{n}(-1)^{m} E_{m}(A \mathcal{T}) \lambda^{n-m} \\
& -E_{m}(A \mathcal{T})=\sum_{\substack{\mathscr{J}=\left\{i_{1}, \ldots, i_{m}\right\} \\
1 \leq i_{1}<\cdots<i_{m} \leq n}} \operatorname{det}\left((A \mathcal{T})_{[\mathscr{I}, \mathscr{G}]}\right)
\end{aligned}
$$

- $m>r \Longrightarrow E_{m}(A \mathcal{T})=0$
- $\lambda^{n-r} \operatorname{divides} \operatorname{det}(\lambda I-A \mathcal{T})$

Leading Term of Characteristic Polynomial

Let

- $\mathscr{P}=\left\{p_{1}, \ldots, p_{r}\right\}$ where $1 \leq p_{1}<\cdots<p_{r} \leq n$ be the pivot column indices of A
- $\mathscr{Q}=\left\{q_{1}, \ldots, q_{r}\right\}$ where $1 \leq q_{1}<\cdots<q_{r} \leq n$ be the indices of the last r linearly independent rows of A

Then, under the lexicographic monomial ordering with
$\lambda \prec \alpha_{1} \prec \alpha_{2} \prec \cdots \prec \alpha_{2 n-1}$,

$$
\operatorname{It}(\operatorname{det}(\lambda I-A \mathcal{T}))=(-1)^{\lfloor 3 r / 2\rfloor} A_{[\mathscr{Q}, \mathscr{P}]} \lambda^{n-r} \prod_{k=1}^{r} \alpha_{n+p_{m+1-k}-q_{k}}
$$

Characteristic Polynomial

- $\operatorname{det}(\lambda I-A \mathcal{T})=\lambda^{n-r} g$ where $\operatorname{deg}_{\lambda}(g)=r$ and λ does not divide g

Characteristic Polynomial

- $\operatorname{det}(\lambda I-A \mathcal{T})=\lambda^{n-r} g$ where $\operatorname{deg}_{\lambda}(g)=r$ and λ does not divide g
- $\operatorname{It}(g)$ constant in λ and at most linear in each α_{i}

Characteristic Polynomial

- $\operatorname{det}(\lambda I-A \mathcal{T})=\lambda^{n-r} g$ where $\operatorname{deg}_{\lambda}(g)=r$ and λ does not divide g
- $\operatorname{It}(g)$ constant in λ and at most linear in each α_{i}
- g squarefree

Characteristic Polynomial

- $\operatorname{det}(\lambda I-A \mathcal{T})=\lambda^{n-r} g$ where $\operatorname{deg}_{\lambda}(g)=r$ and λ does not divide g
- $\operatorname{It}(g)$ constant in λ and at most linear in each α_{i}
- g squarefree
- $f^{A \mathcal{T}}=\lambda^{p} g$ where $p \geq 1$

Characteristic Polynomial

- $\operatorname{det}(\lambda I-A \mathcal{T})=\lambda^{n-r} g$ where $\operatorname{deg}_{\lambda}(g)=r$ and λ does not divide g
- $\operatorname{It}(g)$ constant in λ and at most linear in each α_{i}
- g squarefree
- $f^{A \mathcal{T}}=\lambda^{p} g$ where $p \geq 1$
$-\operatorname{deg}_{\lambda}\left(f^{A \mathcal{T}}\right) \geq r+1$

Degree Upper Bound

- Sylvester's inequality: $\operatorname{rank}(A \mathcal{T}) \leq r$

Degree Upper Bound

- Sylvester's inequality: $\operatorname{rank}(A \mathcal{T}) \leq r$
- λ divides the $n-r$ largest invariant factors $s_{k}(\lambda I-A \mathcal{T})$

Degree Upper Bound

- Sylvester's inequality: $\operatorname{rank}(A \mathcal{T}) \leq r$
- λ divides the $n-r$ largest invariant factors $s_{k}(\lambda I-A \mathcal{T})$
- $\operatorname{deg}\left(f^{A \mathcal{T}}\right) \leq r+1$

Degree Upper Bound

- Sylvester's inequality: $\operatorname{rank}(A \mathcal{T}) \leq r$
- λ divides the $n-r$ largest invariant factors $s_{k}(\lambda I-A \mathcal{T})$
- $\operatorname{deg}\left(f^{A \mathcal{T}}\right) \leq r+1$
- $\operatorname{deg}\left(f^{A \mathcal{T}}\right)=r+1$

Toeplitz Rank Preconditioner

Theorem
Let \mathbb{F} be a field, $A \in \mathbb{F}^{n \times n}$ have rank r with $r \leq n-1$, and S be a finite subset of \mathbb{F}. If

$$
T=\left[\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{2 n-1} \\
a_{n-1} & a_{n} & \cdots & a_{2 n-2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right] \in \mathbb{F}^{n \times n}
$$

where $a_{1}, \ldots, a_{2 n-1}$ are chosen uniformly and independently from S, then the matrix AT has characteristic polynomial $\operatorname{det}(\lambda I-A T)=\lambda^{n-r} g(\lambda)$ and minimal polynomial $f^{A T}=\lambda g(\lambda)$ where $g(0) \neq 0$ and $\operatorname{deg}\left(f^{A T}\right)=r+1$, all with probability at least

$$
1-\frac{r(r+1)}{2|S|} \geq 1-\frac{n(n-1)}{2|S|}
$$

Conclusion

- Generalization of Chen et al. butterfly preconditioners to arbitrary radix switches

Conclusion

- Generalization of Chen et al. butterfly preconditioners to arbitrary radix switches
- Small increase in probability bound for success
- $\rho \rightarrow n$ allows search for other rank preconditioners

Conclusion

- Generalization of Chen et al. butterfly preconditioners to arbitrary radix switches
- Small increase in probability bound for success
- $\rho \rightarrow n$ allows search for other rank preconditioners
- Monomial ordering and leading term arguments

Conclusion

- Generalization of Chen et al. butterfly preconditioners to arbitrary radix switches
- Small increase in probability bound for success
- $\rho \rightarrow n$ allows search for other rank preconditioners
- Monomial ordering and leading term arguments
- Toeplitz matrices as arbitrary radix exchange matrices
- Toeplitz matrix as rank preconditioner
- Better probability of success
- Asymptotically slower than butterfly preconditioner
- Apply to other matrices?

References

目 L. Chen, W. Eberly, E. Kaltofen, B. D. Saunders, W. J. Turner, \& G. Villard (2002).

Efficient Matrix Preconditioners for Black Box Linear Algebra.
Linear Algebra and its Applications, 343-344:119-146.
Special issue on Infinite Systems of Linear Equations Finitely Specified.
國 W. J. Turner (2002).
Black Box Linear Algebra with the LinBox Library. Ph.D. thesis, Raleigh, North Carolina.

