Preconditioners for Singular Black Box Matrices

William J. Turner

Department of Mathematics & Computer Science Wabash College Crawfordsville, IN 47933

> ISSAC 2005 : Beijing, China 27 July 2005

Outline

Generalized Networks

Arbitrary Radix Switching Networks Generic Exchange Matrices

Rank Preconditioner

Arbitrary Radix Switches

Generalize butterfly switch to radix- ρ switch:

Arbitrary Radix Switches

Generalize butterfly switch to radix- ρ switch:

Example (Radix- ρ switches: $\rho = 2, 3, 4$)

Definition (ℓ -dimensional radix- ρ switching network)

- Recursively defined
- ▶ $\rho^{\ell-1}$ radix- ρ switches to merge outputs of ρ radix- ρ subnetworks of dimension $\ell 1$
- Merges ith output of each of the subnetworks

Definition (ℓ -dimensional radix- ρ switching network)

- Recursively defined
- ▶ $\rho^{\ell-1}$ radix- ρ switches to merge outputs of ρ radix- ρ subnetworks of dimension $\ell 1$
- Merges ith output of each of the subnetworks

Example ($\rho = 3$, $\ell = 2$)

Lemma

Let $n = \rho^{\ell}$ where $\rho \ge 2$. The ℓ -dimensional radix- ρ switching network can switch any r indices $1 \le i_1 < \cdots < i_r \le n$ into any desired contiguous block of indices. For our purposes, wrapping the block around the outside preserves contiguity.

Lemma

Let $n = \rho^{\ell}$ where $\rho \ge 2$. The ℓ -dimensional radix- ρ switching network can switch any r indices $1 \le i_1 < \cdots < i_r \le n$ into any desired contiguous block of indices. For our purposes, wrapping the block around the outside preserves contiguity.

Example ($\rho = 3$)

Definition (Generalized radix- ρ switching network)

• Let
$$n = \sum_{i=1}^{p} n_i$$
 where
$$\begin{cases} n_i = c_i \ \rho^{\ell_i} \\ c_i \in \{1, \dots, \rho - 1\} \\ \ell_1 < \ell_2 < \dots < \ell_p \end{cases}$$

- Radix-(c_k + 1) switches to merge ∑^{k-1}_{i=1} n_i subnetwork with far right nodes of ρ^{ℓ_k} blocks
- Radix- c_k switches to merge other nodes of ρ^{ℓ_k} blocks

Definition (Generalized radix- ρ switching network)

$$\blacktriangleright \text{ Let } n = \sum_{i=1}^{p} n_i \text{ where } \begin{cases} n_i = c_i \ \rho^{\ell_i} \\ c_i \in \{1, \dots, \rho - 1\} \\ \ell_1 < \ell_2 < \dots < \ell_p \end{cases}$$

- ► Radix-(c_k + 1) switches to merge ∑^{k-1}_{i=1} n_i subnetwork with far right nodes of ρ^{ℓ_k} blocks
- Radix- c_k switches to merge other nodes of ρ^{ℓ_k} blocks

Example ($\rho = 3$, $n = 7 = 1 \rho^0 + 2 \rho^1$)

Example ($\rho = 3$, $n = 7 = 1 \rho^0 + 2 \rho^1$)

Theorem

Suppose $\rho \geq 2$. The generalized radix- ρ switching network described above can switch any r indices $1 \leq i_1 < \cdots < i_r \leq n$ into the contiguous block $1, 2, \ldots, r$. Furthermore, it has a depth of $\lceil \log_{\rho}(n) \rceil$ and a total of no more than $\rho^{\lceil \log_{\rho}(n) \rceil} \lceil \log_{\rho}(n) \rceil / \rho$ switches of radix at most ρ . The network attains this bound only when $n = \rho^{\lceil \log_{\rho}(n) \rceil}$ or $n < \rho$.

Building Preconditioners

 Replace each switch by ρ × ρ symbolic exchange matrix S_k to merge columns (not mix)

- Embed each exchange matrix as principal minor of n × n identity matrix to create S^k
- Symbolic preconditioner is product: $\mathcal{L} = \prod_{k=1}^{s} \hat{S}_{k}$
- ► Randomly choose values for symbols to create probabilistic preconditioner: Ã = AL where L = ∏^s_{k=1} Ŝ_k

Building Preconditioners

Example ($\rho = 3$) $S_{k} = \begin{bmatrix} \alpha_{1,1,k} & \alpha_{1,2,k} & \alpha_{1,3,k} \\ \alpha_{2,1,k} & \alpha_{2,2,k} & \alpha_{2,3,k} \\ \alpha_{3,1,k} & \alpha_{3,2,k} & \alpha_{3,3,k} \end{bmatrix}$ $\hat{\mathcal{S}}_{k} = \begin{vmatrix} 1 & & & \\ & \ddots & \\ & & \alpha_{1,1,k} & & \alpha_{1,2,k} & & \alpha_{1,3,k} \\ & & & \ddots & \\ & & & \alpha_{2,1,k} & & \alpha_{2,2,k} & & \alpha_{2,3,k} \\ & & & & \ddots & \\ & & & & \alpha_{3,1,k} & & \alpha_{3,2,k} & & \alpha_{3,3,k} \end{vmatrix}$ α_{3,3,k}

Symbolic Toeplitz Matrix

$$\mathcal{T} = \begin{bmatrix} \alpha_{\rho} & \alpha_{\rho+1} & \dots & \alpha_{2\rho-1} \\ \alpha_{\rho-1} & \alpha_{\rho} & \dots & \alpha_{2\rho-2} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1 & \alpha_2 & \dots & \alpha_{\rho} \end{bmatrix}$$

Symbolic Toeplitz Matrix

$$\mathcal{T} = \begin{bmatrix} \alpha_{\rho} & \alpha_{\rho+1} & \dots & \alpha_{2\rho-1} \\ \alpha_{\rho-1} & \alpha_{\rho} & \dots & \alpha_{2\rho-2} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1 & \alpha_2 & \dots & \alpha_{\rho} \end{bmatrix}$$

Using the lexicographic monomial ordering with $\alpha_1 \prec \alpha_2 \prec \cdots \prec \alpha_{2n-1}$:

$$\operatorname{lt}\left(\operatorname{det}\left(\mathcal{T}_{[i_{1},\ldots,i_{m};j_{1},\ldots,j_{m}]}\right)\right) = (-1)^{\lfloor m/2 \rfloor} \prod_{k=1}^{m} \alpha_{n+j_{m+1-k}-i_{k}}$$

Let A' be submatrix of A affected by T.

Let A' be submatrix of A affected by T.

► A' includes a subset of r' of the r linearly independent columns of A where $0 \le r' \le r$.

Let A' be submatrix of A affected by T.

► A' includes a subset of r' of the r linearly independent columns of A where $0 \le r' \le r$.

► $\det((A'\mathcal{T})_{[\mathscr{I},\mathscr{J}]}) = \sum_{\substack{\mathscr{K} = \{k_1, \dots, k_m\}\\1 \leq k_1 < \dots < k_m \leq n}} \det(A'_{[\mathscr{I},\mathscr{K}]}) \det(\mathcal{T}_{[\mathscr{K},\mathscr{J}]})$

Let A' be submatrix of A affected by T.

- ► A' includes a subset of r' of the r linearly independent columns of A where $0 \le r' \le r$.
- ► $\det((A'\mathcal{T})_{[\mathscr{I},\mathscr{J}]}) = \sum_{\substack{\mathscr{K} = \{k_1, \dots, k_m\}\\1 \leq k_1 < \dots < k_m \leq n}} \det(A'_{[\mathscr{I},\mathscr{K}]}) \det(\mathcal{T}_{[\mathscr{K},\mathscr{J}]})$

• Every set of $m \leq r'$ columns of A'T linearly independent

Let A' be submatrix of A affected by T.

- ► A' includes a subset of r' of the r linearly independent columns of A where $0 \le r' \le r$.
- ► $\det((A'\mathcal{T})_{[\mathscr{I},\mathscr{J}]}) = \sum_{\substack{\mathscr{K} = \{k_1, \dots, k_m\}\\1 \leq k_1 < \dots < k_m \leq n}} \det(A'_{[\mathscr{I},\mathscr{K}]}) \det(\mathcal{T}_{[\mathscr{K},\mathscr{J}]})$
- Every set of $m \leq r'$ columns of A'T linearly independent
- Embedded Toeplitz exchange matrix *T̂* can move linear independence freely within one switch.

Let A' be submatrix of A affected by T.

- ► A' includes a subset of r' of the r linearly independent columns of A where $0 \le r' \le r$.
- ► $\det((A'\mathcal{T})_{[\mathscr{I},\mathscr{J}]}) = \sum_{\substack{\mathscr{K} = \{k_1, \dots, k_m\}\\1 \leq k_1 < \dots < k_m \leq n}} \det(A'_{[\mathscr{I},\mathscr{K}]}) \det(\mathcal{T}_{[\mathscr{K},\mathscr{J}]})$
- Every set of $m \leq r'$ columns of A'T linearly independent
- Embedded Toeplitz exchange matrix *T̂* can move linear independence freely within one switch.
- ► Each \hat{T}_k uses different symbols \implies first *r* columns of $A(\prod \hat{T}_k)$ linearly independent.

Theorem

Let \mathbb{F} be a field, let $A \in \mathbb{F}^{n \times n}$ have r linearly independent columns, let s be the number of switches in the generalized radix- ρ switching network, and let S be a finite subset of \mathbb{F} . Let N be the number of random numbers required in this network. If a_1, \ldots, a_N are randomly chosen uniformly and independently from S, then the first r columns of $A(\prod_{k=1}^{s} \widehat{T}_k)$ are linearly independent with probability at least

$$1 - \frac{r \lceil \log_{\rho}(n) \rceil}{|S|} \ge 1 - \frac{n \lceil \log_{\rho}(n) \rceil}{|S|}.$$

• $\rho = n \implies any r$ columns of AT linearly independent

• $\rho = n \implies any \ r$ columns of AT linearly independent

Some $r \times r$ principal minor of AT nonzero

• $\rho = n \implies any r$ columns of AT linearly independent

• Some $r \times r$ principal minor of AT nonzero

 ATD preconditioner for Kaltofen-Saunders rank algorithm [Turner(2002), Ch.3]

• $\rho = n \implies any r$ columns of AT linearly independent

• Some $r \times r$ principal minor of AT nonzero

 ATD preconditioner for Kaltofen-Saunders rank algorithm [Turner(2002), Ch.3]

► Do not need D!

•
$$\det(\lambda I - AT) = \sum_{m=0}^{n} (-1)^{m} E_{m}(AT) \lambda^{n-m}$$

•
$$E_{m}(AT) = \sum_{\substack{\mathscr{I} = \{i_{1}, \dots, i_{m}\}\\ 1 \le i_{1} < \dots < i_{m} \le n}} \det((AT)_{[\mathscr{I}, \mathscr{I}]})$$

•
$$\det(\lambda I - AT) = \sum_{m=0}^{n} (-1)^{m} E_{m}(AT) \lambda^{n-m}$$

•
$$E_{m}(AT) = \sum_{\substack{\mathscr{I} = \{i_{1}, \dots, i_{m}\}\\ 1 \le i_{1} < \dots < i_{m} \le n}} \det((AT)_{[\mathscr{I}, \mathscr{I}]})$$

• $m > r \Longrightarrow E_m(AT) = 0$

•
$$\det(\lambda I - AT) = \sum_{m=0}^{n} (-1)^{m} E_{m}(AT) \lambda^{n-m}$$

•
$$E_{m}(AT) = \sum_{\substack{\mathscr{I} = \{i_{1}, \dots, i_{m}\}\\ 1 \le i_{1} < \dots < i_{m} \le n}} \det((AT)_{[\mathscr{I}, \mathscr{I}]})$$

 $\blacktriangleright m > r \Longrightarrow E_m(AT) = 0$

• λ^{n-r} divides det $(\lambda I - AT)$

Leading Term of Characteristic Polynomial

Let

- ▶ $\mathscr{P} = \{p_1, \dots, p_r\}$ where $1 \le p_1 < \dots < p_r \le n$ be the pivot column indices of A
- ▶ $\mathscr{Q} = \{q_1, \ldots, q_r\}$ where $1 \le q_1 < \cdots < q_r \le n$ be the indices of the last *r* linearly independent rows of *A*

Then, under the lexicographic monomial ordering with $\lambda \prec \alpha_1 \prec \alpha_2 \prec \cdots \prec \alpha_{2n-1}$,

$$\mathsf{lt}(\mathsf{det}(\lambda I - A\mathcal{T})) = (-1)^{\lfloor 3r/2 \rfloor} A_{[\mathscr{Q},\mathscr{P}]} \lambda^{n-r} \prod_{k=1}^{r} \alpha_{n+p_{m+1-k}-q_k}$$

► det(\(\lambda I - AT\)) = \(\lambda^{n-r}g\) where deg\(\lambda(g)) = r\) and \(\lambda\) does not divide g

► det(\(\lambda I - AT\)) = \(\lambda^{n-r}g\) where deg\(\lambda(g)) = r\) and \(\lambda\) does not divide g

▶ lt(g) constant in λ and at most linear in each α_i

► det(\(\lambda I - AT\)) = \(\lambda^{n-r}g\) where deg\(\lambda(g)) = r\) and \(\lambda\) does not divide g

• lt(g) constant in λ and at most linear in each α_i

▶ g squarefree

► det(\(\lambda I - AT\)) = \(\lambda^{n-r}g\) where deg\(\lambda(g)) = r\) and \(\lambda\) does not divide g

• lt(g) constant in λ and at most linear in each α_i

g squarefree

• $f^{AT} = \lambda^p g$ where $p \ge 1$

► det(\(\lambda I - AT\)) = \(\lambda^{n-r}g\) where deg\(\lambda(g)) = r\) and \(\lambda\) does not divide g

• lt(g) constant in λ and at most linear in each α_i

g squarefree

- $f^{AT} = \lambda^p g$ where $p \ge 1$
- ▶ $\deg_{\lambda}(f^{AT}) \ge r+1$

Sylvester's inequality: $rank(AT) \leq r$

Sylvester's inequality: $rank(AT) \leq r$

• λ divides the n - r largest invariant factors $s_k(\lambda I - AT)$

Sylvester's inequality: $rank(AT) \leq r$

• λ divides the n - r largest invariant factors $s_k(\lambda I - AT)$

▶ deg $(f^{AT}) \leq r+1$

Sylvester's inequality: $rank(AT) \leq r$

• λ divides the n - r largest invariant factors $s_k(\lambda I - AT)$

▶ $\deg(f^{AT}) \leq r+1$

► deg $(f^{AT}) = r + 1$

Theorem

Let \mathbb{F} be a field, $A \in \mathbb{F}^{n \times n}$ have rank r with $r \leq n - 1$, and S be a finite subset of \mathbb{F} . If

$$T = \begin{bmatrix} a_n & a_{n+1} & \dots & a_{2n-1} \\ a_{n-1} & a_n & \dots & a_{2n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_n \end{bmatrix} \in \mathbb{F}^{n \times n},$$

where a_1, \ldots, a_{2n-1} are chosen uniformly and independently from S, then the matrix AT has characteristic polynomial $\det(\lambda I - AT) = \lambda^{n-r}g(\lambda)$ and minimal polynomial $f^{AT} = \lambda g(\lambda)$ where $g(0) \neq 0$ and $\deg(f^{AT}) = r + 1$, all with probability at least

$$1 - \frac{r(r+1)}{2|S|} \ge 1 - \frac{n(n-1)}{2|S|}.$$

 Generalization of Chen et al. butterfly preconditioners to arbitrary radix switches

- Generalization of Chen et al. butterfly preconditioners to arbitrary radix switches
 - Small increase in probability bound for success
 - ho
 ightarrow n allows search for other rank preconditioners

- Generalization of Chen et al. butterfly preconditioners to arbitrary radix switches
 - Small increase in probability bound for success
 - $\rho \rightarrow n$ allows search for other rank preconditioners
- Monomial ordering and leading term arguments

- Generalization of Chen et al. butterfly preconditioners to arbitrary radix switches
 - Small increase in probability bound for success
 - $\rho \rightarrow n$ allows search for other rank preconditioners
- Monomial ordering and leading term arguments
 - Toeplitz matrices as arbitrary radix exchange matrices
 - Toeplitz matrix as rank preconditioner
 - Better probability of success
 - Asymptotically slower than butterfly preconditioner
 - Apply to other matrices?

References

- L. CHEN, W. EBERLY, E. KALTOFEN, B. D. SAUNDERS, W. J. TURNER, & G. VILLARD (2002). Efficient Matrix Preconditioners for Black Box Linear Algebra. Linear Algebra and its Applications, 343-344:119–146. Special issue on *Infinite Systems of Linear Equations Finitely* Specified.

W. J. TURNER (2002).

Black Box Linear Algebra with the LinBox Library. Ph.D. thesis, Raleigh, North Carolina.