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Book II. Of Reasoning.  

…  

Chapter V. Of Demonstration, and Necessary Truths.  

… [p. 187]  

Chapter VI. The Same Subject Continued.  

§ 1. In the examination which formed the subject of 
the last chapter, into the nature of the evidence of 
those deductive sciences which are commonly repre-
sented to be systems of necessary truth, we have been 
led to the following conclusions. The results of those 
sciences are indeed necessary, in the sense of necessar-
ily following from certain first principles, commonly 
called axioms and definitions; that is, of being cer-
tainly true if those axioms and definitions are so; for 
the word necessity, even in this acceptation of it, 
means no more than certainty. But their claim to the 
character of necessity in any sense beyond this, as im-
plying an evidence independent of and superior to ob-
servation and experience, must depend on the previous 
establishment of such a claim in favor of the defini-
tions and axioms themselves. With regard to axioms, 
we found that, considered as experimental truths, they 
rest on superabundant and obvious evidence. We in-
quired, whether, since this is the case, it be imperative 
to suppose any other evidence of those truths than ex-
perimental evidence, any other origin for our belief of 
them than an experimental origin. We decided, that the 
burden of proof lies with those who maintain the af-
firmative, and we examined, at considerable length, 
such arguments as they have produced. The examina-
tion having led to the rejection of those arguments, we 
have thought ourselves warranted in concluding that 
axioms are but a class, the most universal class, of in-
ductions from experience; the simplest and easiest 
cases of generalization from the facts furnished to us 
by our senses or by our internal consciousness.  

While the axioms of demonstrative sciences thus 
appeared to be experimental truths, the definitions, as 
they are incorrectly called, in those sciences, were 
found by us to be generalizations from experience 
which are not even, accurately speaking, truths; being 
propositions in which, while we assert of some kind of 
object, some property or properties which observation 
shows to belong to it, we at the same time deny that it 
possesses any other properties, though in truth other 
properties do in every individual instance accompany, 
and in almost all instances modify, the property thus 
exclusively predicated. The denial, therefore, is a mere 

fiction, or supposition, made for the purpose of ex-
cluding the consideration of those modifying circum-
stances, when their influence is of too trifling amount 
to be worth considering, or adjourning it, when impor-
tant to a more convenient moment.  

From these considerations it would appear that De-
ductive or Demonstrative Sciences are all, without ex-
ception, Inductive Sciences; that their evidence is that 
of experience; but that they are also, in virtue of the 
peculiar character of one indispensable portion of the 
general formulæ according to which their inductions 
are made, Hypothetical Sciences. Their conclusions 
are only true on certain suppositions, which are, or 
ought to be, approximations to the truth, but are sel-
dom, if ever, exactly true; and to this hypothetical 
character is to be ascribed the peculiar certainty, which 
is supposed to be inherent in demonstration. [p. 188]  

What we have now asserted, however, cannot be re-
ceived as universally true of Deductive or Demonstra-
tive Sciences, until verified by being applied to the 
most remarkable of all those sciences, that of Num-
bers; the theory of the Calculus; Arithmetic and Alge-
bra. It is harder to believe of the doctrines of this sci-
ence than of any other, either that they are not truths a 
priori, but experimental truths, or that their peculiar 
certainty is owing to their being not absolute but only 
conditional truths. This, therefore, is a case which mer-
its examination apart; and the more so, because on this 
subject we have a double set of doctrines to contend 
with; that of the a priori philosophers on one side; and 
on the other, a theory the most opposite to theirs, 
which was at one time very generally received, and is 
still far from being altogether exploded, among meta-
physicians.  

§ 2. This theory attempts to solve the difficulty ap-
parently inherent in the case, by representing the 
propositions of the science of numbers as merely ver-
bal, and its processes as simple transformations of lan-
guage, substitutions of one expression for another. The 
proposition, Two and one is equal to three, according 
to these writers, is not a truth, is not the assertion of a 
really existing fact, but a definition of the word three; 
a statement that mankind have agreed to use the name 
three as a sign exactly equivalent to two and one; to 
call by the former name whatever is called by the other 
more clumsy phrase. According to this doctrine, the 
longest process in algebra is but a succession of 
changes in terminology, by which equivalent expres-
sions are substituted one for another; a series of trans-
lations of the same fact, from one into another lan-
guage; though how, after such a series of translations, 
the fact itself comes out changed (as when we demon-
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strate a new geometrical theorem by algebra), they 
have not explained; and it is a difficulty which is fatal 
to their theory.  

It must be acknowledged that there are peculiarities 
in the processes of arithmetic and algebra which ren-
der the theory in question very plausible, and have not 
unnaturally made those sciences the stronghold of 
Nominalism. The doctrine that we can discover facts, 
detect the hidden processes of nature, by an artful ma-
nipulation of language, is so contrary to common 
sense, that a person must have made some advances in 
philosophy to believe it: men fly to so paradoxical a 
belief to avoid, as they think, some even greater diffi-
culty, which the vulgar do not see. What has led many 
to believe that reasoning is a mere verbal process, is, 
that no other theory seemed reconcilable with the na-
ture of the Science of Numbers. For we do not carry 
any ideas along with us when we use the symbols of 
arithmetic or of algebra. In a geometrical demonstra-
tion we have a mental diagram, if not one on paper; 
AB, AC, are present to our imagination as lines, inter-
secting other lines, forming an angle with one another, 
and the like; but not so a and b. These may represent 
lines or any other magnitudes, but those magnitudes 
are never thought of; nothing is realized in our imagi-
nation but a and b. The ideas which, on the particular 
occasion, they happen to represent, are banished from 
the mind during every intermediate part of the process, 
between the beginning, when the premises are trans-
lated from things into signs, and the end, when the 
conclusion is translated back from signs into things. 
Nothing, then, being in the reasoner’s mind but the 
symbols, what can seem more inadmissible than to 
contend that the reasoning process has to do with any 
thing more? We seem to have come to one of Bacon’s 
Prerogative Instances; an experimentum crucis on the 
nature of reasoning itself. [p. 189]  

Nevertheless, it will appear on consideration, that 
this apparently so decisive instance is no instance at 
all; that there is in every step of an arithmetical or al-
gebraical calculation a real induction, a real inference 
of facts from facts; and that what disguises the induc-
tion is simply its comprehensive nature, and the con-
sequent extreme generality of the language. All num-
bers must be numbers of something: there are no such 
things as numbers in the abstract. Ten must mean ten 
bodies, or ten sounds, or ten beatings of the pulse. But 
though numbers must be numbers of something, they 
may be numbers of any thing. Propositions, therefore, 
concerning numbers, have the remarkable peculiarity 
that they are propositions concerning all things what-
ever; all objects, all existences of every kind, known to 
our experience. All things possess quantity; consist of 
parts which can be numbered; and in that character 

possess all the properties which are called properties 
of numbers. That half of four is two, must be true 
whatever the word four represents, whether four hours, 
four miles, or four pounds weight. We need only con-
ceive a thing divided into four equal parts (and all 
things may be conceived as so divided), to be able to 
predicate of it every property of the number four, that 
is, every arithmetical proposition in which the number 
four stands on one side of the equation. Algebra ex-
tends the generalization still farther: every number 
represents that particular number of all things without 
distinction, but every algebraical symbol does more, it 
represents all numbers without distinction. As soon as 
we conceive a thing divided into equal parts, without 
knowing into what number of parts, we may call it a or 
x, and apply to it, without danger of error, every alge-
braical formula in the books. The proposition, 2(a + b) 
= 2a + 2b, is a truth co-extensive with all nature. Since 
then algebraical truths are true of all things whatever, 
and not, like those of geometry, true of lines only or of 
angles only, it is no wonder that the symbols should 
not excite in our minds ideas of any things in particu-
lar. When we demonstrate the forty-seventh proposi-
tion of Euclid, it is not necessary that the words should 
raise in us an image of all right-angled triangles, but 
only of some one right-angled triangle: so in algebra 
we need not, under the symbol a, picture to ourselves 
all things whatever, but only some one thing; why not, 
then, the letter itself? The mere written characters, a, 
b, x, y, z, serve as well for representatives of Things in 
general, as any more complex and apparently more 
concrete conception. That we are conscious of them, 
however, in their character of things, and not of mere 
signs, is evident from the fact that our whole process 
of reasoning is carried on by predicating of them the 
properties of things. In resolving an algebraic equa-
tion, by what rules do we proceed? By applying at 
each step to a, b, and x, the proposition that equals 
added to equals make equals; that equals taken from 
equals leave equals; and other propositions founded on 
these two. These are not properties of language, or of 
signs as such, but of magnitudes, which is as much as 
to say, of all things. The inferences, therefore, which 
are successively drawn, are inferences concerning 
things, not symbols; though as any Things whatever 
will serve the turn, there is no necessity for keeping 
the idea of the Thing at all distinct, and consequently 
the process of thought may, in this case, be allowed 
without danger to do what all processes of thought, 
when they have been performed often, will do if per-
mitted, namely, to become entirely mechanical. Hence 
the general language of algebra comes to be used fa-
miliarly without exciting ideas, as all other general 
language is prone to do from mere habit, though in no 
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other case than this can it be done with complete 
safety. [p. 190] But when we look back to see from 
whence the probative force of the process is derived, 
we find that at every single step, unless we suppose 
ourselves to be thinking and talking of the things, and 
not the mere symbols, the evidence fails.  

There is another circumstance, which, still more 
than that which we have now mentioned, gives plausi-
bility to the notion that the propositions of arithmetic 
and algebra are merely verbal. That is, that when con-
sidered as propositions respecting Things, they all 
have the appearance of being identical propositions. 
The assertion, Two and one is equal to three, consid-
ered as an assertion respecting objects, as for instance, 
“Two pebbles and one pebble are equal to three peb-
bles,” does not affirm equality between two collections 
of pebbles, but absolute identity. It affirms that if we 
put one pebble to two pebbles, those very pebbles are 
three. The objects, therefore, being the very same, and 
the mere assertion that “objects are themselves” being 
insignificant, it seems but natural to consider the 
proposition, Two and one is equal to three, as asserting 
mere identity of signification between the two names.  

This, however, though it looks so plausible, will not 
bear examination. The expression “two pebbles and 
one pebble,” and the expression “three pebbles,” stand 
indeed for the same aggregation of objects, but they by 
no means stand for the same physical fact. They are 
names of the same objects, but of those objects in two 
different states: though they denote the same things, 
their connotation is different. Three pebbles in two 
separate parcels, and three pebbles in one parcel, do 
not make the same impression on our senses; and the 
assertion that the very same pebbles may by an altera-
tion of place and arrangement be made to produce ei-
ther the one set of sensations or the other, though a 
very familiar proposition, is not an identical one. It is a 
truth known to us by early and constant experience: an 
inductive truth; and such truths are the foundation of 
the science of Number. The fundamental truths of that 
science all rest on the evidence of sense; they are 
proved by showing to our eyes and our fingers that any 
given number of objects—ten balls, for example—may 
by separation and re-arrangement exhibit to our senses 
all the different sets of numbers the sums of which is 
equal to ten. All the improved methods of teaching 
arithmetic to children proceed on a knowledge of this 
fact. All who wish to carry the child’s mind along with 
them in learning arithmetic; all who wish to teach 
numbers, and not mere ciphers—now teach it through 
the evidence of the senses, in the manner we have de-
scribed.  

We may, if we please, call the proposition, “Three 
is two and one,” a definition of the number three, and 

assert that arithmetic, as it has been asserted that ge-
ometry, is a science founded on definitions. But they 
are definitions in the geometrical sense, not the logi-
cal; asserting not the meaning of a term only, but along 
with it an observed matter of fact. The proposition, “A 
circle is a figure bounded by a line which has all its 
points equally distant from a point within it,” is called 
the definition of a circle; but the proposition from 
which so many consequences follow, and which is 
really a first principle in geometry, is, that figures an-
swering to this description exist. And thus we may call 
“Three is two and one” a definition of three; but the 
calculations which depend on that proposition do not 
follow from the definition itself, but from an arith-
metical theorem presupposed in it, namely, that collec-
tions of objects exist, which while they impress the 
senses thus, ∵, may be separated into two parts, thus, 
‥ ․. This proposition being granted, we term all such 
parcels Threes, after [p. 191] which the enunciation of 
the above-mentioned physical fact will serve also for a 
definition of the word Three.  

The Science of Number is thus no exception to the 
conclusion we previously arrived at, that the processes 
even of deductive sciences are altogether inductive, 
and that their first principles are generalizations from 
experience. It remains to be examined whether this 
science resembles geometry in the further circum-
stance, that some of its inductions are not exactly true; 
and that the peculiar certainty ascribed to it, on ac-
count of which its propositions are called Necessary 
Truths, is fictitious and hypothetical, being true in no 
other sense than that those propositions legitimately 
follow from the hypothesis of the truth of premises 
which are avowedly mere approximations to truth.  

§ 3. The inductions of arithmetic are of two sorts: 
first, those which we have just expounded, such as 
One and one are two, Two and one are three, etc., 
which may be called the definitions of the various 
numbers, in the improper or geometrical sense of the 
word Definition; and secondly, the two following axi-
oms: The sums of equals are equal, The differences of 
equals are equal. These two are sufficient; for the cor-
responding propositions respecting unequals may be 
proved from these by a reductio ad absurdum.  

These axioms, and likewise the so-called defini-
tions, are, as has already been said, results of induc-
tion; true of all objects whatever, and, as it may seem, 
exactly true, without the hypothetical assumption of 
unqualified truth where an approximation to it is all 
that exists. The conclusions, therefore, it will naturally 
be inferred, are exactly true, and the science of number 
is an exception to other demonstrative sciences in this, 
that the categorical certainty which is predicable of its 
demonstrations is independent of all hypothesis.  
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On more accurate investigation, however, it will be 
found that, even in this case, there is one hypothetical 
element in the ratiocination. In all propositions con-
cerning numbers, a condition is implied, without 
which none of them would be true; and that condition 
is an assumption which may be false. The condition is, 
that 1=1; that all the numbers are numbers of the same 
or of equal units. Let this be doubtful, and not one of 
the propositions of arithmetic will hold true. How can 
we know that one pound and one pound make two 
pounds, if one of the pounds may be troy, and the 
other avoirdupois? They may not make two pounds of 
either, or of any weight. How can we know that a 
forty-horse power is always equal to itself, unless we 
assume that all horses are of equal strength? It is cer-
tain that 1 is always equal in number to 1; and where 
the mere number of objects, or of the parts of an ob-
ject, without supposing them to be equivalent in any 
other respect, is all that is material, the conclusions of 
arithmetic, so far as they go to that alone, are true 
without mixture of hypothesis. There are such cases in 
statistics; as, for instance, an inquiry into the amount 
of the population of any country. It is indifferent to 
that inquiry whether they are grown people or chil-
dren, strong or weak, tall or short; the only thing we 
want to ascertain is their number. But whenever, from 
equality or inequality of number, equality or inequality 
in any other respect is to be inferred, arithmetic carried 
into such inquiries becomes as hypothetical a science 
as geometry. All units must be assumed to be equal in 
that other respect; and this is never accurately true, for 
one actual pound weight is not exactly equal to an-
other, nor one measured mile’s length to another; a 
nicer balance, or more accurate measuring instru-
ments, would always detect some difference. [p. 192]  

What is commonly called mathematical certainty, 
therefore, which comprises the twofold conception of 
unconditional truth and perfect accuracy, is not an at-
tribute of all mathematical truths, but of those only 
which relate to pure Number, as distinguished from 
Quantity in the more enlarged sense; and only so long 
as we abstain from supposing that the numbers are a 
precise index to actual quantities. The certainty usually 
ascribed to the conclusions of geometry, and even to 
those of mechanics, is nothing whatever but certainty 
of inference. We can have full assurance of particular 
results under particular suppositions, but we can not 
have the same assurance that these suppositions are 
accurately true, nor that they include all the data which 
may exercise an influence over the result in any given 
instance.  

§ 4. It appears, therefore, that the method of all De-
ductive Sciences is hypothetical. They proceed by 
tracing the consequences of certain assumptions; leav-

ing for separate consideration whether the assumptions 
are true or not, and if not exactly true, whether they are 
a sufficiently near approximation to the truth. The rea-
son is obvious. Since it is only in questions of pure 
number that the assumptions are exactly true, and even 
there only so long as no conclusions except purely 
numerical ones are to be founded on them; it must, in 
all other cases of deductive investigation, form a part 
of the inquiry, to determine how much the assumptions 
want of being exactly true in the case in hand. This is 
generally a matter of observation, to be repeated in 
every fresh case; or if it has to be settled by argument 
instead of observation, may require in every different 
case different evidence, and present every degree of 
difficulty, from the lowest to the highest. But the other 
part of the process—namely, to determine what else 
may be concluded if we find, and in proportion as we 
find, the assumptions to be true—may be performed 
once for all, and the results held ready to be employed 
as the occasions turn up for use. We thus do all be-
forehand that can be so done, and leave the least pos-
sible work to be performed when cases arise and press 
for a decision. This inquiry into the inferences which 
can be drawn from assumptions, is what properly con-
stitutes Demonstrative Science.  

It is of course quite as practicable to arrive at new 
conclusions from facts assumed, as from facts ob-
served; from fictitious, as from real, inductions. De-
duction, as we have seen, consists of a series of infer-
ences in this form—a is a mark of b, b of c, c of d, 
therefore a is a mark of d, which last may be a truth 
inaccessible to direct observation. In like manner it is 
allowable to say, suppose that a were a mark of b, b of 
c, and c of d, a would be a mark of d, which last con-
clusion was not thought of by those who laid down the 
premises. A system of propositions as complicated as 
geometry might be deduced from assumptions which 
are false; as was done by Ptolemy, Descartes, and oth-
ers, in their attempts to explain synthetically the phe-
nomena of the solar system on the supposition that the 
apparent motions of the heavenly bodies were the real 
motions, or were produced in some way more or less 
different from the true one. Sometimes the same thing 
is knowingly done, for the purpose of showing the fal-
sity of the assumption; which is called a reductio ad 
absurdum. In such cases, the reasoning is as follows: a 
is a mark of b, and b of c; now if c were also a mark of 
d, a would be a mark of d; but d is known to be a mark 
of the absence of a; consequently a would be a mark 
of its own absence, which is a contradiction; therefore 
c is not a mark of d.  

…  
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Book III. Of Induction.  

…  

Chapter XXIV. Of The Remaining Laws Of Nature.  

… [p. 429]  

…  

§ 5. There is something which seems to require ex-
planation, in the fact that the immense multitude of 
truths (a multitude still as far from being exhausted as 
ever) comprised in the mathematical sciences, can be 
elicited from so small a number of elementary laws. 
One sees not, at first, how it is that there can be room 
for such an infinite variety of true propositions, on 
subjects apparently so limited.  

To begin with the science of number. The elemen-
tary or ultimate truths of this science are the common 
axioms concerning equality, namely, “Things which 
are equal to the same thing are equal to one another,” 
and “Equals added to equals make equal sums” (no 
other axioms are required),* together with the defini-
tions of the various numbers. Like other so-called 
definitions, these are composed of two things, the ex-
planation of a name, and the assertion of a fact; of 
which the latter alone can form a first principle [p. 
430] or premise of a science. The fact asserted in the 
definition of a number is a physical fact. Each of the 
numbers two, three, four, etc., denotes physical phe-
nomena, and connotes a physical property of those 
phenomena. Two, for instance, denotes all pairs of 
things, and twelve all dozens of things, connoting what 
makes them pairs, or dozens; and that which makes 
them so is something physical; since it can not be de-
nied that two apples are physically distinguishable 
from three apples, two horses from one horse, and so 
forth; that they are a different visible and tangible phe-
nomenon. I am not undertaking to say what the differ-
ence is; it is enough that there is a difference of which 
the senses can take cognizance. And although a hun-
                                                      
* The axiom, “Equals subtracted from equals leave equal differ-
ences,” may be demonstrated from the two axioms in the text. If A 
= a and B = b, A − B = a − b. For if not, let A − B = a − b + c. 
Then since B = b, adding equals to equals, A = a + c. But A = a. 
Therefore a = a + c, which is impossible.  

This proposition having been demonstrated, we may, by means 
of it, demonstrate the following: “If equals be added to unequals, 
the sums are unequal.” If A = a and B not = b, A + B is not = 
a + b. For suppose it to be so. Then, since A = a and A + B = 
a + b, subtracting equals from equals, B = b; which is contrary to 
the hypothesis.  

So again, it may be proved that two things, one of which is 
equal and the other unequal to a third thing, are unequal to one 
another. If A = a and A not = B, neither is a = B. For suppose it to 
be equal. Then since A = a and a = B, and since things equal to the 
same thing are equal to one another A = B; which is contrary to the 
hypothesis.  

dred and two horses are not so easily distinguished 
from a hundred and three, as two horses are from 
three—though in most positions the senses do not per-
ceive any difference—yet they may be so placed that a 
difference will be perceptible, or else we should never 
have distinguished them, and given them different 
names. Weight is confessedly a physical property of 
things; yet small differences between great weights are 
as imperceptible to the senses in most situations, as 
small differences between great numbers; and are only 
put in evidence by placing the two objects in a peculiar 
position—namely, in the opposite scales of a delicate 
balance.  

What, then, is that which is connoted by a name of 
number? Of course, some property belonging to the 
agglomeration of things which we call by the name; 
and that property is, the characteristic manner in which 
the agglomeration is made up of, and may be separated 
into, parts. I will endeavor to make this more intelligi-
ble by a few explanations.  

When we call a collection of objects two, three, or 
four, they are not two, three, or four in the abstract; 
they are two, three, or four things of some particular 
kind; pebbles, horses, inches, pounds’ weight. What 
the name of number connotes is, the manner in which 
single objects of the given kind must be put together, 
in order to produce that particular aggregate. If the 
aggregate be of pebbles, and we call it two, the name 
implies that, to compose the aggregate, one pebble 
must be joined to one pebble. If we call it three, one 
and one and one pebble must be brought together to 
produce it, or else one pebble must be joined to an ag-
gregate of the kind called two, already existing. The 
aggregate which we call four, has a still greater num-
ber of characteristic modes of formation. One and one 
and one and one pebble may be brought together; or 
two aggregates of the kind called two may be united; 
or one pebble may be added to an aggregate of the 
kind called three. Every succeeding number in the as-
cending series, may be formed by the junction of 
smaller numbers in a progressively greater variety of 
ways. Even limiting the parts to two, the number may 
be formed, and consequently may be divided, in as 
many different ways as there are numbers smaller than 
itself; and, if we admit of threes, fours, etc., in a still 
greater variety. Other modes of arriving at the same 
aggregate present themselves, not by the union of 
smaller, but by the dismemberment of larger aggre-
gates. Thus, three pebbles may be formed by taking 
away one pebble from an aggregate of four; two peb-
bles, by an equal division of a similar aggregate; and 
so on.  

Every arithmetical proposition; every statement of 
the result of an arithmetical operation; is a statement of 
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one of the modes of formation of a given number. It 
affirms that a certain aggregate might have been 
formed by putting together certain other aggregates, or 
by withdrawing certain portions of some aggregate; 
and that, by consequence, we might reproduce those 
aggregates from it, by reversing the process. [p. 431]  

Thus, when we say that the cube of 12 is 1728, what 
we affirm is this: that if, having a sufficient number of 
pebbles or of any other objects, we put them together 
into the particular sort of parcels or aggregates called 
twelves; and put together these twelves again into 
similar collections; and, finally, make up twelve of 
these largest parcels; the aggregate thus formed will be 
such a one as we call 1728; namely, that which (to 
take the most familiar of its modes of formation) may 
be made by joining the parcel called a thousand peb-
bles, the parcel called seven hundred pebbles, the par-
cel called twenty pebbles, and the parcel called eight 
pebbles.  

The converse proposition that the cube root of 1728 
is 12, asserts that this large aggregate may again be 
decomposed into the twelve twelves of twelves of 
pebbles which it consists of.  

The modes of formation of any number are innu-
merable; but when we know one mode of formation of 
each, all the rest may be determined deductively. If we 
know that a is formed from b and c, b from a and e, c 
from d and f, and so forth, until we have included all 
the numbers of any scale we choose to select (taking 
care that for each number the mode of formation be 
really a distinct one, not bringing us round again to the 
former numbers, but introducing a new number), we 
have a set of propositions from which we may reason 
to all the other modes of formation of those numbers 
from one another. Having established a chain of induc-
tive truths connecting together all the numbers of the 
scale, we can ascertain the formation of any one of 
those numbers from any other by merely traveling 
from one to the other along the chain. Suppose that we 
know only the following modes of formation: 6 = 4 + 
2, 4 = 7 − 3, 7 = 5 + 2, 5 = 9 − 4. We could determine 
how 6 may be formed from 9. For 6 = 4 + 2 = 7 − 3 + 
2 = 5 + 2 − 3 + 2 = 9 − 4 + 2 − 3 + 2. It may therefore 
be formed by taking away 4 and 3, and adding 2 and 2. 
If we know besides that 2 + 2 = 4, we obtain 6 from 9 
in a simpler mode, by merely taking away 3.  

It is sufficient, therefore, to select one of the various 
modes of formation of each number, as a means of 
ascertaining all the rest. And since things which are 
uniform, and therefore simple, are most easily received 
and retained by the understanding, there is an obvious 
advantage in selecting a mode of formation which 
shall be alike for all; in fixing the connotation of 
names of number on one uniform principle. The mode 

in which our existing numerical nomenclature is con-
trived possesses this advantage, with the additional 
one, that it happily conveys to the mind two of the 
modes of formation of every number. Each number is 
considered as formed by the addition of a unit to the 
number next below it in magnitude, and this mode of 
formation is conveyed by the place which it occupies 
in the series. And each is also considered as formed by 
the addition of a number of units less than ten, and a 
number of aggregates each equal to one of the succes-
sive powers of ten; and this mode of its formation is 
expressed by its spoken name, and by its numerical 
character.  

What renders arithmetic the type of a deductive sci-
ence, is the fortunate applicability to it of a law so 
comprehensive as “The sums of equals are equals:” or 
(to express the same principle in less familiar but more 
characteristic language), Whatever is made up of parts, 
is made up of the parts of those parts. This truth, obvi-
ous to the senses in all cases which can be fairly re-
ferred to their decision, and so general as to be co-
extensive with nature itself, being true of all sorts of 
phenomena (for all admit of being numbered), must be 
considered an inductive truth, or law of nature, of the 
highest order. And every arithmetical operation is an 
application of this [p. 432] law, or of other laws capa-
ble of being deduced from it. This is our warrant for 
all calculations. We believe that five and two are equal 
to seven, on the evidence of this inductive law, com-
bined with the definitions of those numbers. We arrive 
at that conclusion (as all know who remember how 
they first learned it) by adding a single unit at a time: 5 
+ 1 = 6, therefore 5 + 1 + 1 = 6 + 1 = 7; and again 2 = 
1 + 1, therefore 5 + 2 = 5 + 1 + 1 = 7.  

§ 6. Innumerable as are the true propositions which 
can be formed concerning particular numbers, no ade-
quate conception could be gained, from these alone, of 
the extent of the truths composing the science of num-
ber. Such propositions as we have spoken of are the 
least general of all numerical truths. It is true that even 
these are co-extensive with all nature; the properties of 
the number four are true of all objects that are divisible 
into four equal parts, and all objects are either actually 
or ideally so divisible. But the propositions which 
compose the science of algebra are true, not of a par-
ticular number, but of all numbers; not of all things 
under the condition of being divided in a particular 
way, but of all things under the condition of being di-
vided in any way—of being designated by a number at 
all.  

Since it is impossible for different numbers to have 
any of their modes of formation completely in com-
mon, it is a kind of paradox to say, that all propositions 
which can be made concerning numbers relate to their 
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modes of formation from other numbers, and yet that 
there are propositions which are true of all numbers. 
But this very paradox leads to the real principle of 
generalization concerning the properties of numbers. 
Two different numbers can not be formed in the same 
manner from the same numbers; but they may be 
formed in the same manner from different numbers; as 
nine is formed from three by multiplying it into itself, 
and sixteen is formed from four by the same process. 
Thus there arises a classification of modes of forma-
tion, or in the language commonly used by mathemati-
cians, a classification of Functions. Any number, con-
sidered as formed from any other number, is called a 
function of it; and there are as many kinds of functions 
as there are modes of formation. The simple functions 
are by no means numerous, most functions being 
formed by the combination of several of the operations 
which form simple functions, or by successive repeti-
tions of some one of those operations. The simple 
functions of any number x are all reducible to the fol-
lowing forms: x + a, x − a, ax, x/a, xa, x1/a, log․x (to the 
base a), and the same expressions varied by putting x 
for a and a for x, wherever that substitution would al-
ter the value: to which, perhaps, ought to be added sin 
x, and arc (sin=x). All other functions of x are formed 
by putting some one or more of the simple functions in 
the place of x or a, and subjecting them to the same 
elementary operations.  

In order to carry on general reasonings on the sub-
ject of Functions, we require a nomenclature enabling 
us to express any two numbers by names which, with-
out specifying what particular numbers they are, shall 
show what function each is of the other; or, in other 
words, shall put in evidence their mode of formation 
from one another. The system of general language 
called algebraical notation does this. The expressions a 
and a2 + 3a denote, the one any number, the other the 
number formed from it in a particular manner. The 
expressions a, b, n, and (a + b)n, denote any three 
numbers, and a fourth which is formed from them in a 
certain mode.  

The following may be stated as the general problem 
of the algebraical calculus: F being a certain function 
of a given number, to find what function [p. 433] F 
will be of any function of that number. For example, a 
binomial a + b is a function of its two parts a and b, 
and the parts are, in their turn, functions of a + b: now 
(a + b)n is a certain function of the binomial; what 
function will this be of a and b, the two parts? The 
answer to this question is the binomial theorem. The 
formula (a + b)n = an + n/1 an−1 b + (n․n−1)/1․2 an−2 b2 
+, etc., shows in what manner the number which is 
formed by multiplying a + b into itself n times, might 
be formed without that process, directly from a, b, and 

n. And of this nature are all the theorems of the sci-
ence of number. They assert the identity of the result 
of different modes of formation. They affirm that some 
mode of formation from x, and some mode of forma-
tion from a certain function of x, produce the same 
number.  

Besides these general theorems or formulæ, what 
remains in the algebraical calculus is the resolution of 
equations. But the resolution of an equation is also a 
theorem. If the equation be x2 + ax = b, the resolution 
of this equation, viz., x = −1/2 a ± √(1/4 a2 + b), is a 
general proposition, which may be regarded as an an-
swer to the question, If b is a certain function of x and 
a (namely x2 + ax), what function is x of b and a? The 
resolution of equations is, therefore, a mere variety of 
the general problem as above stated. The problem is—
Given a function, what function is it of some other 
function? And in the resolution of an equation, the 
question is, to find what function of one of its own 
functions the number itself is.  

Such, as above described, is the aim and end of the 
calculus. As for its processes, every one knows that 
they are simply deductive. In demonstrating an alge-
braical theorem, or in resolving an equation, we travel 
from the datum to the quæsitum by pure ratiocination; 
in which the only premises introduced, besides the 
original hypotheses, are the fundamental axioms al-
ready mentioned—that things equal to the same thing 
are equal to one another, and that the sums of equal 
things are equal. At each step in the demonstration or 
in the calculation, we apply one or other of these 
truths, or truths deducible from them, as, that the dif-
ferences, products, etc., of equal numbers are equal.  

It would be inconsistent with the scale of this work, 
and not necessary to its design, to carry the analysis of 
the truths and processes of algebra any further; which 
is also the less needful, as the task has been, to a very 
great extent, performed by other writers. Peacock’s 
Algebra, and Dr. Whewell’s Doctrine of Limits, are 
full of instruction on the subject. The profound trea-
tises of a truly philosophical mathematician, Professor 
De Morgan, should be studied by every one who de-
sires to comprehend the evidence of mathematical 
truths, and the meaning of the obscurer processes of 
the calculus, and the speculations of M. Comte, in his 
Cours de Philosophie Positive, on the philosophy of 
the higher branches of mathematics, are among the 
many valuable gifts for which philosophy is indebted 
to that eminent thinker.  

…  


