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there always passes one and only one straight line. How is this axiom
to be interpreted in the older sense and in the more modern sense?

The older interpretation: — Every one knows what a straight line is,
and what a point is. Whether this knowledge springs from an ability
of the human mind or from experience, from some collaboration of
the two or from some other source, is not for the mathematician to
decide. He leaves the question to the philosopher. Being based upon
this knowledge, which precedes all mathematics, the axiom stated
above is, like all other axioms, self-evident, that is, it is the expres-
sion of a part of this a priori knowledge.

The more modern interpretation:—Geometry treats of entities
which are denoted by the words straight line, point, etc. These enti-
ties do not take for granted any knowledge or intuition whatever, but
they presuppose only the validity of the axioms, such as the one
stated above, which are to be taken in a purely formal sense, i.e. as
void of all content of intuition or experience. These axioms are free
creations of the human mind. All other propositions of geometry are
logical inferences from the axioms (which are to be taken in the
nominalistic sense only). The matter of which geometry treats is first
defined by the axioms. Schlick in his book on epistemology has
therefore characterised axioms very aptly as “implicit definitions.”

This view of axioms, advocated by modern axiomatics, purges
mathematics of all extraneous elements, and thus dispels the mystic
obscurity which formerly surrounded the principles of mathematics.

But a presentation of its principles thus clarified makes it also evi-
dent that mathematics as such cannot predicate anything about per-
ceptual objects or real objects. In axiomatic geometry the words
“point,” “straight line,” etc., stand only for empty conceptual
schemata. That which gives them substance is not relevant to mathe-
matics.

Yet on the other hand it is certain that mathematics generally, and
particularly geometry, owes its existence to the need which was felt
of learning something about the relations of real things to one an-
other. The very word geometry, which, of course, means earth-mea-
suring, proves this. For earth-measuring has to do with the possibili-
ties of the disposition of certain natural objects with respect to one
another, namely, with parts of the earth, measuring-lines, measuring-
wands, etc. It is clear that the system of concepts of axiomatic geom-
etry alone cannot make any assertions as to the relations of real ob-
jects of this kind, which we will call practically-rigid bodies. To be
able to make such assertions, geometry must be stripped of its merely
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try on the sphere. If we call the disc-shadows rigid figures, then
spherical geometry holds good on the plane E with respect to these
rigid figures. Moreover, the plane is finite with respect to the
disc-shadows, since only a finite number of the shadows can find
room on the plane.

At this point somebody will say, “That is nonsense. The disc-shad-
ows are not rigid figures. We have only to move a two-foot rule
about on the plane E to convince ourselves that the shadows con-
stantly increase in size as they move away from § on the plane to-
wards infinity.” But what if the two-foot rule were to behave on the
plane E in the same way as the disc-shadows L'? It would then be im-
possible to show that the shadows increase in size as they move away
from S; such an assertion would then no longer have any meaning
whatever. In fact the only objective assertion that can be made about
the disc-shadows is just this, that they are related in exactly the same
way as are the rigid discs on the spherical surface in the sense of Eu-
clidean geometry.

We must carefully bear in mind that our statement as to the growth
of the disc-shadows, as they move away from S towards infinity, has
in itself no objective meaning, as long as we are unable to employ
Euclidean rigid bodies which can be moved about on the plane E for
the purpose of comparing the size of the disc-shadows. In respect of
the laws of disposition of the shadows L', the point S has no special
privileges on the plane any more than on the spherical surface.

The representation given above of spherical geometry on the plane
is important for us, because it readily allows itself to be transferred to
the three-dimensional case.

Let us imagine a point S of our space, and a great number of small
spheres, L', which can all be brought to coincide with one another.
But these spheres are not to be rigid in the sense of Euclidean geom-
etry; their radius is to increase (in the sense of Euclidean geometry)
when they are moved away from S towards infinity, and this increase
is to take place in exact accordance with the same law as applies to
the increase of the radii of the disc-shadows L' on the plane.

After having gained a vivid mental image of the geometrical be-
haviour of our L’ spheres, let us assume that in our space there are no
rigid bodies at all in the sense of Euclidean geometry, but only bod-
ies having the behaviour of our L’ spheres. Then we shall have a
vivid representation of three-dimensional spherical space, or, rather
of three-dimensional spherical geometry. Here our spheres must be
called “rigid” spheres. Their increase in size as they depart from S is

N
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practically-rigid body and geometry, we shall indeed not easily free
ourselves from the convention that Euclidean geometry is to be re-
tained as the simplest. Why is the equivalence of the practically-rigid
body and the body of geometry—which suggests itself so readily
—denied by Poincaré and other investigators? Simply because under
closer inspection the real solid bodies in nature are not rigid, because
their geometrical behaviour, that is, their possibilities of relative dis-
position, depend upon temperature, external forces, etc. Thus the
original, immediate relation between geometry and physical reality
appears destroyed, and we feel impelled toward the following more
general view, which characterizes Poincaré’s standpoint. Geometry
(G) predicates nothing about the relations of real things, but only ge-
ometry together with the purport (P) of physical laws can do so. Us-
ing symbols, we may say that only the sum of (G) + (P) is subject to
the control of experience. Thus (G) may be chosen arbitrarily, and
also parts of (P); all these laws are conventions. All that is necessary
to avoid contradictions is to choose the remainder of (P) so that (G)
and the whole of (P) are together in accord with experience. Envis-
aged in this way, axiomatic geometry and the part of natural law
which has been given a conventional status appear as epistemologi-
cally equivalent.

Sub specie aeterni Poincaré, in my opinion, is right. The idea of
the measuring-rod and the idea of the clock co-ordinated with it in
the theory of relativity do not find their exact correspondence in the
real world. It is also clear that the solid body and the clock do not in
the conceptual edifice of physics play the part of irreducible ele-
ments, but that of composite structures, which may not play any in-
dependent part in theoretical physics. But it is my conviction that in
the present stage of development of theoretical physics these ideas
must still be employed as independent ideas; for we are still far from
possessing such certain knowledge of theoretical principles as to be
able to give exact theoretical constructions of solid bodies and
clocks.

Further, as to the objection that there are no really rigid bodies in
nature, and that therefore the properties predicated of rigid bodies do
not apply to physical reality,—this objection is by no means so radi-
cal as might appear from a hasty examination. For it is not a difficult
task to determine the physical state of a measuring-rod so accurately
that its behaviour relatively to other measuring-bodies shall be suffi-
ciently free from ambiguity to allow it to be substituted for the
“rigid” body. It is to measuring-bodies of this kind that statements as
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surface we may lay squares of cardboard so that each side of any
square has the side of another square adjacent to it. The construction
is never finished; we can always go on laying squares—if their laws
of disposition correspond to those of plane figures of Euclidean ge-
ometry. The plane is therefore infinite in relation to the cardboard
squares. Accordingly we say that the plane is an infinite continuum
of two dimensions, and space an infinite continuum of three dimen-
sions. What is here meant by the number of dimensions, I think I
may assume to be known.

Now we take an example of a two-dimensional continuum which
is finite, but unbounded. We imagine the surface of a large globe and
a quantity of small paper discs, all of the same size. We place one of
the discs anywhere on the surface of the globe. If we move the disc
about, anywhere we like, on the surface of the globe, we do not come
upon a limit or boundary anywhere on the journey. Therefore we say
that the spherical surface of the globe is an unbounded continuum.
Moreover, the spherical surface is a finite continuum. For if we stick
the paper discs on the globe, so that no disc overlaps another, the sur-
face of the globe will finally become so full that there is no room for
another disc. This simply means that the spherical surface of the
globe is finite in relation to the paper discs. Further, the spherical sur-
face is a non-Euclidean continuum of two dimensions, that is to say,
the laws of disposition for the rigid figures lying in it do not agree
with those of the Euclidean plane. This can be shown in the follow-
ing way. Place a paper disc on the spherical surface, and
around it in a circle place six more discs, each of which
is to be surrounded in turn by six discs, and so on. If this
construction is made on a plane surface, we have an un-
interrupted disposition in which there are six discs
touching every disc except those which lie on the out-
side. On the spherical surface the construction also seems to promise
success at the outset, and the smaller the radius of the disc in propor-
tion to that of the sphere, the more promising it seems. But as the
construction progresses it becomes more and more patent that the
disposition of the discs in the manner indicated, without interruption,
is not possible, as it should be possible by Euclidean geometry of the
the plane surface. In this way creatures which cannot leave the spher-
ical surface, and cannot even peep out from the spherical surface into
three-dimensional space, might discover, merely by experimenting
with discs, that their two-dimensional “space” is not Euclidean, but
spherical space.

FiG. 1.
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It is true that this proposed physical interpretation of geometry
breaks down when applied immediately to spaces of sub-molecular
order of magnitude. But nevertheless, even in questions as to the
constitution of elementary particles, it retains part of its importance.
For even when it is a question of describing the electrical elementary
particles constituting matter, the attempt may still be made to ascribe
physical importance to those ideas of fields which have been physi-
cally defined for the purpose of describing the geometrical behaviour
of bodies which are large as compared with the molecule. Success
alone can decide as to the justification of such an attempt, which pos-
tulates physical reality for the fundamental principles of Riemann’s
geometry outside of the domain of their physical definitions. It might
possibly turn out that this extrapolation has no better warrant than the
extrapolation of the idea of temperature to parts of a body of molecu-
lar order of magnitude.

It appears less problematical to extend the ideas of practical geom-
etry to spaces of cosmic order of magnitude. It might, of course, be
objected that a construction composed of solid rods departs more and
more from ideal rigidity in proportion as its spatial extent becomes
greater. But it will hardly be possible, I think, to assign fundamental
significance to this objection. Therefore the question whether the uni-
verse is spatially finite or not seems to me decidedly a pregnant ques-
tion in the sense of practical geometry. I do not even consider it im-
possible that this question will be answered before long by astron-
omy. Let us call to mind what the general theory of relativity teaches
in this respect. It offers two possibilities: —

1. The universe is spatially infinite. This can be so only if the aver-
age spatial density of the matter in universal space, concentrated in
the stars, vanishes, i.c. if the ratio of the total mass of the stars to the
magnitude of the space through which they are scattered approxi-
mates indefinitely to the value zero when the spaces taken into con-
sideration are constantly greater and greater.

2. The universe is spatially finite. This must be so, if there is a
mean density of the ponderable matter in universal space differing
from zero. The smaller that mean density, the greater is the volume
of universal space.

I must not fail to mention that a theoretical argument can be ad-
duced in favour of the hypothesis of a finite universe. The general
theory of relativity teaches that the inertia of a given body is greater
as there are more ponderable masses in proximity to it; thus it seems
very natural to reduce the total effect of inertia of a body to action
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and reaction between it and the other bodies in the universe, as in-
deed, ever since Newton’s time, gravity has been completely reduced
to action and reaction between bodies. From the equations of the
general theory of relativity it can be deduced that this total reduction
of inertia to reciprocal action between masses—as required by E.
Mach, for example—is possible only if the universe is spatially fi-
nite.

On many physicists and astronomers this argument makes no im-
pression. Experience alone can finally decide which of the two possi-
bilities is realised in nature. How can experience furnish an answer?
At first it might seem possible to determine the mean density of mat-
ter by observation of that part of the universe which is accessible to
our perception. This hope is illusory. The distribution of the visible
stars is extremely irregular, so that we on no account may venture to
set down the mean density of star-matter in the universe as equal, let
us say, to the mean density in the Milky Way. In any case, however
great the space examined may be, we could not feel convinced that
there were no more stars beyond that space. So it seems impossible
to estimate the mean density.

But there is another road, which seems to me more practicable, al-
though it also presents great difficulties. For if we inquire into the de-
viations shown by the consequences of the general theory of relativ-
ity which are accessible to experience, when these are compared with
the consequences of the Newtonian theory, we first of all find a devi-
ation which shows itself in close proximity to gravitating mass, and
has been confirmed in the case of the planet Mercury. But if the uni-
verse is spatially finite there is a second deviation from the Newto-
nian theory, which, in the language of the Newtonian theory, may be
expressed thus:—The gravitational field is in its nature such as if it
were produced, not only by the ponderable masses, but also by a
mass-density of negative sign, distributed uniformly throughout
space. Since this factitious mass-density would have to be enor-
mously small, it could make its presence felt only in gravitating sys-
tems of very great extent.

Assuming that we know, let us say, the statistical distribution of
the stars in the Milky Way, as well as their masses, then by Newton’s
law we can calculate the gravitational field and the mean velocities
which the stars must have, so that the Milky Way should not collapse
under the mutual attraction of its stars, but should maintain its actual
extent. Now if the actual velocities of the stars, which can, of course,
be measured, were smaller than the calculated velocities, we should

p43

S13



