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An expanded form of an Address to the Prussian Academy of
Sciences in Berlin on January 27th, 1921.
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NE reason why mathematics enjoys special esteem, above all
other sciences, is that its laws are absolutely certain and indis-

putable, while those of all other sciences are to some extent debat-
able and in constant danger of being overthrown by newly discov-
ered facts. In spite of this, the investigator in another department of
science would not  need to envy the mathematician if  the laws of
mathematics referred to objects of our mere imagination, and not to
objects of reality. For it cannot occasion surprise that different per-
sons should arrive at the same logical conclusions when they have al-
ready agreed upon the fundamental  laws (axioms),  as  well  as  the
methods by which other laws are to be deduced therefrom. But there
is  another reason for the high repute of  mathematics,  in that  it  is
mathematics which affords the exact natural sciences a certain mea-
sure of security, to which without mathematics they could not attain.
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At this point an enigma presents itself which in all ages has agi-
tated inquiring minds. How can it be that mathematics, being after all
a product of human thought which is independent of experience, is so
admirably  appropriate  to  the  objects  of  reality?  Is  human reason,
then, without experience, merely by taking thought, able to fathom
the properties of real things.
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In my opinion the answer to this question is, briefly, this:—As far
as the laws of mathematics refer to reality, they are not certain; and
as far as they are certain, they do not refer to reality. It seems to me
that complete clearness as to this state of things first became com-
mon property through that new departure in mathematics which is
known by  the  name  of  mathematical  logic  or  “Axiomatics.”  The
progress achieved by axiomatics consists in its having neatly sepa-
rated the logical-formal from its objective or intuitive content; ac-
cording to axiomatics the logical-formal alone forms the subject-mat-
ter of mathematics, which is not concerned with the intuitive or other
content associated with the logical-formal.

Let us for a moment consider from this point of view any axiom of
geometry, for instance, the following:—Through two points in space

there always passes one and only one straight line. How is this axiom
to be interpreted in the older sense and in the more modern sense?

The older interpretation:—Every one knows what a straight line is,
and what a point is. Whether this knowledge springs from an ability
of the human mind or from experience, from some collaboration of
the two or from some other source, is not for the mathematician to
decide. He leaves the question to the philosopher. Being based upon
this knowledge,  which precedes all  mathematics,  the axiom stated
above is, like all other axioms, self-evident, that is, it is the expres-
sion of a part of this a priori knowledge.
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The  more  modern  interpretation:—Geometry  treats  of  entities
which are denoted by the words straight line, point, etc. These enti-
ties do not take for granted any knowledge or intuition whatever, but
they presuppose only  the  validity  of  the  axioms,  such as  the  one
stated above, which are to be taken in a purely formal sense, i.e. as
void of all content of intuition or experience. These axioms are free
creations of the human mind. All other propositions of geometry are
logical  inferences  from the  axioms (which are  to  be  taken in  the
nominalistic sense only). The matter of which geometry treats is first
defined  by  the  axioms.  Schlick  in  his  book  on  epistemology  has
therefore characterised axioms very aptly as “implicit definitions.”

This  view of  axioms,  advocated  by  modern  axiomatics,  purges
mathematics of all extraneous elements, and thus dispels the mystic
obscurity which formerly surrounded the principles of mathematics.
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But a presentation of its principles thus clarified makes it also evi-

dent that mathematics as such cannot predicate anything about per-
ceptual  objects  or  real  objects.  In  axiomatic  geometry  the  words
“point,”  “straight  line,”  etc.,  stand  only  for  empty  conceptual
schemata. That which gives them substance is not relevant to mathe-
matics.

Yet on the other hand it is certain that mathematics generally, and
particularly geometry, owes its existence to the need which was felt
of learning something about the relations of real things to one an-
other. The very word geometry, which, of course, means earth-mea-
suring, proves this. For earth-measuring has to do with the possibili-
ties of the disposition of certain natural objects with respect to one
another, namely, with parts of the earth, measuring-lines, measuring-
wands, etc. It is clear that the system of concepts of axiomatic geom-
etry alone cannot make any assertions as to the relations of real ob-
jects of this kind, which we will call practically-rigid bodies. To be
able to make such assertions, geometry must be stripped of its merely



logical-formal character by the co-ordination of real objects of expe-
rience with the empty conceptual frame-work of axiomatic geometry.
To accomplish this, we need only add the proposition:—Solid bodies
are related, with respect to their possible dispositions, as are bodies
in Euclidean geometry of three dimensions. Then the propositions of
Euclid  contain  affirmations  as  to  the  relations  of  practically-rigid
bodies.
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Geometry thus completed is evidently a natural science; we may in
fact regard it as the most ancient branch of physics. Its affirmations
rest essentially on induction from experience, but not on logical in-
ferences only. We will call this completed geometry “practical geom-
etry,” and shall distinguish it in what follows from “purely axiomatic
geometry.” The question whether the practical geometry of the uni-
verse is Euclidean or not has a clear meaning, and its answer can
only be furnished by experience. All linear measurement in physics
is practical geometry in this sense, so too is geodetic and astronomi-
cal linear measurement, if we call to our help the law of experience
that light is propagated in a straight line, and indeed in a straight line
in the sense of practical geometry.
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I attach special importance to the view of geometry which I have
just set forth, because without it I should have been unable to formu-
late the theory of relativity. Without it the following reflection would
have been impossible:—In a system of reference rotating relatively
to an inert system, the laws of disposition of rigid bodies do not cor-
respond to the rules of Euclidean geometry on account of the Lorentz
contraction; thus if we admit non-inert systems we must abandon Eu-
clidean  geometry.  The  decisive  step  in  the  transition  to  general
co-variant equations would certainly not have been taken if the above
interpretation had not served as a stepping-stone. If we deny the rela-
tion  between  the  body  of  axiomatic  Euclidean  geometry  and  the
practically-rigid body of reality, we readily arrive at the following
view, which was entertained by that acute and profound thinker, H.
Poincaré:—Euclidean  geometry  is  distinguished  above  all  other
imaginable  axiomatic  geometries  by its  simplicity.  Now since ax-
iomatic geometry by itself  contains no assertions as to the reality
which can be experienced, but can do so only in combination with
physical laws, it should be possible and reasonable—whatever may
be the nature of reality—to retain Euclidean geometry. For if contra-
dictions  between  theory  and  experience  manifest  themselves,  we
should  rather  decide  to  change  physical  laws  than  to  change  ax-
iomatic  Euclidean  geometry.  If  we  deny  the  relation  between  the
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practically-rigid body and geometry, we shall indeed not easily free
ourselves from the convention that Euclidean geometry is to be re-
tained as the simplest. Why is the equivalence of the practically-rigid
body and the body of  geometry—which suggests  itself  so  readily
—denied by Poincaré and other investigators? Simply because under
closer inspection the real solid bodies in nature are not rigid, because
their geometrical behaviour, that is, their possibilities of relative dis-
position,  depend  upon  temperature,  external  forces,  etc.  Thus  the
original, immediate relation between geometry and physical reality
appears destroyed, and we feel impelled toward the following more
general view, which characterizes Poincaré’s standpoint.  Geometry
(G) predicates nothing about the relations of real things, but only ge-
ometry together with the purport (P) of physical laws can do so. Us-
ing symbols, we may say that only the sum of (G) + (P) is subject to
the control of experience. Thus (G) may be chosen arbitrarily, and
also parts of (P); all these laws are conventions. All that is necessary
to avoid contradictions is to choose the remainder of (P) so that (G)
and the whole of (P) are together in accord with experience. Envis-
aged in this  way,  axiomatic geometry and the part  of  natural  law
which has been given a conventional status appear as epistemologi-
cally equivalent.
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Sub specie aeterni Poincaré, in my opinion, is right. The idea of

the measuring-rod and the idea of the clock co-ordinated with it in
the theory of relativity do not find their exact correspondence in the
real world. It is also clear that the solid body and the clock do not in
the  conceptual  edifice  of  physics  play  the  part  of  irreducible  ele-
ments, but that of composite structures, which may not play any in-
dependent part in theoretical physics. But it is my conviction that in
the present stage of development of theoretical physics these ideas
must still be employed as independent ideas; for we are still far from
possessing such certain knowledge of theoretical principles as to be
able  to  give  exact  theoretical  constructions  of  solid  bodies  and
clocks.
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Further, as to the objection that there are no really rigid bodies in
nature, and that therefore the properties predicated of rigid bodies do
not apply to physical reality,—this objection is by no means so radi-
cal as might appear from a hasty examination. For it is not a difficult
task to determine the physical state of a measuring-rod so accurately
that its behaviour relatively to other measuring-bodies shall be suffi-
ciently  free  from  ambiguity  to  allow  it  to  be  substituted  for  the
“rigid” body. It is to measuring-bodies of this kind that statements as



to rigid bodies must be referred.
All practical geometry is based upon a principle which is accessi-

ble to experience, and which we will now try to realise. We will call
that which is enclosed between two boundaries, marked upon a prac-
tically-rigid body, a tract. We imagine two practically-rigid bodies,
each with a tract marked out on it. These two tracts are said to be
“equal  to  one  another”  if  the  boundaries  of  the  one  tract  can  be
brought to coincide permanently with the boundaries of the other. We
now assume that:

If two tracts are found to be equal once and anywhere, they are
equal always and everywhere.
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Not only the practical geometry of Euclid, but also its nearest gen-
eralisation,  the  practical  geometry  of  Riemann,  and  therewith  the
general theory of relativity, rest upon this assumption. Of the experi-
mental reasons which warrant this assumption I will mention only
one. The phenomenon of the propagation of light in empty space as-
signs a tract, namely, the appropriate path of light, to each interval of
local time, and conversely. Thence it follows that the above assump-
tion for tracts must also hold good for intervals of clock-time in the
theory  of  relativity.  Consequently  it  may  be  formulated  as  fol-
lows:—If two ideal clocks are going at the same rate at any time and
at any place (being then in immediate proximity to each other), they
will always go at the same rate, no matter where and when they are
again compared with each other at one place.—If this law were not
valid for real clocks, the proper frequencies for the separate atoms of
the same chemical element would not be in such exact agreement as
experience demonstrates. The existence of sharp spectral lines is a
convincing experimental proof of the above-mentioned principle of
practical geometry. This is the ultimate foundation in fact which en-
ables us to speak with meaning of the mensuration,  in Riemann’s
sense of the word, of the four-dimensional continuum of space-time.

The question whether the structure of this continuum is Euclidean,
or in accordance with Riemann’s general scheme, or otherwise, is,
according to the view which is here being advocated, properly speak-
ing a physical question which must be answered by experience, and
not  a  question  of  a  mere  convention  to  be  selected  on  practical
grounds. Riemann’s geometry will be the right thing if the laws of
disposition of practically-rigid bodies are transformable into those of
the bodies of Euclid’s geometry with an exactitude which increases
in proportion as the dimensions of the part of space-time under con-
sideration are diminished.
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It  is  true that  this  proposed physical  interpretation of  geometry
breaks down when applied immediately to spaces of sub-molecular
order  of  magnitude.  But  nevertheless,  even in  questions as  to  the
constitution of elementary particles, it retains part of its importance.
For even when it is a question of describing the electrical elementary
particles constituting matter, the attempt may still be made to ascribe
physical importance to those ideas of fields which have been physi-
cally defined for the purpose of describing the geometrical behaviour
of bodies which are large as compared with the molecule. Success
alone can decide as to the justification of such an attempt, which pos-
tulates physical reality for the fundamental principles of Riemann’s
geometry outside of the domain of their physical definitions. It might
possibly turn out that this extrapolation has no better warrant than the
extrapolation of the idea of temperature to parts of a body of molecu-
lar order of magnitude.
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It appears less problematical to extend the ideas of practical geom-
etry to spaces of cosmic order of magnitude. It might, of course, be
objected that a construction composed of solid rods departs more and
more from ideal rigidity in proportion as its spatial extent becomes
greater. But it will hardly be possible, I think, to assign fundamental
significance to this objection. Therefore the question whether the uni-
verse is spatially finite or not seems to me decidedly a pregnant ques-
tion in the sense of practical geometry. I do not even consider it im-
possible that this question will be answered before long by astron-
omy. Let us call to mind what the general theory of relativity teaches
in this respect. It offers two possibilities:—

1. The universe is spatially infinite. This can be so only if the aver-
age spatial density of the matter in universal space, concentrated in
the stars, vanishes, i.e. if the ratio of the total mass of the stars to the
magnitude of the space through which they are scattered approxi-
mates indefinitely to the value zero when the spaces taken into con-
sideration are constantly greater and greater.
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2. The universe is spatially finite. This must be so, if there is a
mean density of the ponderable matter in universal space differing
from zero. The smaller that mean density, the greater is the volume
of universal space.

S12I must not fail to mention that a theoretical argument can be ad-
duced in favour of the hypothesis of a finite universe. The general
theory of relativity teaches that the inertia of a given body is greater
as there are more ponderable masses in proximity to it; thus it seems
very natural to reduce the total effect of inertia of a body to action



and reaction between it and the other bodies in the universe, as in-
deed, ever since Newton’s time, gravity has been completely reduced
to action and reaction between bodies.  From the equations of  the
general theory of relativity it can be deduced that this total reduction
of  inertia  to  reciprocal  action between masses—as required by E.
Mach, for example—is possible only if the universe is spatially fi-
nite.

p43

On many physicists and astronomers this argument makes no im-
pression. Experience alone can finally decide which of the two possi-
bilities is realised in nature. How can experience furnish an answer?
At first it might seem possible to determine the mean density of mat-
ter by observation of that part of the universe which is accessible to
our perception. This hope is illusory. The distribution of the visible
stars is extremely irregular, so that we on no account may venture to
set down the mean density of star-matter in the universe as equal, let
us say, to the mean density in the Milky Way. In any case, however
great the space examined may be, we could not feel convinced that
there were no more stars beyond that space. So it seems impossible
to estimate the mean density.
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But there is another road, which seems to me more practicable, al-
though it also presents great difficulties. For if we inquire into the de-
viations shown by the consequences of the general theory of relativ-
ity which are accessible to experience, when these are compared with
the consequences of the Newtonian theory, we first of all find a devi-
ation which shows itself in close proximity to gravitating mass, and
has been confirmed in the case of the planet Mercury. But if the uni-
verse is spatially finite there is a second deviation from the Newto-
nian theory, which, in the language of the Newtonian theory, may be
expressed thus:—The gravitational field is in its nature such as if it
were produced,  not only by the ponderable masses,  but also by a
mass-density  of  negative  sign,  distributed  uniformly  throughout
space.  Since  this  factitious  mass-density  would  have  to  be  enor-
mously small, it could make its presence felt only in gravitating sys-
tems of very great extent.

Assuming that we know, let us say, the statistical distribution of
the stars in the Milky Way, as well as their masses, then by Newton’s
law we can calculate the gravitational field and the mean velocities
which the stars must have, so that the Milky Way should not collapse
under the mutual attraction of its stars, but should maintain its actual
extent. Now if the actual velocities of the stars, which can, of course,
be measured, were smaller than the calculated velocities, we should

p45have a proof that the actual attractions at great distances are smaller
than by Newton’s law. From such a deviation it could be proved indi-
rectly that the universe is finite. It would even be possible to estimate
its spatial magnitude.

Can we picture to ourselves a three-dimensional universe which is
finite, yet unbounded?

S14The usual answer to this question is “No,” but that is not the right
answer. The purpose of the following remarks is to show that the an-
swer should be “Yes.” I want to show that without any extraordinary
difficulty we can illustrate the theory of a finite universe by means of
a mental image to which, with some practice, we shall soon grow ac-
customed.
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First of all, an observation of epistemological nature. A geometri-
cal-physical theory as such is incapable of being directly pictured,
being merely a system of concepts. But these concepts serve the pur-
pose of bringing a multiplicity of real or imaginary sensory experi-
ences into connection in the mind. To “visualise” a theory, or bring it
home to one’s mind, therefore means to give a representation to that
abundance  of  experiences  for  which  the  theory  supplies  the
schematic arrangement. In the present case we have to ask ourselves
how we can represent that relation of solid bodies with respect to
their reciprocal disposition (contact) which corresponds to the theory
of a finite universe. There is really nothing new in what I have to say
about this; but innumerable questions addressed to me prove that the
requirements of those who thirst for knowledge of these matters have
not yet been completely satisfied.

So, will the initiated please pardon me, if part of what I shall bring
forward has long been known?

What do we wish to express when we say that our space is infi-
nite? Nothing more than that we might lay any number whatever of
bodies of equal sizes side by side without ever filling space. Suppose
that we are provided with a great many wooden cubes all of the same
size.  In  accordance  with  Euclidean  geometry  we  can  place  them
above, beside, and behind one another so as to fill a part of space of
any dimensions; but this construction would never be finished; we
could go on adding more and more cubes without ever finding that
there was no more room. That is what we wish to express when we
say that space is infinite. It would be better to say that space is infi-
nite in relation to practically-rigid bodies, assuming that the laws of
disposition for these bodies are given by Euclidean geometry.
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Another example of an infinite continuum is the plane. On a plane



surface we may lay squares of cardboard so that each side of any
square has the side of another square adjacent to it. The construction
is never finished; we can always go on laying squares—if their laws
of disposition correspond to those of plane figures of Euclidean ge-
ometry. The plane is therefore infinite in relation to the cardboard
squares. Accordingly we say that the plane is an infinite continuum
of two dimensions, and space an infinite continuum of three dimen-
sions. What is here meant by the number of dimensions, I think I
may assume to be known.
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FIG. 1.
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Now we take an example of a two-dimensional continuum which
is finite, but unbounded. We imagine the surface of a large globe and
a quantity of small paper discs, all of the same size. We place one of
the discs anywhere on the surface of the globe. If we move the disc
about, anywhere we like, on the surface of the globe, we do not come
upon a limit or boundary anywhere on the journey. Therefore we say
that the spherical surface of the globe is an unbounded continuum.
Moreover, the spherical surface is a finite continuum. For if we stick
the paper discs on the globe, so that no disc overlaps another, the sur-
face of the globe will finally become so full that there is no room for
another  disc.  This  simply  means  that  the  spherical  surface  of  the
globe is finite in relation to the paper discs. Further, the spherical sur-
face is a non-Euclidean continuum of two dimensions, that is to say,
the laws of disposition for the rigid figures lying in it do not agree
with those of the Euclidean plane. This can be shown in the follow-

ing way. Place a paper disc on the spherical surface, and
around it in a circle place six more discs, each of which
is to be surrounded in turn by six discs, and so on. If this
construction is made on a plane surface, we have an un-
interrupted  disposition  in  which  there  are  six  discs
touching every disc except those which lie on the out-

side. On the spherical surface the construction also seems to promise
success at the outset, and the smaller the radius of the disc in propor-
tion to that of the sphere, the more promising it seems. But as the
construction progresses it  becomes more and more patent that  the
disposition of the discs in the manner indicated, without interruption,
is not possible, as it should be possible by Euclidean geometry of the
the plane surface. In this way creatures which cannot leave the spher-
ical surface, and cannot even peep out from the spherical surface into
three-dimensional  space,  might  discover,  merely by experimenting
with discs, that their two-dimensional “space” is not Euclidean, but
spherical space.
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From the latest results of the theory of relativity it is probable that
our three-dimensional space is also approximately spherical, that is,
that the laws of disposition of rigid bodies in it are not given by Eu-
clidean geometry, but approximately by spherical geometry, if only
we consider parts of space which are sufficiently great. Now this is
the  place  where  the  reader’s  imagination  boggles.  “Nobody  can
imagine this thing,” he cries indignantly. “It can be said, but cannot
be thought. I can represent to myself a spherical surface well enough,
but nothing analogous to it in three dimensions.”
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We must try to surmount this barrier in the mind, and the patient
reader will see that it is by no means a particularly difficult task. For
this purpose we will first give our attention once more to the geome-
try of two-dimensional spherical surfaces. In the adjoining figure let
K be the spherical surface, touched at S by a plane, E, which, for fa-
cility of presentation, is shown in the drawing as a bounded surface.
Let L be a disc on the spherical surface. Now let us imagine that at
the  point  N  of  the  spherical  surface,  diametrically  opposite  to  S,

FIG. 2.

there is a luminous point, throwing a shadow L′ of the disc L upon
the plane E. Every point on the sphere has its shadow on the plane. If
the disc on the sphere K is moved, its shadow L′ on the plane E also
moves. When the disc L is at S, it almost exactly coincides with its
shadow. If it moves on the spherical surface away from S upwards,
the disc shadow L′ on the plane also moves away from S on the plane
outwards, growing bigger and bigger. As the disc L approaches the
luminous point N, the shadow moves off to infinity, and becomes in-
finitely great.

Now we put the question, What are the laws of disposition of the
disc-shadows L′ on the plane E? Evidently they are exactly the same
as the laws of disposition of the discs L on the spherical surface. For
to each original figure on K there is a corresponding shadow figure
on E. If two discs on K are touching, their shadows on E also touch.
The shadow-geometry on the plane agrees with the the disc-geome-



try  on  the  sphere.  If  we  call  the  disc-shadows rigid  figures,  then
spherical geometry holds good on the plane E with respect to these
rigid  figures.  Moreover,  the  plane  is  finite  with  respect  to  the
disc-shadows, since only a finite number of the shadows can find
room on the plane.
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At this point somebody will say, “That is nonsense. The disc-shad-

ows are  not  rigid  figures.  We have only to  move a  two-foot  rule
about on the plane E to convince ourselves that the shadows con-
stantly increase in size as they move away from S on the plane to-
wards infinity.” But what if the two-foot rule were to behave on the
plane E in the same way as the disc-shadows L′? It would then be im-
possible to show that the shadows increase in size as they move away
from S; such an assertion would then no longer have any meaning
whatever. In fact the only objective assertion that can be made about
the disc-shadows is just this, that they are related in exactly the same
way as are the rigid discs on the spherical surface in the sense of Eu-
clidean geometry.
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We must carefully bear in mind that our statement as to the growth
of the disc-shadows, as they move away from S towards infinity, has
in itself no objective meaning, as long as we are unable to employ
Euclidean rigid bodies which can be moved about on the plane E for
the purpose of comparing the size of the disc-shadows. In respect of
the laws of disposition of the shadows L′, the point S has no special
privileges on the plane any more than on the spherical surface.

The representation given above of spherical geometry on the plane
is important for us, because it readily allows itself to be transferred to
the three-dimensional case.

Let us imagine a point S of our space, and a great number of small
spheres, L′, which can all be brought to coincide with one another.
But these spheres are not to be rigid in the sense of Euclidean geom-
etry; their radius is to increase (in the sense of Euclidean geometry)
when they are moved away from S towards infinity, and this increase
is to take place in exact accordance with the same law as applies to
the increase of the radii of the disc-shadows L′ on the plane.
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After having gained a vivid mental image of the geometrical be-
haviour of our L′ spheres, let us assume that in our space there are no
rigid bodies at all in the sense of Euclidean geometry, but only bod-
ies having the behaviour of our L′  spheres.  Then we shall  have a
vivid representation of three-dimensional spherical space, or, rather
of three-dimensional spherical geometry. Here our spheres must be
called “rigid” spheres. Their increase in size as they depart from S is
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not to be detected by measuring with measuring-rods, any more than
in the case of the disc-shadows on E, because the standards of mea-
surement behave in the same way as the spheres. Space is homoge-
neous, that is to say, the same spherical configurations are possible in
the environment of all points.* Our space is finite, because, in conse-
quence of the “growth” of the spheres, only a finite number of them
can find room in space.

*  This  is  intelligible  without  calculation—but  only  for  the  two-dimensional
case—if we revert once more to the case of the disc on the surface of the sphere.
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In this way, by using as stepping-stones the practice in thinking
and visualisation which Euclidean geometry gives us, we have ac-
quired a mental picture of spherical geometry. We may without diffi-
culty impart more depth and vigour to these ideas by carrying out
special imaginary constructions. Nor would it be difficult to represent
the case of what is called elliptical geometry in an analogous manner.
My only aim to-day has been to show that the human faculty of visu-
alisation is by no means bound to capitulate to non-Euclidean geom-
etry.


