Phi 272 F12: selections from Aristotle, Bacon, and Descartes on the methods of science

Aristotle, selections from *Posterior Analytics* (G. R. G. Mure, tr.)

Knowledge of the fact differs from knowledge of the reasoned fact.... Thus ... you might prove as follows that the planets are near because they do not twinkle: let C be the planets, B not twinkling, A proximity. Then B is predicable of C; for the planets do not twinkle. But A is also predicable of B, since that which does not twinkle is near-we must take this truth as having been reached by induction or sense-perception. Therefore A is a necessary predicate of C; so that we have demonstrated that the planets are near. This syllogism, then, proves not the reasoned fact but only the fact; since they are not near because they do not twinkle, but, because they are near, do not twinkle. The major and middle of the proof, however, may be reversed, and then the demonstration will be of the reasoned fact. Thus: let C be the planets, B proximity, A not twinkling. Then B is an attribute of C, and A-not twinkling-of B. Consequently A is predicable of C, and the syllogism proves the reasoned fact, since its middle term is the proximate cause.... [Bk I, ch. 13, 78a22-78b4]

Scientific knowledge is not possible through the act of perception. Even if perception as a faculty is of 'the such' and not merely of a 'this somewhat', yet one must at any rate actually perceive a 'this somewhat', and at a definite present place and time: but that which is commensurately universal and true in all cases one cannot perceive, since it is not 'this' and it is not 'now'; if it were, it would not be commensurately universal-the term we apply to what is always and everywhere. Seeing, therefore, that demonstrations are commensurately universal and universals imperceptible, we clearly cannot obtain scientific knowledge by the act of perception: nay, it is obvious that even if it were possible to perceive that a triangle has its angles equal to two right angles, we should still be looking for a demonstration-we should not (as some say) possess knowledge of it; for perception must be of a particular, whereas scientific knowledge involves the recognition of the commensurate universal. So if we were on the moon, and saw the earth shutting out the sun's light, we should not know the cause of the eclipse: we should perceive the present fact of the eclipse, but not the reasoned fact at all, since the act of perception is not of the commensurate universal. I do not, of course, deny that by watching the frequent recurrence of this event we might, after tracking the commensurate universal, possess a demonstration, for the commensurate universal is elicited from the several groups of singulars. [Bk. I, ch. 31, 87b28-88a5]

As regards syllogism and demonstration, the definition of, and the conditions required to produce each of them, are now clear, and with that also the definition of, and the conditions required to produce, demonstrative knowledge, since it is the same as demonstration. As to the basic premisses, how they become known and what is the developed state of knowledge of them is made clear by raising some preliminary problems. We have already said that scientific knowledge through demonstration is impossible unless a man knows the primary immediate premisses. But there are questions which might be raised in respect of the apprehension of these immediate premisses: one might not only ask whether it is of the same kind as the apprehension of the conclusions, but also whether there is or is not scientific knowledge of both; or scientific knowledge of the latter, and of the former a different kind of knowledge; and, further, whether the developed states of knowledge are not innate but come to be in us, or are innate but at first unnoticed. Now it is strange if we possess them from birth; for it means that we possess apprehensions more accurate than demonstration and fail to notice them. If on the other hand we acquire them and do not previously possess them, how could we apprehend and learn without a basis of pre-existent knowledge? For that is impossible, as we used to find in the case of demonstration. So it emerges that neither can we possess them from birth, nor can they come to be in us if we are without knowledge of them to the extent of having no such developed state at all. Therefore we must possess a capacity of some sort, but not such as to rank higher in accuracy than these developed states. And this at least is an obvious characteristic of all animals, for they possess a congenital discriminative capacity which is called sense-perception. But though sense-perception is innate in all animals, in some the sense-impression comes to persist, in others it does not. So animals in which this persistence does not come to be have either no knowledge at all outside the act of perceiving, or no knowledge of objects of which no impression persists; animals in which it does come into being have perception and can continue to retain the sense-impression in the soul: and when such persistence is frequently repeated a further distinction at once arises between those which out of the persistence of such sense-impressions develop a power of systematizing them and those which do not. So out of sense-perception comes to be what we call memory, and out of frequently repeated memories of the same thing develops experience; for a number of memories constitute a single experience. From experience again-i.e. from the universal now stabilized in its entirety within the soul, the one beside the many which is a single identity within them all-originate the skill of the craftsman and the knowledge of the man of science, skill in the sphere of coming to be and science in the sphere of being.

We conclude that these states of knowledge are neither innate in a

determinate form, nor developed from other higher states of knowledge, but from sense-perception. It is like a rout in battle stopped by first one man making a stand and then another, until the original formation has been restored. The soul is so constituted as to be capable of this process.

Let us now restate the account given already, though with insufficient clearness. When one of a number of logically indiscriminable particulars has made a stand, the earliest universal is present in the soul: for though the act of sense-perception is of the particular, its content is universal—is man, for example, not the man Callias. A fresh stand is made among these rudimentary universals, and the process does not cease until the indivisible concepts, the true universals, are established: e.g. such and such a species of animal is a step towards the genus animal, which by the same process is a step towards a further generalization. [Bk. II, ch. 19, 99b15-100b5]

Francis Bacon, selections from *Novum Organum* (Spedding and Ellis, trs.)

Book I

XIX. There are and can be only two ways of searching into and discovering truth. The one flies from the senses and particulars to the most general axioms, and from these principles, the truth of which it takes for settled and immovable, proceeds to judgment and to the discovery of middle axioms. And this way is now in fashion. The other derives axioms from the senses and particulars, rising by a gradual and unbroken ascent, so that it arrives at the most general axioms last of all. This is the true way, but as yet untried.

XX. The understanding left to itself takes the same course (namely, the former) which it takes in accordance with logical order. For the mind longs to spring up to positions of higher generality, that it may find rest there, and so after a little while wearies of experiment. But this evil is increased by logic, because of the order and solemnity of its disputations.

XXI. The understanding left to itself, in a sober, patient, and grave mind, especially if it be not hindered by received doctrines, tries a little that other way, which is the right one, but with little progress, since the understanding, unless directed and assisted, is a thing unequal, and quite unfit to contend with the obscurity of things.

XXII. Both ways set out from the senses and particulars, and rest in the highest generalities; but the difference between them is infinite. For the one just glances at experiment and particulars in passing, the other dwells duly and orderly among them.

The one, again, begins at once by establishing certain abstract and

useless generalities, the other rises by gradual steps to that which is prior and better known in the order of nature.

XXIII. There is a great difference between the Idols of the human mind and the Ideas of the divine. That is to say, between certain empty dogmas, and the true signatures and marks set upon the works of creation as they are found in nature.

XXIV. It cannot be that axioms established by argumentation should avail for the discovery of new works, since the subtlety of nature is greater many times over than the subtlety of argument. But axioms duly and orderly formed from particulars easily discover the way to new particulars, and thus render sciences active.

XXV. The axioms now in use, having been suggested by a scanty and manipular experience and a few particulars of most general occurrence, are made for the most part just large enough to fit and take these in; and therefore it is no wonder if they do not lead to new particulars. And if some opposite instance, not observed or not known before, chance to come in the way, the axiom is rescued and preserved by some frivolous distinction; whereas the truer course would be to correct the axiom itself.

XXVI. The conclusions of human reason as ordinarily applied in matters of nature, I call for the sake of distinction *Anticipations of Nature* (as a thing rash or premature). That reason which is elicited from facts by a just and methodical process, I call *Interpretation of Nature*.

XXVII. Anticipations are a ground sufficiently firm for consent, for even if men went mad all after the same fashion, they might agree one with another well enough.

XXVIII. For the winning of assent, indeed, anticipations are far more powerful than interpretations, because being collected from a few instances, and those for the most part of familiar occurrence, they straightway touch the understanding and fill the imagination; whereas interpretations, on the other hand, being gathered here and there from very various and widely dispersed facts, cannot suddenly strike the understanding; and therefore they must needs, in respect of the opinions of the time, seem harsh and out of tune, much as the mysteries of faith do.

XXIX. In sciences founded on opinions and dogmas, the use of anticipations and logic is good; for in them the object is to command assent to the proposition, not to master the thing.

XXX. Though all the wits of all the ages should meet together and combine and transmit their labors, yet will no great progress ever be made in science by means of anticipations; because radical errors in the first concoction of the mind are not to be cured by the excellence of functions and subsequent remedies.

XXXI. It is idle to expect any great advancement in science from the superinducing and engrafting of new things upon old. We must begin anew from the very foundations, unless we would revolve forever in a circle with mean and contemptible progress.

XXXII. The honor of the ancient authors, and indeed of all, remains untouched, since the comparison I challenge is not of wits or faculties, but of ways and methods, and the part I take upon myself is not that of a judge, but of a guide.

XXXIII. This must be plainly avowed: no judgment can be rightly formed either of my method or of the discoveries to which it leads, by means of anticipations (that is to say, of the reasoning which is now in use); since I cannot be called on to abide by the sentence of a tribunal which is itself on trial.

XXXIV. Even to deliver and explain what I bring forward is no easy matter, for things in themselves new will yet be apprehended with reference to what is old.

XXXV. It was said by Borgia of the expedition of the French into Italy, that they came with chalk in their hands to mark out their lodgings, not with arms to force their way in. I in like manner would have my doctrine enter quietly into the minds that are fit and capable of receiving it; for confutations cannot be employed when the difference is upon first principles and very notions, and even upon forms of demonstration.

XXXVI. One method of delivery alone remains to us which is simply this: we must lead men to the particulars themselves, and their series and order; while men on their side must force themselves for a while to lay their notions by and begin to familiarize themselves with facts.

XXXVII. The doctrine of those who have denied that certainty could be attained at all has some agreement with my way of proceeding at the first setting out; but they end in being infinitely separated and opposed. For the holders of that doctrine assert simply that nothing can be known. I also assert that not much can be known in nature by the way which is now in use. But then they go on to destroy the authority of the senses and understanding; whereas I proceed to devise and supply helps for the same.

Book II

X. Having thus set up the mark of knowledge, we must go on to precepts, and that in the most direct and obvious order. Now my directions for the interpretation of nature embrace two generic divisions: the one how to educe and form axioms from experience; the other how to deduce and derive new experiments from axioms. The former again is divided into three ministrations: a ministration to the sense, a ministration to the memory, and a ministration to the mind or reason.

For first of all we must prepare a natural and experimental history, sufficient and good; and this is the foundation of all, for we are not to imagine or suppose, but to discover, what nature does or may be made to do.

But natural and experimental history is so various and diffuse that it confounds and distracts the understanding, unless it be ranged and presented to view in a suitable order. We must therefore form tables and arrangements of instances, in such a method and order that the understanding may be able to deal with them.

And even when this is done, still the understanding, if left to itself and its own spontaneous movements, is incompetent and unfit to form axioms, unless it be directed and guarded. Therefore in the third place we must use induction, true and legitimate induction, which is the very key of interpretation. But of this, which is the last, I must speak first, and then go back to the other ministrations.

XI. The investigation of forms proceeds thus: a nature being given, we must first of all have a muster or presentation before the understanding of all known instances which agree in the same nature, though in substances the most unlike. And such collection must be made in the manner of a history, without premature speculation, or any great amount of subtlety. For example, let the investigation be into the form of heat.

[Table 1] Instances Agreeing in the Nature of Heat

1. The rays of the sun, especially in summer and at noon.

2. The rays of the sun reflected and condensed, as between mountains, or on walls, and most of all in burning glasses and mirrors.

3. Fiery meteors.

4. Burning thunderbolts.

5. Eruptions of flame from the cavities of mountains.

6. All flame.

7. Ignited solids.

8. Natural warm baths.

9. Liquids boiling or heated.

10. Hot vapors and fumes, and the air itself, which conceives the most powerful and glowing heat if confined, as in reverbatory furnaces.

11. Certain seasons that are fine and cloudless by the constitution of the air itself, without regard to the time of year.

12. Air confined and underground in some caverns, especially in winter.

13. All villous substances, as wool, skins of animals, and down of birds, have heat.

14. All bodies, whether solid or liquid, whether dense or rare (as the air itself is), held for a time near the fire.

15. Sparks struck from flint and steel by strong percussion.

16. All bodies rubbed violently, as stone, wood, cloth, etc., insomuch that poles and axles of wheels sometimes catch fire; and the way they kindled fire in the West Indies was by attrition.

17. Green and moist vegetables confined and bruised together, as roses packed in baskets; insomuch that hay, if damp, when stacked, often catches fire.

18. Quicklime sprinkled with water.

19. Iron, when first dissolved by strong waters in glass, and that without being put near the fire. And in like manner tin, etc., but not with equal intensity.

20. Animals, especially and at all times internally; though in insects the heat is not perceptible to the touch by reason of the smallness of their size.

21. Horse dung and like excrements of animals, when fresh.

22. Strong oil of sulphur and of vitriol has the effect of heat in burning linen.

23. Oil of marjoram and similar oils have the effect of heat in burning the bones of the teeth.

24. Strong and well rectified spirit of wine has the effect of heat, insomuch that the white of an egg being put into it hardens and whitens almost as if it were boiled, and bread thrown in becomes dry and crusted like toast.

25. Aromatic and hot herbs, as *dracunculus*, *nasturtium vetus*, etc., although not warm to the hand (either whole or in powder), yet to the tongue and palate, being a little masticated, they feel hot and burning.

26. Strong vinegar, and all acids, on all parts of the body where there is no epidermis, as the eye, tongue, or on any part when wounded and laid bare of the skin, produce a pain but little differing from that which is created by heat.

27. Even keen and intense cold produces a kind of sensation of burning: "Nec Boreæ penetrabile frigus adurit." ["Nor burns the penetrating cold of the north wind."—a slightly altered quotation from Virgil.]

28. Other instances.

This table I call the Table of Essence and Presence.

XII. Secondly, we must make a presentation to the understanding of instances in which the given nature is wanting; because the form, as stated above, ought no less to be absent when the given nature is absent, than present when it is present. But to note all these would be endless.

The negatives should therefore be subjoined to the affirmatives, and the absence of the given nature inquired of in those subjects only that are most akin to the others in which it is present and forthcoming. This I call the *Table of Deviation, or of Absence in Proximity*.

XIII. Thirdly, we must make a presentation to the understanding of instances in which the nature under inquiry is found in different degrees, more or less; which must be done by making a comparison either of its increase and decrease in the same subject, or of its amount in different subjects, as compared one with another. For since the form of a thing is the very thing itself, and the thing differs from the form no otherwise than as the apparent differs from the real, or the external from the internal, or the thing in reference to man from the thing in reference to the universe, it necessarily follows that no nature can be taken as the true form, unless it always decrease when the nature in question decreases, and in like manner always increase when the nature in question increases. This Table therefore I call the *Table of Degrees* or the *Table of Comparison*.

. . .

XIV. How poor we are in history anyone may see from the foregoing tables, where I not only insert sometimes mere traditions and reports (though never without a note of doubtful credit and authority) in place of history proved and instances certain, but am also frequently forced to use the words "Let trial be made," or "Let it be further inquired."

XV. The work and office of these three tables I call the Presentation of Instances to the Understanding. Which presentation having been made, induction itself must be set at work; for the problem is, upon a review of the instances, all and each, to find such a nature as is always present or absent with the given nature, and always increases and decreases with it; and which is, as I have said, a particular case of a more general nature. Now if the mind attempt this affirmatively from the first, as when left to itself it is always wont to do, the result will be fancies and guesses and notions ill defined, and axioms that must be mended every day, unless like the schoolmen we have a mind to fight for what is false; though doubtless these will be better or worse according to the faculties and strength of the understanding which is at work. To God, truly, the Giver and Architect of Forms, and it may be to the angels and higher intelligences, it belongs to have an affirmative knowledge of forms immediately, and from the first contemplation. But this assuredly is more than man can do, to whom it is granted only to proceed at first by negatives, and at last to end in affirmatives after exclusion has been exhausted.

XVI. We must make, therefore, a complete solution and separation of nature, not indeed by fire, but by the mind, which is a kind of divine fire. The first work, therefore, of true induction (as far as regards the discovery of forms) is the rejection or exclusion of the several natures which are not found in some instance where the given nature is present, or are found in some instance where the given nature is absent, or are found to increase in some instance when the given nature decreases, or to decrease when the given nature increases. Then indeed after the rejection and exclusion has been duly made, there will remain at the bottom, all light opinions vanishing into smoke, a form affirmative, solid, and true and well defined. This is quickly said; but the way to come at it is winding and intricate. I will endeavor, however, not to overlook any of the points which may help us toward it.

•••

XIX. In the process of exclusion are laid the foundations of true induction, which however is not completed till it arrives at an affirmative. Nor is the exclusive part itself at all complete, nor indeed can it possibly be so at first. For exclusion is evidently the rejection of simple natures; and if we do not yet possess sound and true notions of simple natures, how can the process of exclusion be made accurate? Now some of the above-mentioned notions (as that of the nature of the elements, of the nature of heavenly bodies, of rarity) are vague and ill defined. I, therefore, well knowing and nowise forgetting how great a work I am about (viz., that of rendering the human understanding a match for things and nature), do not rest satisfied with the precepts I have laid down, but proceed further to devise and supply more powerful aids for the use of the understanding; which I shall now subjoin. And assuredly in the interpretation of nature the mind should by all means be so prepared and disposed that while it rests and finds footing in due stages and degrees of certainty, it may remember withal (especially at the beginning) that what it has before it depends in great measure upon what remains behind.

XX. And yet since truth will sooner come out from error than from confusion, I think it expedient that the understanding should have permission, after the three Tables of First Presentation (such as I have exhibited) have been made and weighed, to make an essay of the Interpretation of Nature in the affirmative way, on the strength both of the instances given in the tables, and of any others it may meet with elsewhere. Which kind of essay I call the *Indulgence of the Understanding*, or the *Commencement of Interpretation*, or the *First Vintage*.

Now from this our First Vintage it follows that the form or true definition of heat (heat, that is, in relation to the universe, not simply in relation to man) is, in few words, as follows: *Heat is a motion, expansive, restrained, and acting in its strife upon the smaller particles of bodies*. But the expansion is thus modified: *while it expands all ways, it has at the same time an inclination upward*. And the struggle in the particles is modified also; *it is not sluggish, but hurried and with violence*.

Viewed with reference to operation it is the same thing. For the direction is this: *If in any natural body you can excite a dilating or expanding motion, and can so repress this motion and turn it back upon itself that the dilation shall not proceed equably, but have its way in one part and be counteracted in another, you will undoubtedly generate heat;* without taking into account whether the body be elementary (as it is called) or subject to celestial influence; whether it be luminous or opaque; rare or dense; locally expanded or confined within the bounds of its first dimension; verging to dissolution or remaining in its original state; animal, vegetable, or mineral, water, oil or air, or any other substance whatever susceptible of the above-mentioned motion. Sensible heat is the same thing; only it must be considered with reference to the sense. Let us now proceed to further aids.

René Descartes, selections from *Discourse on Method* (John Veitch, tr.) Part II.

...

Among the branches of philosophy, I had, at an earlier period, given some attention to logic, and among those of the mathematics to geometrical analysis and algebra,—three arts or sciences which ought, as I conceived, to contribute something to my design. But, on examination, I found that, By these considerations I was induced to seek some other method which would comprise the advantages of the three and be exempt from their defects. And as a multitude of laws often only hampers justice, so that a state is best governed when, with few laws, these are rigidly administered; in like manner, instead of the great number of precepts of which logic is composed, I believed that the four following would prove perfectly sufficient for me, provided I took the firm and unwavering resolution never in a single instance to fail in observing them.

The first was never to accept anything for true which I did not clearly know to be such; that is to say, carefully to avoid precipitancy and prejudice, and to comprise nothing more in my judgement than what was presented to my mind so clearly and distinctly as to exclude all ground of doubt.

The second, to divide each of the difficulties under examination into as many parts as possible, and as might be necessary for its adequate solution.

The third, to conduct my thoughts in such order that, by commencing with objects the simplest and easiest to know, I might ascend by little and little, and, as it were, step by step, to the knowledge of the more complex; assigning in thought a certain order even to those objects which in their own nature do not stand in a relation of antecedence and sequence.

And the last, in every case to make enumerations so complete, and reviews so general, that I might be assured that nothing was omitted.

The long chains of simple and easy reasonings by means of which geometers are accustomed to reach the conclusions of their most difficult demonstrations, had led me to imagine that all things, to the

knowledge of which man is competent, are mutually connected in the same way, and that there is nothing so far removed from us as to be beyond our reach, or so hidden that we cannot discover it, provided only we abstain from accepting the false for the true, and always preserve in our thoughts the order necessary for the deduction of one truth from another.... I had no intention ... of attempting to master all the particular sciences commonly denominated mathematics: but observing that, however different their objects, they all agree in considering only the various relations or proportions subsisting among those objects, I thought it best for my purpose to consider these proportions in the most general form possible, without referring them to any objects in particular, except such as would most facilitate the knowledge of them, and without by any means restricting them to these, that afterwards I might thus be the better able to apply them to every other class of objects to which they are legitimately applicable. Perceiving further, that in order to understand these relations I should sometimes have to consider them one by one and sometimes only to bear them in mind, or embrace them in the aggregate, I thought that, in order the better to consider them individually, I should view them as subsisting between straight lines, than which I could find no objects more simple, or capable of being more distinctly represented to my imagination and senses; and on the other hand, that in order to retain them in the memory or embrace an aggregate of many, I should express them by certain characters the briefest possible. In this way I believed that I could borrow all that was best both in geometrical analysis and in algebra, and correct all the defects of the one by help of the other.

And, in point of fact, the accurate observance of these few precepts gave me, I take the liberty of saying, such ease in unraveling all the questions embraced in these two sciences, that in the two or three months I devoted to their examination, not only did I reach solutions of questions I had formerly deemed exceedingly difficult but even as regards questions of the solution of which I continued ignorant, I was enabled, as it appeared to me, to determine the means whereby, and the extent to which a solution was possible; results attributable to the circumstance that I commenced with the simplest and most general truths, and that thus each truth discovered was a rule available in the discovery of subsequent ones....

But the chief ground of my satisfaction with thus method, was the assurance I had of thereby exercising my reason in all matters, if not with absolute perfection, at least with the greatest attainable by me: besides, I was conscious that by its use my mind was becoming gradually habituated to clearer and more distinct conceptions of its objects; and I hoped also, from not having restricted this method to any particular matter, to apply it to the difficulties of the other sciences, with not less success than to those of algebra....

I have never made much account of what has proceeded from my own mind; and so long as I gathered no other advantage from the method I employ beyond satisfying myself on some difficulties belonging to the speculative sciences, or endeavoring to regulate my actions according to the principles it taught me, I never thought myself bound to publish anything respecting it.... But as soon as I had acquired some general notions respecting physics, and beginning to make trial of them in various particular difficulties, had observed how far they can carry us, and how much they differ from the principles that have been employed up to the present time, I believed that I could not keep them concealed without sinning grievously against the law by which we are bound to promote, as far as in us lies, the general good of mankind. For by them I perceived it to be possible to arrive at knowledge highly useful in life; and in room of the speculative philosophy usually taught in the schools, to discover a practical, by means of which, knowing the force and action of fire, water, air the stars, the heavens, and all the other bodies that surround us, as distinctly as we know the various crafts of our artisans, we might also apply them in the same way to all the uses to which they are adapted, and thus render ourselves the lords and possessors of nature. And this is a result to be desired, not only in order to the invention of an infinity of arts, by which we might be enabled to enjoy without any trouble the fruits of the earth, and all its comforts, but also and especially for the preservation of health, which is without doubt, of all the blessings of this life, the first and fundamental one; for the mind is so intimately dependent upon the condition and relation of the organs of the body, that if any means can ever be found to render men wiser and more ingenious than hitherto, I believe that it is in medicine they must be sought for....

I remarked, moreover, with respect to experiments, that they become always more necessary the more one is advanced in knowledge; for, at the commencement, it is better to make use only of what is spontaneously presented to our senses, and of which we cannot remain ignorant, provided we bestow on it any reflection, however slight, than to concern ourselves about more uncommon and recondite phenomena: the reason of which is, that the more uncommon often only mislead us so long as the causes of the more ordinary are still unknown; and the circumstances upon which they depend are almost always so special and minute as to be highly difficult to detect. But in this I have adopted the following order: first, I have essayed to find in general the principles, or first causes of all that is or can be in the world, without taking into consideration for this end anything but God himself who

has created it, and without educing them from any other source than from certain germs of truths naturally existing in our minds In the second place, I examined what were the first and most ordinary effects that could be deduced from these causes; and it appears to me that, in this way, I have found heavens, stars, an earth, and even on the earth water, air, fire, minerals, and some other things of this kind, which of all others are the most common and simple, and hence the easiest to know. Afterwards when I wished to descend to the more particular, so many diverse objects presented themselves to me, that I believed it to be impossible for the human mind to distinguish the forms or species of bodies that are upon the earth, from an infinity of others which might have been, if it had pleased God to place them there, or consequently to apply them to our use, unless we rise to causes through their effects, and avail ourselves of many particular experiments. Thereupon, turning over in my mind I the objects that had ever been presented to my senses I freely venture to state that I have never observed any which I could not satisfactorily explain by the principles had discovered. But it is necessary also to confess that the power of nature is so ample and vast, and these principles so simple and general, that I have hardly observed a single particular effect which I cannot at once recognize as capable of being deduced in man different modes from the principles, and that my greatest difficulty usually is to discover in which of these modes the effect is dependent upon them; for out of this difficulty cannot otherwise extricate myself than by again seeking certain experiments, which may be such that their result is not the same, if it is in the one of these modes at we must explain it, as it would be if it were to be explained in the other. As to what remains, I am now in a position to discern, as I think, with sufficient clearness what course must be taken to make the majority those experiments which may conduce to this end: but I perceive likewise that they are such and so numerous, that neither my hands nor my income, though it were a thousand times larger than it is, would be sufficient for them all; so that according as henceforward I shall have the means of making more or fewer experiments, I shall in the same proportion make greater or less progress in the knowledge of nature. This was what I had hoped to make known by the treatise I had written, and so clearly to exhibit the advantage that would thence accrue to the public, as to induce all who have the common good of man at heart, that is, all who are virtuous in truth, and not merely in appearance, or according to opinion, as well to communicate to me the experiments they had already made, as to assist me in those that remain to be made.

But since that time other reasons have occurred to me, by which I have been led to change my opinion, and to think that I ought indeed to go on committing to writing all the results which I deemed of any moment, as soon as I should have tested their truth, and to bestow the

same care upon them as I would have done had it been my design to publish them. This course commended itself to me, as well because I thus afforded myself more ample inducement to examine them thoroughly, for doubtless that is always more narrowly scrutinized which we believe will be read by many, than that which is written merely for our private use (and frequently what has seemed to me true when I first conceived it, has appeared false when I have set about committing it to writing), as because I thus lost no opportunity of advancing the interests of the public, as far as in me lay, and since thus likewise, if my writings possess any value, those into whose hands they may fall after my death may be able to put them to what use they deem proper. But I resolved by no means to consent to their publication during my lifetime, lest either the oppositions or the controversies to which they might give rise, or even the reputation, such as it might be, which they would acquire for me, should be any occasion of my losing the time that I had set apart for my own improvement.... If I have succeeded in discovering any truths in the sciences (and I trust that what is contained in this volume I will show that I have found some), I can declare that they are but the consequences and results of five or six principal difficulties which I have surmounted, and my encounters with which I reckoned as battles in which victory declared for me. I will not hesitate even to avow my belief that nothing further is wanting to enable me fully to realize my designs than to gain two or three similar victories; and that I am not so far advanced in years but that, according to the ordinary course of nature, I may still have sufficient leisure for this end....

It is true, indeed, as regards the experiments which may conduce to this end, that one man is not equal to the task of making them all; but yet he can advantageously avail himself, in this work, of no hands besides his own, unless those of artisans, or parties of the same kind, whom he could pay, and whom the hope of gain (a means of great efficacy) might stimulate to accuracy in the performance of what was prescribed to them.... If there existed any one whom we assuredly knew to be capable of making discoveries of the highest kind, and of the greatest possible utility to the public; and if all other men were therefore eager by all means to assist him in successfully prosecuting his designs, I do not see that they could do aught else for him beyond contributing to defray the expenses of the experiments that might be necessary; and for the rest, prevent his being deprived of his leisure by the unseasonable interruptions of any one....