
Phi 272 F09 reading assignment for Thurs. 9/10

Handout on Bayes’ theorem 
 

The theory of probability
Let us call whatever it is that probabilities are assigned to “events.”
The theory of probability a range of events that includes all events
specified in certain ways relative to others. In particular, we want to
have an event U (for “universal”) that happens no matter what event
occurs and to have, for any events E and F, further events not-E
(which happens when E does not), E or F (which happens when at
least one of E and F does) and E and F (which happens when both
of E and F do). In many cases, it is also necessary to have events E1
or E2 or … and E1 and E2 and … for any series of events E1,
E2, ….

There are then only a few basic axioms assumed for probability.

(i) prob(E) ≥ 0 for any event E;
(ii) prob(U) = 1;
(iii) if E and F mutually exclusive, then prob(E or F) = prob(E)

+ prob(F); or, more generally, if every pair of events from E1,
E2, … are mutually exclusive, then prob(E1 or E2 or …) is
the sum of the probabilities prob(E1), prob(E2), ….

(Events E and F are mutually exclusive when they cannot occur
together—i.e., when not-(E and F) = U.) That is, probabilities are
never negative, the probability of the universal event is 1, and
probabilities of mutually exclusive alternatives can be added to give
the probability that at least one holds. Many other facts follow from
these. For example, logic tells us that E or not-E = U and that E
and not-E are mutually exclusive. It follows for any event E that
prob(E) + prob(not-E) = 1, that prob(not-E) = 1 - prob(E), and
that prob(E) ≤ 1.

Since the assumptions above are enough to get the usual laws of
probability, they are all that need to be satisfied by an idea in order
for it to count as an interpretation of probability theory. Of course,
that’s not to say that any way of satisfying them counts as a sensible
concept of probability.

Bayes’ theorem
One of the basic principles of probability theory that is most useful in
applications to induction is an idea due to the 18th century

clergyman Thomas Bayes (1702-1761). To state it we need the idea of
conditional probability, the probability of one event given that
another occurs. It is defined as follows:

prob(E given F) = prob(E and F) / prob(F)

which makes sense only if prob(F) > 0. Conditional probability is a
quantity assigned to a pair of events that gives the probability of the
first relative to the second. For example, prob(The die is even
given The die is 1, 2, or 3) = 1/3 but prob(The die is even given
The die is 4, 5, or 6) = 2/3.

Multiplying both sides of the definition of conditional probability
by prob(F) gives the usual formula for the probability of conjunctive
event:

prob(E and F) = prob(E given F) × prob(F)

Applying this to the event H and E = E and H and dividing both
sides by prob(E)—so we assume prob(E) > 0—gives Bayes’
Theorem:

prob(H given E) = prob(E given H)
prob(E)

 × prob(H)

The letters here reflect the chief application of the idea to induction:
H is a hypothesis and E is the statement of some evidence. The
quantity on the left, prob(H given E), is the probability of a
hypothesis H given evidence E (its “posterior probability”), and the
quantity on the far right, prob(H), is the probability that the
hypothesis would have independent of the evidence (its “prior
probability”). The factor that converts the prior into the posterior
probability is the ratio of the probability prob(E given H) of the
evidence given the hypothesis (the probability with which the
hypothesis would lead us to predict the evidence) and the probability
prob(E) that the evidence would have if we make no assumptions
about the truth of the hypothesis.

It is natural to say that evidence confirms a hypothesis when the
posterior probability of the hypothesis is greater than its prior
probability. Notice that this happens to the extent that the
hypothesis makes the evidence more likely than it would be if the
hypothesis was not assumed. A hypothesis is best confirmed by
evidence that is surprising—i.e., where prob(E) is small—but that is
strongly predicted by the hypothesis—i.e., where prob(E given H) is
large. (We will return these ideas below.)

The quantities on the right in Bayes’ theorem are not all
independent, so you cannot freely choose any values from 0 to 1 for



each of these probabilities. When prob(H) < 1 and prob(E given
not-H) > 0, Bayes’ theorem can be put into a another form which
does not have this limitation. If we divide each side of Bayes’
theorem above by the two sides of the corresponding principle for
not-H, we get

prob(H given E)
prob(not-H given E)

 = prob(E given H)
prob(E given not-H)

 × prob(H)
prob(not-H)

The expression at the far right is a formula for the odds on H (e.g.,
the odds on something whose probability is .75 are .75/.25 = 3/1 or 3
to 1 odds), and the expression at the far left can be thought of as a
formula for conditional odds. So we can write this as

odds(H given E) = prob(E given H)
prob(E given not-H)

 × odds(H)

The quantity in the middle is sometimes called the “likelihood ratio”
for given evidence, so this form of Bayes’ theorem can be expressed
by saying that the posterior odds on a hypothesis are equal to the
product of the prior odds and the likelihood ratio. All three
probabilities on the right can be assigned independently, so the
posterior odds (and therefore probability) can be thought of as a
function of three things, the prior probability (which determines the
prior odds), the strength with which the hypothesis predicts the
evidence, and the extent to which the evidence would be expected if
the hypothesis were false. The first two factors increase the posterior
probability of the hypothesis while the third decreases it.

Of course, we cannot say that the posterior probability is a product
of the prior probability and the likelihood ratio because a large
increase in odds need not be a large increase in probability (e.g.,
doubling odds of 50 to 1 to 100 to 1 takes you from a probability a
little over .98 to one a little over .99). The diagram below is intended
to give a you a sense of the actual effects on probabilities of various
likelihood ratios.

The posterior probability is the vertical axis. The likelihood ratio is
shown in a logarithmic scale running from 1/100 to 100 on the axis
running into the picture to the right. The prior probabilities are on
the axis running into the picture on the left. Notice that when the
likelihood ratio is 1, the prior and posterior probabilities are the
same (the straight line running through the middle of the surface).
When the likelihood ratio is greater than 1, the increase in low prior
probabilities is roughly the likelihood ratio but the increase in high
prior probabilities is much less. The situation is reversed when the
likelihood ratio is less than 1 (and the evidence disconfirms the

hypothesis). If you would like to experiment with numerical values
for these quantities the course web site has an on-line calculator
(phi272Bayescalc1) that will do the arithmetic for you.

Bayes’ theorem and confirmation
One of the values of Bayes’ theorem for thinking about the
confirmation of hypotheses is that it distinguishes three sorts of
factors that may play a role in confirmation. And it is possible to
classify many of the factors that are known to play a role in
confirmation in this way. Here are three examples.

• The simpler of two hypotheses is often thought to be better
confirmed by evidence that confirms both. Simplicity is an
internal feature of a hypothesis, a feature it has independent
of evidence, so it is the sort of thing that could affect its prior
probability prob(H).

• The ideal sort of evidence for confirming a hypothesis is
evidence whose failure would falsify it. That is evidence for
which prob(E given H) = 1 because, for such evidence,
prob(not-E given H) = 0 and therefore prob(H given
not-E) = 0. And evidence for which prob(E given H) = 1
makes the likelihood ratio as large as possible, so Bayes’



theorem agrees that it is the best. Criticisms of Popper’s
falsificationism suggest such evidence may be hard to come
by, but Bayes’ theorem tells us that evidence for which prob(E
given H) is close to 1 would be almost as good. And, in
general, it says that a hypothesis will be better supported by
evidence that it predicts greater confidence.

• It is often said that variety in evidence is more valuable than
an increased quantity of the same evidence. It can be a little
hard to define the notion of “variety” used here since any new
evidence is different from earlier evidence in some respect
(the time at which it is obtained if nothing else). But Bayes’
theorem suggests a significance some sorts of variety might
have. As observations of a given sort start to follow a pattern,
we are likely to expect that pattern to be repeated even if a
hypothesis predicting it is false, so we would expect the
quantity prob(E given not-H) to increase as we begin to see
a pattern. Further evidence of this sort would then do less to
confirm the hypothesis than it did when prob(E given not-H)
was smaller, and turning to evidence of a different sort might
return us to lower values for prob(E given not-H).

Use of Bayes’ theorem in confirmation is generally tied to a natural
rule for updating probabilities in response to new evidence. Let us
say that the probabilities we assign at any given time are relative to
the sum total K of our knowledge at that time and write this
assignment as “probK.” When we obtain new evidence E our
knowledge changes from K to K and E and our probability
assignment from probK to probK and E. The rule for altering
probabilities on the basis of new evidence then requires that

probK and E(F) = probK(F given E)

for any event F. And Bayes’ theorem provides a way of calculating
the quantity on the right. Putting it together with the rule above, we
get the following rules for probabilities and odds:

probK and E(F) = 
probK(E given F)

probK(E)
 × probK(F)

oddsK and E(F) = 
probK(E given F)

probK(E given not-F)
 × oddsK(F)

for any event F. In particular, the second one tells us that we should
alter our probability assignments on the basis of new evidence by
way of the likelihood ratios for that evidence.

If you would like to look at confirmation numerically, the course web
site has an on-line calculator (phi272Bayescalc2) that will carry
out repeated updates in the context of enumerative induction (i.e.,
confirmation of a hypothesis of the form All S are P on the basis of
particular instances of it).


