Appendices

Appendix A. Reference

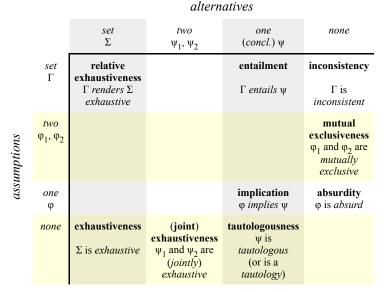
A.0. Overview

- A.1. Definitions and notation for basic concepts
 - The full range of deductive properties and relations
- A.2. Logical forms

Forms expressed using one or more logical constants together with symbolic and English notation or readings

A.3. Truth tables

Tables that stipulate the meaning of the constants of truth-functional logic


A.4. Derivation rules

A guide to the use of derivation rules with links to the rules themselves

Glen Helman 01 Aug 2013

A.1. Definitions and notation for basic concepts

Most deductive properties or relation concerns a set or some specific number of *assumptions* and a set or some specific number of *alternatives*. When there is only one alternative, it is a *conclusion*. This is shown in the following table, where cells are labeled in boldface by the concept expressed as a noun, with the verbal or adjectival form shown in italics.

Not appearing in the table are two relations that each abbreviate conjunctions of two claims drawn from the ones above.

conjunctive relation	component relations	
(logical) equivalence φ and ψ are (<i>logically</i>) equivalent	ϕ implies ψ	ψ implies φ
contradictoriness ϕ and ψ are <i>contradictory</i>	φ and ψ are mutually exclusive	φ and ψ are jointly exhaustive

There are also two alternative ways of applying the concept of inconsistency:

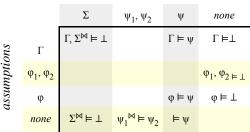
alternative statements (for assumptions Γ and φ)

exclusion	relative inconsistency	inconsistency of the union
Γ excludes φ	ϕ is <i>inconsistent with</i> Γ	Γ with φ added is <i>inconsistent</i>

Note that in this case all sentences involved count as assumptions.

All concepts appearing in the first table can be defined in the same way, as saying that their assumptions cannot be separated from their alternatives. This idea can be stated more specifically in two ways:

- NEGATIVE DEFINITION: there is no possible world in which the assumptions (if any) are all true while the alternatives (if any) are all false.
- POSITIVE DEFINITION: in each possible world in which the assumptions (if any) are all true, at least one alternative is true.


When there are no assumptions or no alternatives, the corresponding clause may be dropped from the negative form. The same is true for the clause regarding assumptions in the positive form; and, if there are no alternatives, that definition can be restated as: *in each possible world, the assumptions are not all true* (i.e., *at least one is false*).

The following table gives an explicit definition for each of these concepts and also indicates compact notation for the concept.

concept	negative definition	positive definition
φ is a <i>tautology</i> ⊨φ	There is no possible world in which ϕ is false.	ϕ is true in every possible world.
φ is <i>absurd</i> φ⊨	There is no possible world in which ϕ is true.	ϕ is false in every possible world.
φ <i>implies</i> ψ φ ⊨ ψ	There is no possible world in which ϕ is true and ψ is false.	ψ is true in every possible world in which φ is true.
ϕ and ψ are mutually exclusive $\phi \bigtriangleup \psi$	There is no possible world in which ϕ and ψ are both true.	In each possible world, at least one of φ and ψ is false.
φ and ψ are <i>(jointly) exhaustive</i> φ マ ψ	There is no possible world in which ϕ and ψ are both false.	In each possible world, at least one of ϕ and ψ is true.
ϕ and ψ are (logically) equivalent $\phi \simeq \psi$	There is no possible world in which ϕ and ψ have different truth values.	In each possible world, φ and ψ have the same truth value as each other.
φ and ψ are <i>contradictory</i> φ ⋈ ψ	There is no possible world in which ϕ and ψ have the same truth value.	In each possible world, φ and ψ have opposite truth values.
Γ is inconsistent $\Gamma \vDash$	There is no possible world in which all members of Γ are true.	In each possible world, at least one member of Γ is false.
Γ is <i>exhaustive</i> ⊨ Γ	There is no possible world in which all members of Γ are false.	In each possible world, at least one member of Γ is true.
Γ <i>entails</i> φ Γ⊨φ	There is no possible world in which ϕ is false while all members of Γ are true.	φ is true in every possible world in which all members of Γ are true.
Γ <i>excludes</i> φ Γ, φ ⊨	There is no possible world in which ϕ is true while all members of Γ are true.	ϕ is false in every possible world in which all members of Γ are true.
$\Gamma \text{ renders } \Sigma$ exhaustive $\Gamma \models \Sigma$	There is no possible world in which all members of Γ are true while all members of Σ are false.	In each possible world in which all members of Γ are true, at least one member of Σ is true

All these concepts can be expressed in terms of relative exhaustiveness and also in terms of entailment. To express them in terms of relative exhaustiveness, simply list the assumptions (if any) to the left of \vDash and list the alternatives (if any) to its right. The ex-

pression in terms of entailment for the concepts in the first table is shown below.

alternatives

Here θ^{\bowtie} is any sentence contradictory to θ (such as its negation); and Σ^{\bowtie} is any result of replacing each member of Σ by a sentence that is contradictory to it. The joint ex-

haustiveness of ψ_1 and ψ_2 may also be expressed by $\psi_2^{\bowtie} \models \psi_1$ and by ψ_1^{\bowtie} , $\psi_2^{\bowtie} \models \bot$. The general rule is that alternatives can be dropped if their contradictories are made assumptions (and vice versa) and that \bot may used as a conclusion if there are no alternatives already.

Glen Helman 01 Aug 2013

A.2. Logical forms

	Symbolic notation	n English notation	or English reading	
Negation	$\neg \phi$	r	not φ	
Conjunction	$\phi \wedge \psi$	both ϕ and ψ	$(\phi \text{ and } \psi)$	
Disjunction	$\phi \vee \psi$	either ϕ or ψ	(φ or ψ)	
The conditional	$\begin{array}{l} \phi \rightarrow \psi \\ \psi \leftarrow \phi \end{array}$	if φ then ψ yes ψ if φ	(φ <mark>implies</mark> ψ) (ψ if φ)	
Identity	$\tau = \upsilon$	τ	τ <mark>is</mark> υ	
Predication	$\theta \tau_1 \dots \tau_n$	θ fits $\tau_1,, \tau_n$	A series of terms $\tau_1,, \tau_n$ can be read (series) $\tau_1,, \eta_n$	
Compound term	$\gamma \tau_1 \dots \tau_n$	$\gamma \text{ of } \tau_1,, \tau_n$ $\gamma \text{ applied to } \tau_1,, \tau_n$	τ_n (using the expression \Rightarrow n to distinguish this use of an	
Predicate abstrac	t $\left[\phi\right]_{x_1x_n}$	what φ says of x_1x_n		
Functor abstract		τ for	x ₁ x _n	
Universal quantification	$\forall x \ \theta x$	forall x θx everything, x, is such that θx		
Restricted universal	(∀x: ρx) θx	forall x st $\rho x \theta x$ everything, x, such that ρx is such that θx		
Existential quantification	∃x θx	forsome x θx something, x, is such that θx		
Restricted existential	(∃x: ρx) θx	forsome x st $\rho x \theta x$ something, x, such that ρx is such that θx		
Definite description	Ιχ ρχ		<mark>the</mark> x st ρx the thing, x, such that ρx	
	Some parar	hrases of other for	rms	

Forms for which there is symbolic notation

Symbolic notation English potation or English noodi

Some paraphrases of other forms

Truth-functional compounds

neither ϕ nor ψ	$\neg (\phi \lor \psi)$
	$\neg \phi \land \neg \psi$

ψ only if ϕ	$\neg \psi \leftarrow \neg \phi$		
ψ unless ϕ	$\psi \leftarrow \neg \ \phi$		
	Generalizations		
All Cs are such that (they)	(∀x: x is a C) x		
No Cs are such that (they)	(∀x: x is a C) ¬ x .		
Only Cs are such that (they)	(∀x: ¬ x is a C) ¬ x		
with: among Bs	add to the restriction:	x is a B	
except Es		⊐ x is an E	
other than $\boldsymbol{\tau}$		$\neg x = \tau$	
Numerical quantifier phrases			
At least 1 C is such that (it)	(∃x: x is a C) x		
At least 2 Cs are such that (they)	$(\exists x: x \text{ is a } C) (\exists y: y \text{ is a } C \land \neg y = x) ($	x ∧ y)	
Exactly 1 C is such that (it)	(∃x: x is a C) (x ∧ (∀y: y is a C ∧ ¬ or (∃x: x is a C) (x ∧ (∀y: y is a C /		
Definite descriptions (on Russell's analysis)			
The C is such that (it)	$(\exists x: x \text{ is a } C \land (\forall y: \neg y = x) \neg y \text{ i})$ or $(\exists x: x \text{ is a } C \land (\forall y: y \text{ is a } C) x \text{ i})$		

Glen Helman 01 Aug 2013

A.3. Truth tables

$ \frac{T}{T} \qquad \frac{L}{F} \qquad \frac{\varphi \neg \varphi}{T F} \\ \frac{\varphi \neg \varphi}{T F} \\ \frac{\varphi \neg \varphi}{T F} \\ \frac{\varphi \neg \varphi}{F T} \\ \frac{\varphi \neg \varphi}{T} \\ \varphi $	Таи	lautology	Abs	surdity	Ne	gation
		Т		\perp	φ	$\neg \phi$
FT		Т		F	Т	F
					F	Т
Conjunction Disjunction Conditional	Conj	onjunction	Disj	unction	Con	ditional
$\varphi \psi \phi \land \psi \qquad \varphi \psi \phi \lor \psi \qquad \varphi \psi \phi \to \psi$	φψ	ψφΛψ	φψ	$\phi \lor \psi$	φψ	$\phi\rightarrow\psi$
TTTTTTTT	ТТ	ТТ	ТТ	Т	ТТ	Т
TFF TFT F	ΤF	F F	ΤF	Т	ΤF	F
FT F FT T FT T	FΤ	T F	FΤ	Т	FΤ	Т
FF F FF FF T	F F	F F	F F	F	FF	Т

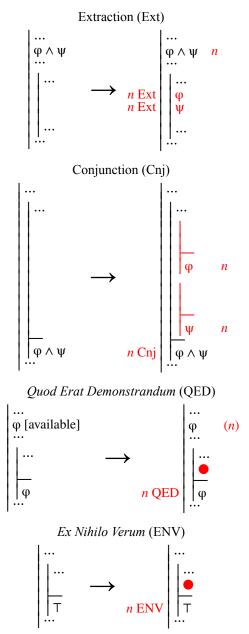
Glen Helman 01 Aug 2013

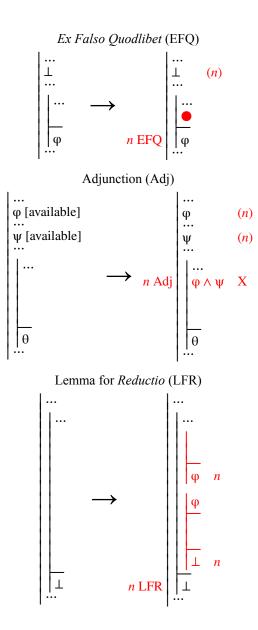
A.4. Derivation rules

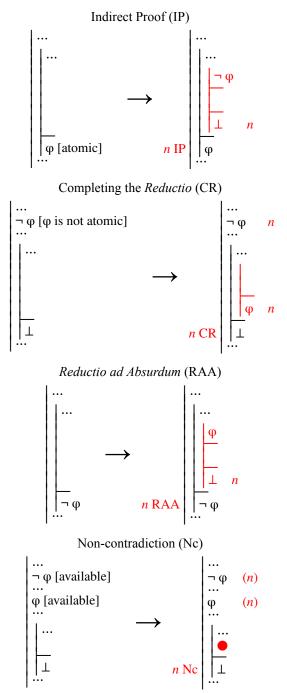
Rules for	r developing ga	ips
logical form	as a	as a
0	resource	goal
atomic		ĪP
sentence		
	~~	
negation	CR	RAA
$\neg \phi$	(if ϕ not atomic	
	& goal is ⊥)	
conjunction	Ext	Cnj
φΛΨ		^c
disjunction	PC	PE
$\phi \lor \psi$		
1 1	DC	CD
conditional	RC	CP
$\phi \to \psi$	(if goal is \perp)	
universal	UI	UG
	01	00
VA 0A		
existential	PCh	NcP
∃х θх		
universal ∀x θx existential	UI	UG NcP

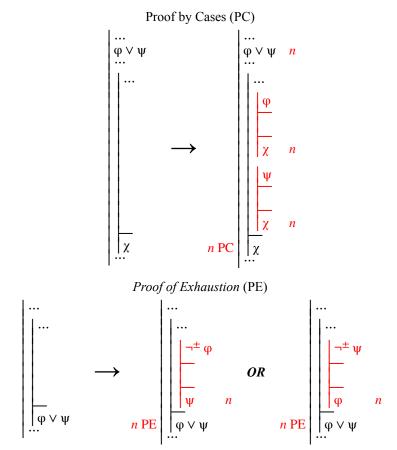
Basic system

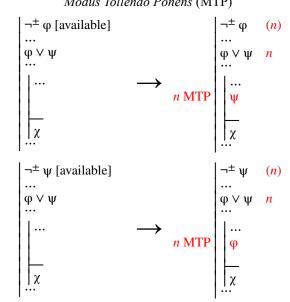
	Rules	for closing	gaps	
	when	to close		rule
со-а	aliases	resources	goal	
		φ	φ	QED
u.				
		ϕ and $\neg \phi$	\bot	Nc
			Т	ENV
		T		EFQ
τ	—υ		$\tau = \upsilon$	EC
τ	—υ	$\neg \tau = \upsilon$	T	DC
$\tau_1 - \upsilon_1$,	$\dots, \tau_n - \upsilon_n$	$P\tau_1\tau_n$ H	$\mathfrak{v}_1\mathfrak{v}_n$	QED=
$\tau_1 - \upsilon_1$,	$\dots, \tau_n - \upsilon_n$	$P\tau_1\tau_n$	\perp	Nc=
		$\neg Pv_1v_n$		
	Detachn	ient rules (o	ptional)	
	require	ed resources	rule	
	main	auxiliary		
		φ	MPP	_
	$\phi \rightarrow \psi$	$\neg^{\pm} \psi$	MTT	_
	φνψ	$\neg^{\pm} \phi \text{ or } \neg^{\pm}$	ψ MTP	_
	$\neg (\phi \land \psi)$		MPT	-

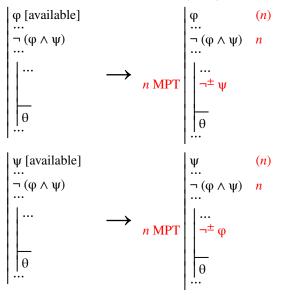

except for differences between co-aliases, then the rule can be applied and is notated by adding "="; QED= and Nc= are examples of this.

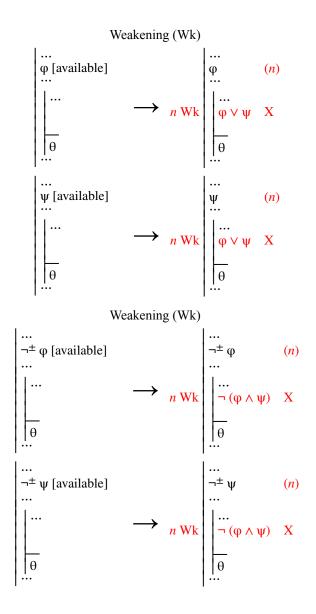

In addition, if the conditions for applying a rule are met

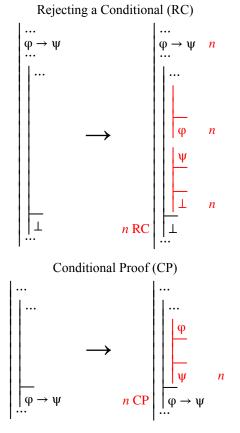

Additional rules (not guaranteed to be progressive)

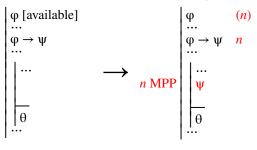

Attachment ru	ıles
added resource	rule
$\phi \land \psi$	Adj
$\phi \rightarrow \psi$	Wk
$\phi \lor \psi$	Wk
$\neg (\phi \land \psi)$	Wk
$\tau = \upsilon$	CE
$\theta v_1 \dots v_n$	Cng
∃x θx	EG

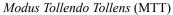

Rule for lemmasprerequisiterulethe goal is \perp LFR

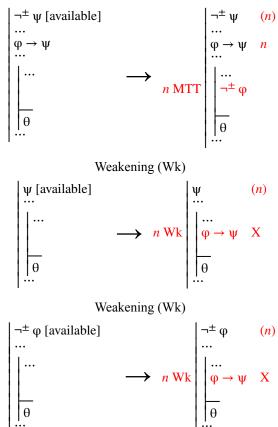


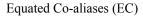


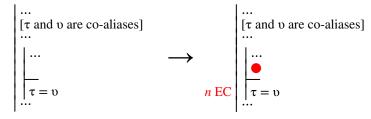


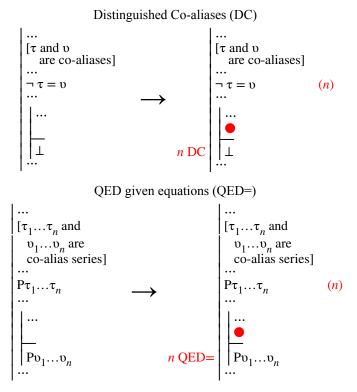

Modus Ponendo Tollens (MPT)

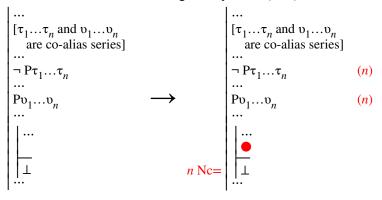


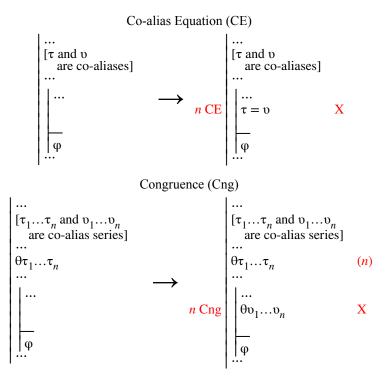



Modus Ponendo Ponens (MPP)



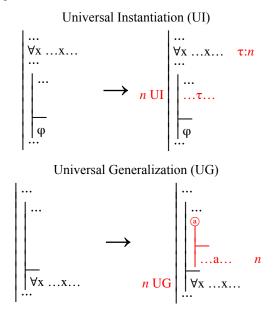


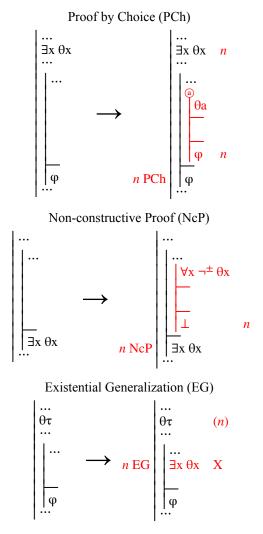




Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Non-contradiction given equations (Nc=)




Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Note: θ can be an abstract, so $\theta \tau_1 \dots \tau_n$ and $\theta \upsilon_1 \dots \upsilon_n$ are any formulas that differ only in the occurrence of terms and in which the corresponding terms are co-aliases.

Rules from chapter 7

Glen Helman 01 Aug 2013