
7.2. Generalizations and quantifiers
7.2.0. Overview
Our symbolic analysis of generalizations is somewhat analogous to our analy-
sis of conditionals: we use a single symbol and distinguish different kinds of
generalization by the use of negation.

7.2.1. The universal quantifier
The basic logical constant we use to analyze generalizations comes in two
varieties; both are operators that apply to a one-place predicate, one to assert
that it is true of all reference values in the extension of another predicate and
the other to assert that it is true of all reference values whatsoever.

7.2.2. Analyzing generalizations
The restatement of a generalization using expansion and its classification as
either affirmative or negative and either direct or complementary translate
directly into a symbolic analysis of it.

7.2.3. Compound restrictions
The formula specifying the domain of a symbolic generalization is often
logically complex; bounds and exceptions are one source of this complexity.
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7.2.1. The universal quantifier
A quantifier is an operator that takes predicates as input and yields sentences as
output. The quantifiers we will consider all apply only to 1-place predicates,
but we will consider them in two forms, one that is a 2-place operator applying
to a pair of 1-place predicates and another that is a 1-place operator applying
to a single 1-place predicate. When there is no need to distinguish them we
will refer to both as universal quantifiers and describe the formulas they form
also as universal (or, less formally, use universal as a common noun and refer
to them as universals).

Our 2-place quantifier is the restricted universal quantifier for which we use
the symbol ∀ (the symbol for all). It will eventually be convenient to use this
symbol always along with a variable and some associated punctuation; but, for
the moment, we will speak of it alone, as the sole notation for this quantifier. A
sentence ∀ θ that results from applying the restricted universal quantifier to
predicates ρ and θ will be referred to as a restricted universal. It says that θ is
true of everything that ρ is true of—i.e., that the extension of θ includes the ex-
tension of ρ.  This makes ∀ θ an affirmative direct generalization whose do-
main is the extension of ρ and whose attribute is expressed by θ. Since the
scope of the generalization is limited to the extension of ρ we will refer to ρ as
the restricting predicate, and we will refer to θ, which expresses the property
said to hold generally, as the quantified predicate.

The  simplest  case  of  a  restricted  universal  is  one  whose  restricting  and
quantified predicates are unanalyzed. For example, if W is [ _ walks] and M is
[ _ moves], then we might write ∀ M to say that anything that walks also
moves. More often, the restricting or quantified predicate will have internal
structure, and we will use an abstract to express it. For example, if we want to
say  that  anything  that  walks  and  talks  both  moves  and  communicates,  we
might do this with the form

∀  [Mx ∧ Cx]

where T is [ _ talks] and C is [ _ communicates].
Since we are able always to write the two abstracts using the same variable,

we can use the following more abbreviated notation for the universal sentence:

(∀x: Wx ∧ Tx) (Mx ∧ Cx).

And this notation has the advantage of a fairly natural English reading. The
symbolic form (∀x: Wx ∧ Tx) (Mx ∧ Cx) can be read in something close to
English as Everything, x, such that (x walks and x talks) is such that (x
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moves and x communicates).
Since any predicate θ can be expressed as an abstract [θx] , this notation can

be used in all cases. That is, any universal ∀ θ can be expressed as

(∀x: ρx) θx

and can be rendered in English as

Everything, x, such that ρx is such that θx.

Here we can regard ρ and θ as the predicates to which the quantifier applies,
with the apparatus of variable binding absorbed into the quantifier.

We may also write the form of a restricted universal schematically as

(∀x: …x…) ---x---

which amounts to

Everything, x, such that (…x…) is such that (---x---)

As a sort of grammatical pun, this can be read as Everything, x, such that (x
dots) is such that (x dashes).

The formula …x… in (∀x: …x…) ---x--- (i.e., ρx in (∀x: ρx) θx) says what
must be true of x for it to be in the domain of the generalization; we will refer
to it as the restricting formula. The formula ---x--- (i.e., θx) says that x has the
attribute of the generalization. The generalization says something how many
values in the domain will make θx true when they are assigned to x (namely
that they all will), so we will refer to θx as the quantified formula. This is a di-
rect extension of our terminology for the component predicates of a general-
ization: the restricting formula is a predication of the restricting predicate and
the quantified formula is a predication of the quantified predicate.

When reading the symbolic notation, we add the variable x as an appositive
marked off by commas after the quantifier phrase (i.e., we say Everything, x,
…) to indicate that this quantifier phrase serves as the antecedent of the sym-
bolic pronouns x. If we put English pronouns in place of the variables, we can
rely on the conventions of syntax to determine the antecedent and we can drop
the appositive to get

Everything such that (…it…) is such that (---it---)

This is a generalization whose class indicator is thing such that (…it…) and
whose quantified predicate is [ _ is such that (---it---)]. Notice that the ad-
jectival phrases such that (…it…) and such that (---it---) have two different
functions in this sentence. The first appears as a modifier of the common noun
thing while the second is a predicate adjective. Their roles are comparable to
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those of scarlet and red, respectively, in Everything scarlet is red.
The use of thing here also deserves some comment. Consider an English

generalization that uses the same form of words as these readings—Every-
thing such that it walks is such that it moves, for example. This general-
ization is direct and affirmative. The class indicator is the phrase thing such
that it walks; and the predicate [ _ is such that it moves] is the quantified
predicate. Now if this sentence is to make the same claim as (∀x: x walks) x
moves, the indicated class of the English sentence should be the extension of
[  _  walks]  and  the  attribute  expressed  by  the  English  quantified  predicate
should be the extension of [ _ moves]. There is certainly no problem in the lat-
ter case; [ _ is such that it moves] is just a more cumbersome way of ex-
pressing [ _ moves]. But does thing such that it walks, or thing that walks,
really indicate the extension of [ _ walks]?

It does if we take the word thing to indicate the full range of reference val-
ues rather than being limited, say, to inanimate objects. We may say that, in
such a use, thing is a dummy restriction. It does not itself restrict the domain of
the generalization but provides a grammatical anchor for further restrictions.
We have been using the word that way as an alternative to object, entity, and
individual, but is it used that way ordinarily? This is not the sort of question
we can settle here, but notice that if we really want emphasize that our general-
ization concerns “things” in some specialized sense, we are likely to use the
two-word phrase every thing, with an emphasis on thing, rather than the sin-
gle word everything. This is not to say that everything in English is typically
used to generalize about all reference values, but more restricted uses can be
traced to bounding classes provided by the context. One thing we can do here
is to stipulate that, when we use it to read logical forms, everything will intro-
duce no bounds narrower than the full referential range.

The second universal quantifier we will consider, the 1-place unrestricted
universal quantifier, amounts to a special case of restricted universal quantifi-
cation where the restricting predicate has the whole range of reference values
as its extension. There are a number of predicates that are certain to be univer‐
sal in this sense. Since identity is reflexive, the abstract [x = x]  is one exam-
ple, and the vacuous abstract [⊤] . Whenever ρ is a universal predicate, the
sentence (∀x: ρx) θx says that the extension of the attribute predicate θ  in-
cludes the whole of the referential range; that is, it says that θ is also universal.
This  sort  of  claim about  a  predicate  θ  is  important  enough that  we add a
one-place quantifier, enabling us to express it as ∀θ. The single predicate to
which this quantifier applies will be called its quantified  predicate. We will

x

x



more often use the form

∀x θx,

or

Everything, x, is such that θx

where  θx  is  the  quantified  formula.  Similarly,  ∀x  (…x…)  can  be  read  as
Everything, x, is such that (… x…). For example, if F is [ _ is fine] and D is
[ _ is dandy], the sentence ∀x (Fx ∧ Dx) can be read as Everything, x, is
such that both x is fine and x is dandy.

We will not often write universals so that they apply directly to predicates;
but such expressions capture the logical form of universals most clearly, so it
would be worth trying, at least once, to read them. A direct symbol-by-symbol
reading of the unrestricted universal ∀θ would be ∀ holds of θ. By departing
from the order of the symbols we can put the content of the claim made by ∀
into words as

θ holds universally.

A symbol-by-symbol reading of the restricted universal ∀ θ would be some-
thing like ∀ holds of ρ and θ. Since ∀ θ says that the extension of θ includes
the extension of ρ, we can put this universal into words also as

θ is (at least) as general as ρ.

And this brings us full circle, back to a form that can be used in English. We
could restate Everything that walks moves as The property of moving is
(at least) as general as the property of walking. And we can understand
the unrestricted quantifier in the same way: to say that θ holds universally is to
say that θ is as general as can be.

We have already seen that we can get the effect of unrestricted universal
quantification while using the restricted universal quantifier if  we choose a
universal predicate—e.g., [x = x]  or [⊤] —as the restricting predicate. In the
other direction, we can get the effect of restricted universal quantification us-
ing the unrestricted quantifier by hedging the claim made by the quantified
formula. The nature of the hedge that is needed can be found by trying to re-
state a restricted universal claim in the form Everything is such that …. If we
do this with Everything that walks moves, we might get

Everything is such that (it moves if it walks),

a sentence which says that the predicate [ x moves if x walks]  is universal. In
general, we can get the effect of restricted universal quantification by claiming
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universality for the result of making the quantified formula conditional on the
restricting formula. That is, (∀x: ρx) θx can be expressed as ∀x (ρx → θx).

The two sorts of restatements we have been considering are licensed by the
following principles of equivalence:

∀x θx ≃ (∀x: x = x) θx or ∀x θx ≃ (∀x: ⊤) θx
(∀x: ρx) θx ≃ ∀x (ρx → θx).

And we will have reason to make such restatements because the unrestricted
universal quantifier is easier to use in stating laws of entailment while the re-
stricted universal quantifier is easier to use in analyzing English sentences. In
order to keep the connection between the two in mind, we will often express
analyses made using the restricted universal also using the unrestricted quanti-
fier.
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7.2.2. Analyzing generalizations
A restricted universal sentence (∀x: ρx) θx is a generalization written symboli-
cally. Its domain is the extension of ρ and its attribute is the property expressed
by θ. Since we have already discussed the problem of identifying the domains
and attributes of English sentences, we can complete our discussion of analyz-
ing generalizations by saying how to choose restricting and quantified predi-
cates ρ and θ so that the domain and attribute of the generalization (∀x: ρx) θx
are what we want them to be.

There is little to be said in the case of attributes. The quantified predicate θ
of (∀x: ρx) θx should express the attribute, so it should be a symbolic version
of the English quantified predicate in cases where the generalization is affir-
mative, and it should be a symbolic version of the denial of that predicate is
cases  where  the  generalization  is  negative.  This  means  that  the  quantified
predicate appearing in the analysis of a negative generalization will correspond
to the negation  of the quantified predicate of the original English sentence;
since symbolic generalizations are always affirmative, negative generalization
is expressed by explicit negation in the quantified formula.

There is only a little more to be said in the case of domains. To get from a
domain to a restricting predicate, we need a predicate that is true of just the
things in the domain. When C is a term picking out the domain, a predicate of
the form [ _ is a C] will be true of the objects in this class. When the domain is
the complement of the class picked out by C, a predicate of the form [ _ is not
a C]—i.e., [¬  _ is a C]—may be used.

There is one complication to this in a case that is special but occurs quite
frequently. The quantifier phrases Everyone and No one have the word one as
their class indicator. But [ _ is a one] is ungrammatical and anyway does little
to delimit a domain. So we are forced to treat everyone and no one as we
would the synonymous (or nearly synonymous) every person and no person
and use [ _ is a person] as the domain predicate.

Let us apply these ideas to some earlier examples of generalizations, begin-
ning with Every dog barks. This is affirmative and direct. So the quantified
predicate of the English sentence, [ _ barks], expresses the attribute of the
generalization and can also  give  us  the  attribute  predicate  of  the  symbolic
form. The domain is the class of dogs, so the domain predicate can be [ _ is a
dog]. Putting the two together we get the following symbolic renderings of the
quantifier phrase, using the restricted and unrestricted quantifiers, respectively:



(∀x: x is a dog) x barks
∀x (x is a dog → x barks)

These may be read as Everything, x, such that x is a dog is such that x
barks and Everything, x, is such that if x is a dog then x barks.

The example No dog climbs trees was also direct but was negative. Thus
we may use the same domain predicate but the quantified predicate of the sym-
bolic form should be the denial of the English quantified predicate. This gives
us the forms

(∀x: x is a dog) ¬ x climbs trees
∀x (x is a dog → ¬ x climbs trees),

which may be read as Everything, x, such that x is a dog is such that not
x climbs trees and Everything, x, is such that if x is a dog then not x
climbs trees.

Our first example of a negative and complementary generalization was Only
trucks were advertised. The attribute here is the property of not having been
advertised so the quantified predicate of the symbolic form may be [¬  _ was
advertised]. The domain is the class of non-trucks. The restricting predicate
can then be [¬  _ is a truck] and the symbolic forms are these:

(∀x: ¬ x is a truck ) ¬ x was advertised
∀x (¬ x is a truck → ¬ x was advertised)

These may be read as Everything, x, such that not x is a truck is such
that not x was advertised and Everything, x, is such that if not x is a
truck then not x was advertised.

More generally, we can offer the following symbolic versions of the three
basic patterns of generalization we identified:

Direct and affirmative: Every C is such that …it…
(∀x: x is a C) …x…

∀x (x is a C → …x…)
Direct and negative: No C is such that …it…

(∀x: x is a C) ¬ …x…
∀x (x is a C → ¬ …x…)

Complementary and negative: Only Cs are such that …they…
(∀x: ¬ x is a C) ¬ …x…

∀x (¬ x is a C → ¬ …x…)

If the domain C of a direct generalization is the whole referential range, the re-



stricting predicate [ _ is a C] is not at all restrictive and we may use instead a
simpler form with an unrestricted universal quantifier applying to the attribute
predicate. So we have the following special cases of the direct forms of gener-
alization:

Unrestricted and affirmative: Everything is such that …it…
∀x …x…

Unrestricted and negative: Nothing is such that …it…
∀x ¬ …x…

The only case in which a similar simplification would apply to complementary
forms is one in which the class indicator was sure to pick out the empty set;
you are invited to find an example.

These symbolic representations show us something about the relation be-
tween the English forms All Cs are such that …they… and Only Cs are
such that  …they…. If we represent these symbolically by applying unre-
stricted quantifiers to conditionals, we have the following (which are given
with possible English readings below):

All Cs are such that …they… ∀x ( x is a C → …x…)

Everything, x, is such that (…x… if x is a C)

Only Cs are such that …they… ∀x ( ¬ x is a C → ¬ …x…)

Everything, x, is such that (…x… only if x is a C)

This gives us a reason for saying that all is to only as if is to only if. And we
can compare the fact that an all-generalization implicates an only-generaliza-
tion to the fact that an if-conditional implicates an only if-conditional.

Just  as  biconditionals  expressing  conjunctions  of  if-conditionals  and
only-if-conditionals  can  be  stated  using  the  compound conjunction  if  and
only if, conjunctions of the corresponding sorts of generalizations can be ex-
pressed using the compound quantifier term all and only. The effect of the lat-
ter phrase is to claim that the indicated class is identical with the extension of
the quantified predicate, and this claim can be expressed symbolically either as
a conjunction of generalizations or by an unrestricted universal applying to a
biconditional  predicate.  For  example,  All  and only  winners  of  the first
round are entitled to advance might be analyzed by either of the following:

(∀x: Wxf) Ex ∧ (∀x: ¬ Wxf) ¬ Ex
∀x ((Wxf → Ex) ∧ (¬ Wxf → ¬ Ex))

E: [ _ is entitled to advance]; W: [ _ is a winner of _ ]; f: the first
round



The second can be read as Everything, x, is such that (x is entitled to ad-
vance if and only if x is a winner of the first round).

Figure 7.2.2-1 below provides an overview of the process of analyzing gen-
eralizations. The general description is accompanied by two examples that are
marked by different styles of type.

Fig. 7.2.2-1. The process of analyzing a generalization.

Below is a brief description of each stage of the process:

(i) restate the generalization with the quantifier phrase as subject followed
by is such that;

(ii) analyze the restated generalization into a quantifier phrase (its subject)
and quantified predicate (the result of removing pronouns bound to the
quqntifier phrase from the clause following is such that);

generalization
Every dog barked
Al saw only dogs

expanded to make a quantifier phrase the subject
every dog is such that (it barked)

only dogs are such that (Al saw them)

quantifier phrase
every dog
only dogs

class indicator
dog
dog

quantifier word
every
only

quantified predicate
[ _ barked]
[Al saw _ ]

Is the generalization
direct or

complementary?
direct

complementary

Is the generalization
affirmative or

negative?
affirmative

negative

restricting predicate ρ
[ _ is a dog]

[¬ _ is a dog]

quantified predicate θ
[ _ barked]

[¬ Al saw _ ]

(∀x: ρx) θx
(∀x: x is a dog) x barked

(∀x: ¬ x is a dog) ¬ Al saw x



(iii) identify the class indicator (a common noun plus modifiers) and quanti-
fier word in the quantifier phrase;

(iv) use the quantifier word to determine whether the generalization is di-
rect or complementary and affirmative or negative;

(v) state restricting and quantified predicates—(a) the restricting predicate
is formed by adding is a to the class and negating the result if the gen-
eralization is complementary, and (b) the quantified predicate of the
symbolic generalization is the quantified predicate of the English gen-
eralization with a negation added if the generalization is negative;

(vi) combine the restricting and quantified predicates to state the general-
ization in symbolic form.

The restricting and quantified formulas, ρx and θx should be stated as English
sentences containing the variable x so that they can then be subjected to further
analysis.
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7.2.3. Compound restrictions
Connectives may appear within generalizations when we analyze their restrict-
ing and quantified predicates. What we really analyze in such cases are the
bodies of the abstracts to which the quantifiers are applied. The analysis of
such formulas and the problems that arise are not much different from those of
truth-functional logic though the frequency with which various kinds of prob-
lems occur is different.

Since a restricting formula takes the form x is a C where C is a common
noun together with modifiers, an analysis of it as a truth-functional compound
will not be guided initially by English words marking connectives (apart from
cases like [ _ is a boy or girl] or [ _ is a non-smoker] where the noun phrase
itself is compounded using them). Indeed, the analysis of restricting formulas
will usually be a matter of breaking apart a common noun and its modifiers.
As we saw in 2.1.4 , considerable care must be taken in breaking attributive
adjectives off from a common noun. The other modifiers we may find with
common  nouns—prepositional  phrases  and  relative  clauses—are  less  of  a
problem in this regard. The word large in x is a flea that is large acquires
some of its significance from the word flea and should be restated more ex-
pansively when we analyze the open sentence to give something like x is a
flea ∧ x is large relative to fleas. Other problems with attributive adjectives
are absent or less pressing with relative clauses. While the open sentence x is a
good thief is ambiguous (referring either to skill as a thief or to some com-
pensating virtue that makes the thief a good person), x is a thief who is good
probably speaks of compensating virtue and we would tend to use x is a thief
who is good at it to speak of skill in thievery. The open sentence x is an al-
leged murderer, which does not admit any analysis as a conjunction, does
not admit restatement with a relative clause either. The formula x is a mur-
derer who is alleged to be one means something different; it implies x is a
murderer and may be analyzed as a conjunction.

Once modifiers are broken off from the common noun of a class indicator, a
whole range of further logical structure may be open to logical analysis. Rela-
tive clauses, in particular, can be rich stores of truth-functional structure. For
example,  The officer stopped every car that was either speeding or
moving slowly and erratically may be analyzed as follows:

Every car that was either speeding or moving slowly and erratically is
such that (the officer stopped it)

(∀x: x is a car that was either speeding or moving slowly and errati-



cally) (the officer stopped x)
(∀x: x is a car ∧ x was either speeding or moving slowly and errati-

cally) Tox
(∀x: Cx ∧ (x was speeding ∨ x was moving slowly and erratically)) Tox
(∀x: Cx ∧ (Sx ∨ (x was moving slowly ∧ x was moving erratically))) Tox

(∀x: Cx ∧ (Sx ∨ (Lx ∧ Ex))) Tpx
∀x ( (Cx ∧ (Sx ∨ (Lx ∧ Ex))) → Tox)

C: [ _ is a car]; E: [ _ was moving erratically]; L: [ _ was moving slowly];
S: [ _ was speeding]; T: [ _ stopped _ ]; o: the officer

There is no special problem in finding the correct truth-functional analysis is
this sort of case.

In some cases where we might expect a truth-functional analysis, we do not
find one. This happens when a relative clause modifies the dummy class indi-
cator thing. We would analyze the open sentence x is a thing that is red as
we would x is red. And, in general, x is a thing that … can be treated as …
x … where the variable x may appear in any of a number of different positions
when we put this into English; x is a thing that Jack built amounts to Jack
built x and x is a thing Dave sold to Ed becomes Dave sold x to Ed. Of
course, we can expect thing to drop out only when it appears as a dummy re-
striction (see the discussion of everything vs. every thing in 7.2.1 ).

Bounds and exceptions are another source of logical complexity in the re-
stricting formula. To see how to represent them symbolically, let us return to
the example that led us to these ideas. The generalization Among members of
the House, all Republicans except Midwesterners supported the bill is
affirmative, so its attribute is expressed by its quantified predicate [ _ sup-
ported the bill]  without use of  negation;  this  will  serve as the quantified
predicate of the symbolic generalization. We found the domain to be the class
of members of the House who are Republicans but not Midwesterners. Mem-
bership in this domain is expressed by the predicate [ x is a House member ∧
x is a Republican ∧ ¬ x is a Midwesterner] ; this is the restricting predicate.
Putting the two predicates together, we have the following:

(∀x: x is a House member ∧ x is a Republican ∧ ¬ x is a Midwest-
erner) x supported the bill

∀x ((x is a House member ∧ x is a Republican ∧ ¬ x is a Midwest-
erner) → x supported the bill)

(Parenthetical grouping of the conjuncts is neglected here to make the result
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easier to read.)
The  general  pattern  for  an  direct  affirmative  generalization  with  both

bounds and exceptions is as follows:

Among Bs, all Cs except Es are such that …they…

(∀x: x is a B ∧ x is a C ∧ ¬ x is an E) …x…
∀x ( (x is a B ∧ x is a C ∧ ¬ x is an E) → …x…)

That is, to handle a bounding class picked out by B, we need to conjoin the
formula x is a B to what we have otherwise. And, to handle a class of excep-
tions picked out by a term E, we need to conjoin the formula ¬ x is an E. The
restricting formula of a direct negative generalization would be handled in the
same way since the only difference from a corresponding affirmative general-
ization lies in the quantified formula.

The effect of bounds on complementary generalizations is analogous; the
general pattern is this:

Among Bs, only Cs are such that …they…

(∀x: x is a B ∧ ¬ x is a C) ¬ …x…
∀x ( (x is a B ∧ ¬ x is a C) → ¬ …x…)

Notice  that,  while  the  restricting  formula  of  an  unbounded complementary
generalization is a negation, here the restricting formula is a but-not form.
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7.2.s. Summary
Generalizations will be expressed symbolically using quantifiers , operators
that take predicates as input and yield sentences as output. More specifi-
cally, we will use two universal quantifiers , both written using the symbol
∀ (for all) . The sentences formed using these quantifiers will be called uni-
versals . The two quantifiers are the restricted universal quantifier, which
applies to a pair of predicates to form a sentence, and the unrestricted uni-
versal quantifier, which applies to a single predicate. We will apply quanti-
fiers only to abstracts. Since any pair of abstracts ρ and θ can be written in
the form [… x …]  and [--- x ---]  using the same variable, we can abbrevi-
ate universal sentences as (∀x:…x…) ---x--- and ∀x ---x---, or more com-
pactly, (∀x: ρx) θx and ∀x θx. These may be put into English notation as
Everything, x, such that …x… is such that ---x--- and Everything, x, is such
that  ---x---.  (Here  the  word  thing  is  used  as  a  dummy  restriction  that
merely provides a hook for the relative clause.) The component expressions
…x… and ---x---, the restricting  and quantified  formulas of the universal,
will not ordinarily be sentences in the strict sense because they will contain
free occurrences of the variable x.

A restricted  universal  says  that  the  extension  of  the  first  predicate  to
which it is applied, the restricting predicate , is included in the extension of
the second, the quantified predicate—i.e., it says that the second expresses a
property that is at least as general as that expressed by the first. The unre-
stricted quantifier says that the quantified predicate to which it applies is
universal , that it is a predicate that expresses a fully general property. An
unrestricted universal sentence ∀x θx can be restated as a restricted univer-
sal whose domain predicate is universal (e.g.,  (∀x: x = x) θx), and a re-
stricted universal (∀x: ρx) θx can be restated  as an unrestricted universal
provided we make the attribute predicate conditional on the domain predi-
cate—i.e., as ∀x (ρx → θx).

An English generalization may be analyzed symbolically by using restrict-
ing and quantified predicates that capture its domain and attribute. If its do-
main consists of all reference values, an unrestricted universal may be used,
and we need only capture its attribute. In an affirmative generalization, the
predicate  expresing  the  attribute  will  be  the  quantified  predicate  of  the
English generalization while in a negative generalization it will be the nega-
tion of the quantified predicate. A formula applying the restricting predicate
can be formed from the class indicator C by using the form x is a C, adding
negation if the generalization is complementary. (However, we start with x

x x
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is a person in the case of everyone and no one.) The phrase all and only is
used to express a conjunction of affirmative direct and negative complemen-
tary generalizations; but a generalization of this sort can be analyzed also by
an unrestricted universal applying to a biconditional predicate because the
two generalizations it implies can be expressed using an if-conditional and
an only-if-conditional, respectively.

The restricting and quantified formulas of a generalization can have as much
logical complexity as an independent sentence, so they will often require
further analysis. The structure of the quantified formula will usually be indi-
cated in English in the same way as it would be in a sentence predicating the
attribute of an individual term, but the structure of the restricting formula
may be less obvious. The complexity of the restricting formula can also de-
rive from the analysis of the form of the generalization itself since it is re-
stricting formulas that express bounds or exceptions. Both bounds and ex-
ceptions may be captured by conjoining predications to the restricting for-
mula, with the predication negated in the case of exceptions.
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7.2.x. Exercise questions
1. Restate, with unrestricted quantifiers, the generalizations below that em-

ploy restricted quantifiers—and vice versa. Write out English readings for
the results.

 a. (∀x: Fx) Gx
 b. ∀x (Fx → ¬ Gx)
 c. (∀x: Fx ∧ ¬ Gx) Hx
 d. ∀x ((Px ∧ ¬ Rxx) → Rxa)
 e. (∀x: Rxa ∧ ¬ Rbx) ¬ (Fx ∨ Gx)
 f. ∀x ((Fx ∨ Gx) → (Hx ∧ ¬ Kx))
2. Analyze the following in as much detail as possible, stating the resulting

form using both restricted and unrestricted quantifiers:
 a. Everyone had heard about the accident.
 b. Every relative of Sam agreed with him about the issue.
 c. Edna took pleasure in none of her possessions.
 d. Tom found only empty boxes
 e. The survey was sent to all members of the organization ex-

cept its officers.
 f. Only countries bordering the Pacific will prosper.
3. State in idiomatic English the generalizations that could be represented

symbolically by the following:
 a. (∀x: x is a dog) x chases cats.
 b. (∀x: x is a hole) Holly patched x.
 c. (∀x: x is a person) ¬ x volunteered.
 d. (∀x: ¬ x is a cockroach) ¬ x will survive.
 e. ∀x ¬ x seemed right.
 f. (∀x: x was a reviewer ∧ ¬ x was a friend of the director) x

panned the movie.
 g. (∀x: x is a bird ∧ ¬ x is an early bird) ¬ x gets a worm.
 h. (∀x: ¬ x is a small child) the movie bored x.
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7.2.xa. Exercise answers
1. a. ∀x (Fx → Gx)

Everything, x, is such that if Fx [or: F fits x] then Gx
 b. (∀x: Fx) ¬ Gx

Everything, x, such that F x is such that not Gx
 c. ∀x ((Fx ∧ ¬ Gx) → Hx)

Everything, x, is such that if both Fx and not Gx then Hx
 d. (∀x: Px ∧ ¬ Rxx) Rxa

Everything, x, such that both Px and not Rxx is such that Rxa
 e. ∀x ((Rxa ∧ ¬ Rbx) → ¬ (Fx ∨ Gx))

Everything, x, is such that if both Rxa and not Rbx then not either Fx
or Gx

 f. (∀x: Fx ∨ Gx) (Hx ∧ ¬ Kx)
Everything, x, such that either Fx or Gx is such that both Hx and not
Kx

2. a. Everyone had heard about the accident
Everyone is such that (he or she had heard about the acci-

dent)
(∀x: x is a person) x had heard about the accident

(∀x: Px) Hxa
∀x (Px → Hxa)

H: [ _ had heard about _ ]; P: [ _ is a person]; a: the accident
 b. Every relative of Sam agreed with him about the issue

Every relative of Sam is such that (he or she agreed with Sam
about the issue)

(∀x: x is a relative of Sam) x agreed with Sam about the issue
(∀x: Rxs) Axsi

∀x (Rxs → Axsi)
A: [ _ agreed with _ about _ ]; R: [ _ is a relative of _ ]; i: the
issue; s: Sam

 c. Edna took pleasure in none of her possessions
No possession of Edna is such that (Edna took pleasure in it)
(∀x: x is a possession of Edna) ¬ Edna took pleasure in x

(∀x: Pxe) ¬ Lex
∀x (Pxe → ¬ Lex)

L: [ _ took pleasure in _ ]; P: [ _ is a possession of _ ]; e: Edna



 d. Tom found only empty boxes
Among boxes, only empty ones are such that (Tom found

them)
(∀x: x is a box ∧ ¬ x is empty) ¬ Tom found x

(∀x: Bx ∧ ¬ Ex) ¬ Ftx
∀x ((Bx ∧ ¬ Ex) → ¬ Ftx)

B: [ _ is a box]; E: [ _ is empty]; F: [ _ found _ ]; t: Tom
 e. The survey was sent to all members of the organization ex-

cept its officers
All members of the organization except the organization’s of-

ficers are such that (the survey was sent to them)
(∀x: x is a member of the organization ∧ ¬ x is an officer of

the organization) the survey was sent to x

(∀x: Mxo ∧ ¬ Oxo) Ssx
∀x ((Mxo ∧ ¬ Oxo) → Ssx)

M: [ _ is a member of _ ]; O: [ _ is an officer of _ ]; S: [ _ was
sent to _ ]; o: the organization; s: the survey

 f. Only countries bordering the Pacific will prosper
Among countries, only those bordering the Pacific are such

that (they will prosper)
(∀x: x is a country ∧ ¬ x borders the Pacific) ¬ x will prosper

(∀x: Cx ∧ ¬ Bxp) ¬ Px
∀x ((Cx ∧ ¬ Bxp) → ¬ Px)

B: [ _ borders _ ]; C: [ _ is a country]; P: [ _ will prosper]; p: the
Pacific

3. a. (∀x: x is a dog) x chases cats
Every dog is such that (it chases cats)
Every dog chases cats (or: All dogs chase cats; or: Dogs chase

cats)
 b. (∀x: x is a hole) Holly patched x

Every hole is such that (Holly patched it)
Holly patched every hole (or: Holly patched each hole)

 c. (∀x: x is a person) ¬ x volunteered
No one is such that (he or she volunteered)
No one volunteered.



 d. (∀x: ¬ x is a cockroach) ¬ x will survive
Only cockroaches are such that (they will survive)
Only cockroaches will survive

 e. ∀x ¬ x seemed right
Nothing is such that (it seemed right)
Nothing seemed right

 f. (∀x: x was a reviewer ∧ ¬ x was a friend of the director) x
panned the movie

All reviewers except friends of the director are such that
(they panned the movie)

All reviewers except friends of the director panned the movie
(or: Among reviewers, all but friends of the director panned

the movie)
 g. (∀x: x is a bird ∧ ¬ x is an early bird) ¬ x gets a worm

Among birds, only early ones are such that (they get worms)
Only early birds get worms (or: No birds except early ones

get worms)
 h. (∀x: ¬ x is a small child) the movie bored x

All things except small children are such that (the movie
bored them)

The movie bored all but small children
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