
2.3. Failed proofs and counterexamples
2.3.0. Overview
Derivations can also be used to tell when a claim of entailment does not follow
from the principles for conjunction.

2.3.1. When enough is enough
A derivation is stopped only when no more rules can be applied. When that
is so, any open gap has reached a dead end.

2.3.2. Dead ends and counterexamples
The active resources of any dead-end gap can be separated from its goal. To
put it another way, we can run out of ways to develop an open gap only
when there is a counterexample to its proximate argument.

2.3.3. Validity through the generations
If we describe as descendents of a gap the gaps that result from developing
and perhaps dividing it, the validity of the proximate argument of a gap rests
on the validity of the proximate arguments of its descendents.

2.3.4. Sound and safe rules
The derivation rules are designed so that, if a gap has a counterexample, so
does at least one descendent at every stage and, moreover, each of its ances-
tors.

2.3.5. Confirming counterexamples
Because we have enough rules and the ones we have are well-behaved, any
gap that reaches a dead end shows us how to separate the premises of the
initial argument from its conclusion.

2.3.6. Reaching decisions
A derivation will always reach a point where we must stop either because all
gaps are closed or because there is an open gap to which no more rules can
be applied.

2.3.7. Soundness and completeness
The properties of this system of derivations combine to show that it does not
indicate validity for any argument that is not valid and does indicate validity
for every argument that is valid.

2.3.8. Formal validity
The sort of validity we test with derivations is the general validity of argu-
ments with a given form. An argument that is not valid in virtue of a given
form could be valid nonetheless due to features not captured by that analy-
sis.
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2.3.1. When enough is enough
So far we have seen only derivations whose gaps all close, derivations which
show that arguments are valid. But not all arguments are valid, so there ought
to be derivations whose gaps do not all close. And if there is no point at which
the gaps of a derivation all close, we will eventually have to give up work on it
even though it still has open gaps. So we should ask if there can be a reason
for giving up work and what, if anything, we can conclude about an argument
if we have grounds for giving up work on a derivation for it.

The short answer to the first of these two questions is that we must give up
on a derivation when we run out of rules to apply, either to develop a gap or
close it. Here’s a simple example of a derivation for which that has happened.

│(A ∧ ⊤) ∧ B 1
├─

1 Ext │A ∧ ⊤ 2
1 Ext │B (4)
2 Ext │A
2 Ext │⊤

│
││●
│├─

4 QED││B 3
│
││○ B, A, ⊤ ⊭ C
│├─
││C 3
├─

3 Cnj │B ∧ C
The gap that is marked with the empty circle ○ has C as its goal, and we cur-
rently have no rule to plan for such a goal. There are conjunctions among the
available resources of the gap; but they were exploited in the course of devel-
oping this gap, so they are no longer active. Also, none of the rules for closing
gaps apply here: not QED because the goal is not one of available resources,
not EFQ because ⊥ is not a resource, and not ENV because the goal is not ⊤.
In short, no rule of any of the three sorts can be applied at this point.

The resources added by exploiting A ∧ ⊤ at stage 2 were never used later
(hence there are no line numbers to their right). As a result, this exploitation
could have been postponed the end. But, once it is done, there is no more to
do. However, although it is easy to see that it will not lead the gap to close, the
resource A ∧  ⊤  would have to be exploited before we could claim to have
ended because no more that can be done. Until it is exploited, there is a way of
developing the derivation further. One thing that needn’t have been done is
closing the first gap at stage 4. As long as one gap has reached a point where
no more can be done to close it, there is reason to stop because all gaps must



close before the derivation is complete.
We will describe an open gap to which no more rules apply as a dead-end

gap. (Although the qualification dead-end will be reserved for open gaps—in-
deed, a gap that has been closed is in one sense no longer a gap—we will often
speak somewhat redundantly of “dead-end open gaps.”) In these terms, we can
say  that  we  are  forced  to  abandon a  derivation  when  every  open  gap  has
reached a dead end although we may abandon a derivation as soon as one open
gap has reached a dead end. As in the example above, we will use the empty
circle to mark open gaps that have reached a dead end and are thus perma-
nently open. And, also as is done in that example, to the right of this sign, we
will use the sign ⊭ (negated double right turnstile) to say that, with respect to
the analysis of them displayed in the derivation, the active resources do not en-
tail the goal. (The reason for qualifying this by reference to the displayed anal-
ysis will be discussed in 2.3.8 .)

The way the gaps have developed in this derivation is shown in the follow-
ing skeleton tree with the full argument tree below it:
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The gap that remains open at the end had reached a dead end at stage 3, but it
is shown to continue at the next stage because it remains open as the derivation
develops elsewhere. Although work may be stopped as soon as a dead end is
reached, there is nothing wrong with continuing as long as there are rules to be
applied to other gaps, and that will often be done in examples. In general we
will not assume that work on a derivation stops as soon as there is a dead-end
gap, so to say that gap has reached a dead end is not to say that the gap does
not continue at later stages; it is to say rather that it cannot be developed fur-
ther.

We will now turn to considering the significance of dead end gaps. We will
look first at what reaching a dead end tells us about the proximate argument of
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the gap that has stopped developing and then consider the connection between
the  validity  of  the  ultimate  argument  of  a  derivation  and  the  existence  of
dead-end gaps. In terms of argument trees, this means we will look first at the
tips of unclosed branches and then ask about the connection between the tips
of branches and the root of the tree.
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2.3.2. Dead ends and counterexamples
Now, let’s look more closely at what we can say in general about the signifi-
cance of dead-end open gaps. First of all, recall what led us to conclude that
the gap in the example of the last section could not be developed further. A
dead-end gap must not have a conjunction either as its goal or among its active
resources, for otherwise we could apply the rules Cnj or Ext. Moreover, it must
not have ⊤ as a goal or ⊥ as a resource, or else we could apply the rules ENV
or EFQ. Finally, its goal must not be among its resources because then we
could apply the rule QED. So the active resources of dead-end gaps are limited
to unanalyzed components and ⊤  and their goals are limited to unanalyzed
components and ⊥; and no dead-end gap can contain an unanalyzed compo-
nent both as an active resource and as its goal.

This means that we can assign truth-values to the unanalyzed components
appearing in a dead-end gap in a way that makes its active resources true and
its goal false. Since no unanalyzed component appears both as a resource and
as the goal, we can make any that appears as a resource T and any that appears
as the goal F. While we are not free to assign values to ⊤ and ⊥, the first can
appear only as a resource and the second only as the goal so they will not keep
us from having true resources and a false goal. In short, we can assign truth
values in a way that separates the active resources of a gap from its goal. That
is, there is a counterexample to the gap’s proximate argument.

In noting this, we described an assignment of truth values to unanalyzed
sentences. This is an extensional interpretation in the sense discussed in 2.1.8 ,
and it can be presented in a table. The following table displays the interpreta-
tion defined by the dead-end gap of the example we have been considering.

A B C B, A, ⊤ / C
T T F Ⓣ Ⓣ Ⓣ Ⓕ

The extensional interpretation of unanalyzed components appears on the left of
the table. On the right are the resulting truth values of resources and goals of
the gap, which mainly just repeat the assignments. (No value is assigned to ⊤
on the left because its truth value is stipulated by the meaning of the sign. That
is, the sentence ⊤ has its value by general stipulation rather than by assignment
in specific interpretations.)

Although we have more to show before we know that the system of deriva-
tions does what it is supposed to, we can say already that it has enough rules in
a certain sense, for we know that, whenever the proximate argument of a gap
is valid, some rule can be applied to either develop or close the gap. For if
there is no rule allowing us to develop the gap, it has reached a dead end, and

we have just seen that the proximate argument of a dead-end gap is not valid.
We will indicate this sort of completeness in our rules by saying that a system
of derivations is  sufficient  when every dead-end open gap has its active re-
sources separated from its goal by some extensional interpretation. Of course,
in saying that our system is sufficient, we do not say that every gap whose
proximate argument is invalid has already reached a dead end. We would not
expect this to be true since it would mean that we would never need to apply
any rules at all in the case of an invalid argument. Indeed, one of the things we
have yet to show is that any gap whose proximate argument is not valid will
eventually reach a dead end.
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2.3.3. Validity through the generations
The connection between the proximate arguments of dead-end gaps and the ul-
timate argument of a derivation lies in the properties of the rules for develop-
ing and closing gaps. We will begin to look at these properties in this section
and then look at them more closely in the next.

It will help to have some ways of talking about the relations between gaps at
various stages of a derivation. It is common to extend some genealogical vo-
cabulary from family trees to trees in general. In our use of this vocabulary, we
will say that any gap that results from applying a rule is a child of the gap to
which the rule is applied and that the latter gap is its parent. It will be conve-
nient to apply the same terminology to gaps that continue unchanged while
others develop: a gap at one stage that is open but unchanged at the next stage
is understood to have a single child. Looking farther up or down a line of de-
scent, we will say that some gaps are ancestors or descendants of others. So
in the tree of gaps associated with the derivation discussed in 2.2.6 ,
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the lower gap at stage 3 has the gap at stage 2 as its parent and both that and
the two earlier gaps as ancestors. Its children are the lower two gaps at stage 4
and its further descendants are the gaps to their right. The line of gaps at the
top are neither ancestors or descendants of the gap in question.

In this terminology, the initial gap of a derivation is an ancestor of all gaps
of all gaps at each later stage in its development; and they are all its descen-
dants. Only open gaps will be part of these genealogies, so a gap that is closed
at the next stage of its development has no children. Dead-end open gaps con-
tinue to have children if the derivation is continued at later stages (remember it
need not be), yet they have reached a dead end in the sense that these children
are always identical to their parents.

Next, let us develop a way of speaking about the effect of derivation rules
on the distribution of valid and invalid arguments in the argument tree of a
derivation. In the case of QED, we will initially limit ourselves to its use to
close a gap whose goal is also among the active resources. (The wider use of
QED to close gaps whose goals  are  among their  available  but  inactive re-
sources will be considered later.)

The  derivation  rules  Ext  and  Cnj  are  based  on  principles  of  entailment

which give necessary and sufficient conditions for an entailment to hold. That
is, each principle gives a list of conditions all of which must hold if a given en-
tailment is to hold and which together are enough to insure that it holds. It may
seem odd to say the same about the unconditional claims of entailment that lie
behind the rules QED, ENV, and EFQ; but, by asserting an entailment uncon-
ditionally, they say that an empty list of conditions is sufficient for its truth
(and, since an empty list cannot have a member that fails to hold, satisfying the
list is trivially necessary since it is bound to be satisfied).

Phrased in terms of arguments, each principle thus tells us that a certain sort
of argument is valid if and only each member of a (perhaps empty) list of argu-
ments is valid. When the corresponding rule is applied to a gap, the gap is pro-
vided with children whose proximate arguments are those on the list if the list
is not empty, and the gap is closed if the list is empty. This is shown for indi-
vidual rules in the following table:

rule prox. arg.
of parent

prox. args.
of children

Cnj Γ / φ ∧ ψ Γ 
Γ 

/ φ
/ ψ

Ext Γ, φ ∧ ψ / χ Γ, φ, ψ / χ
QED Γ, φ / φ (none)
ENV Γ / ⊤ (none)
EFQ Γ, ⊥ / φ (none)

In general, we can that the proximate argument of a gap to which a rule is ap-
plied is valid if and only if all the proximate arguments of any children given
by the rule are valid. When a parent gap acquires a child due to development
of another gap, it then acquires only one child and the proximate argument of
this child is the same as the parent’s, so in this case, too, the proximate argu-
ment of the parent if and only if the proximate argument of each child is valid.
Putting these two cases together, we can say this:

For any pair of immediately successive stages of a derivation, a gap at the
first stage has a valid proximate argument if and only if every child of it
at the next stage has a valid proximate argument.

Here the claim every child … should be understood to be true when the gap
has no children to provide counterexamples to this generalization. And this is
the reason for the limitation to cases of a pair of successive stages, the fact that
a stage has no children tells us nothing about its validity if it has no children
merely because the derivation hasn’t yet been developed beyond that point. On
the other hand, there is no need to limit this claim stages that are immediately



successive. For what we have seen about children applies equally to grandchil-
dren, great-grandchildren, and so on.

It may be easier to see that if we turn things around and look the conditions
under which proximate arguments fail  to be valid. In order to have a more
compact way to talk about that, let us say that an interpretation that is a coun-
terexample to a gap’s proximate argument lurks in the gap and that the gap has
a lurking counterexample. So the proximate argument of a gap fails to be valid
just in case there is a counterexample lurking in the gap. And the principle
above then comes to the same thing as the following:

For any pair of immediately successive stages of a derivation, a gap at the
first stage has a counterexample lurking in it if and only if some child of
it at the next stage has a counterexample lurking in it.

This is equivalent to the earlier principle because saying that some child has a
lurking counterexample is the same as denying that every child has a valid
proximate argument.

Now suppose a gap is followed by two successive further stages. What we
have said regarding any children at the first of these applies to grandchildren at
the second. For,  if  a counterexample lurks in the gap, we have seen that a
counterexample must lurk in some child and, for the same reason, in some
child of that child. And if a counterexample lurks in a grandchild, one must
lurk in a child, and therefore one must lurk in the gap itself. The same argu-
ment applies to further succeeding stages, so we can say this:

For any pair of stages, one earlier than the other, a gap at the first earlier has
a counterexample lurking in it if and only if some descendent of it at the
later stage has a lurking counterexample.

We still speak only of gaps for which there is a succeeding stage, but that is
enough to tie the validity of the initial gap’s proximate argument with the state
of the derivation after all work is done. And, when all work is done, we know
from  the  last  subsection  that  any  remaining  open  gaps,  which  will  have
reached dead ends, must have counterexamples lurking in them.

The diagram below shows how we can put these ideas together. It displays a
sort of schematic argument tree that does not indicate actual proximate argu-
ments, only their validity or invalidity—that is, whether or not there is a coun-
terexample lurking in the gap. It is intended to depict a derivation that has
come to an end, so the one gap that remains open at the right is understood to
be a dead end.

We can distinguish three sorts of cases in this tree. First of all, we know from
the sufficiency of the rules that the dead-end gap has a counterexample lurking
in it. It has no descendent with a lurking counterexample, but that doesn’t con-
flict with the principle above because there is no later stage. Next, all ancestors
of the dead-end gap, right down to the root of the tree, must have lurking coun-
terexamples because each has a descendant that does. And finally, in the case
of  any  of  the  other  gaps—i.e.,  the  ones  whose  proximate  arguments  are
valid—there is a following stage (the last stage of the derivation if not an ear-
lier one) at which the gap has no descendant at all, and so certainly has no de-
scendant  with a  lurking counterexample.  Also,  notice  that,  at  stages  where
such a gap does have descendants, all its descendents have valid proximate ar-
guments. (There is a fourth sort of case that does not appear here, a gap that
has no descendants but has not been closed and is not at a dead end, but this
case will appear only in the last stage of an incomplete derivation.)

We now know that the way we have taken the results of a derivation is cor-
rect. If there is a dead-end gap—and thus, by sufficiency, a gap with a lurking
counterexample—the initial gap must have a counterexample lurking in it, so
the ultimate argument is invalid. On the other hand, if all gaps close, there is a
stage (the one at which the last gap closes) at which the initial gap has no de-
scendants, so it must have no lurking counterexample and the ultimate argu-
ment must be valid. Although the principle we have been using does represent
an important property of the system of derivations, we will not label this prop-
erty (in the way we have labeled the property of sufficiency) because we will
go on in the next section to look further at the basis for it and state (and label)
some related properties that can be applied to a wider range of rules, including
the extended use of QED that we excluded from consideration here.
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2.3.4. Sound and safe rules
The necessary and sufficient conditions for the validity of proximate argu-

ments that were developed in the last section were based on connections be-
tween the presence of lurking counterexamples at successive stages. In this
section, we will look more closely at the rules and consider not merely how the
fact that counterexamples lurk in gaps is preserved as we develop a derivation
but indeed how any lurking counterexamples are themselves preserved. This
closer look at the effect of rules will enable us to give an account of a wider
range of possible rules, including the extended use of QED that was not cov-
ered in our discussion in the last section.

We begin by considering two properties a rule R might have:

R is strict when any interpretation of the derivation that is a coun-
terexample lurking in a gap to which the rule R is
applied also lurks in some child of the gap

R is safe when any interpretation of the derivation that is a coun-
terexample lurking in a child of a gap to which
the rule R has been applied also lurks in the par-
ent gap

When a rule is strict we never lose any lurking counterexamples as we apply
the rule. When it is safe, we never gain any lurkers. Both definitions are stated
for interpretations of the whole derivation because an interpretation that lurks
in a child gap need not assign truth values to enough sentences to count as a
lurking counterexample of the parent. However, every way of the interpreting
the vocabulary of the proximate argument of a gap can be found in some inter-
pretation of the derivation as a whole, so the restriction to interpretations of the
whole derivation does not really limit the scope of the generalizations.

Although their association with the necessity and sufficiency of the same
condition suggests a kind of parallel between them, these two properties do not
have the same importance. Although we will see that strictness is a little more
than we need to ask, any serious departure from strictness would undermine
the  central  function  of  proofs:  to  establish  validity.  For  then all  gaps  of  a
derivation might close even though the original argument was invalid. An un-
safe rule would analogously undermine the use of derivations to establish inva-
lidity because it would introduce the possibility that a derivation for a valid ar-
gument could lead us to a dead end. But the role of derivations in establishing
invalidity is less central, and their full use in that way depends also on a prop-
erty (discussed in 2.3.7 ) that will fail for rules to be considered in the last two
chapters. This means that safety is dispensible, but no viable system of proof
could completely dispense with strictness.

Moreover, moves corresponding to unsafe rules are an important part of ex-
plicit deductive reasoning. For example, a natural approach when we seek a
way to prove a mathematical result is to introduce a lemma (in the sense is dis-
cussed in 1.4.7 ) as a stepping stone to a final result. If the lemma represents a
significant step beyond the premises, it may be no more obviously a valid con-
clusion from the premises than is the final conclusion we hope to establish.
The introduction of such a lemma can be described as a conjecture, and this
conjecture may be wrong: the lemma may not be a valid conclusion from our
premises even when the final conclusion is valid. In short, by seeking to reach
our conclusion by way of this lemma, we may be entering a blind alley. This is
just  the  sort  of  thing that  would  appear  in  the  context  of  derivations  as  a
dead-end open gap in a derivation whose initial argument is valid. So conjec-
turing a lemma can be thought of as a step in discovering a proof that is valu-
able but unsafe.

Another step in a proof that can be valuable but is unsafe is a decision to fo-
cus on only some of the information in one’s premises. This might seem quite
different from a conjecture; but, combined with rules we will consider in the
next chapter, a rule allowing us to conjecture a conclusion could lead us into a
situation in which the active resources entailed less than did the resources at an
earlier stage with the same goal.  Intuitively, to focus on only part of one’s
premises is to guess that this part will be as useful for reaching the conclusion
as the whole would be, and this guess amounts to a conjecture.

Our interest in deductive reasoning is somewhat different from a mathemati-
cian’s.  We are aiming not at  new and surprising conclusions but instead at
fuller understanding of the steps by which deductive conclusions are reached.
Consequently, we will not be considering the large deductive steps for which
conjecturing lemmas is the only practical approach. We will make use of lem-
mas—and we will look at rules for doing so in 2.4—but the chief value of
lemmas for us lies in a restricted range of cases where we can be sure that they
are safe.

Earlier, we set aside uses of QED in which the goal of the gap we close is
among its available resources but not among the active ones. To discuss such
uses of QED, we need to consider a requirement that is less unyielding than
strictness. The following property of a rule R is the one we will employ:

R is sound when any interpretation that it is a counterexample lurk-
ing both in a gap to which the rule R is applied
and in all ancestors of this gap also lurks in
some child of the gap

The difference lies in the added phrase and all ancestors of this gap. The



addition  makes  soundness  apparently  weaker  than  strictness  because,  for
soundness, we do not require that an interpretation lurk in a child gap when-
ever it lurks the parent but instead only when it also lurks in all ancestors of
the parent. However, when all rules are safe, a rule that is sound is also strict.
For, when all rules are safe, an interpretation that is a lurking counterexample
for a gap will also lurk in all ancestors of the gap. Thus, when there is a differ-
ence between soundness and strictness, it lies in their handling of the spurious
lurking counterexamples introduced by unsafe rules: with a strict rule, such an
interpretation will continue to lurk in descendants while, with a sound rule, it
might not. In particular, a strict rule would force us to bear the burden of prov-
ing an unsafe conjecture while a sound rule might allow us to substitute a dif-
ferent way of reaching our initial goal.

And even when not all rules are safe, soundness is enough to insure that the
ultimate argument of a derivation is valid whenever all gaps close. For, if all
rules are sound, we can be sure that any counterexample lurking in a gap and
in all its ancestors will lurk also in some child and in all ancestors of this child
(since these are just the parent and its ancestors). But any counterexample to
the ultimate argument of a derivation also lurks in any ancestor to the initial
gap (since it has none), so if all rules are sound, this interpretation will also
lurk in some child and all its ancestors—and so on. That is, as with strictness,
when all rules are sound, any counterexample to the ultimate argument must
lurk in some descendant at each stage; therefore, if all gaps close, there can be
no counterexample to the ultimate argument. In short, if a sound rule ignores
any lurking counterexample,  this counterexample is  an interpretation which
shows that some risky conjecture does not follow from the initial premises, not
one that shows that the initial conclusion was invalid.

Now, for a gap-closing rule to be sound, it is enough that there be no inter-
pretation that makes the goal of the gap it closes false while making true all ac-
tive resources of the gap and all active resources of the gap’s ancestors. This
means that it is enough for us to soundly close a gap that its goal be entailed by
its active resources together the active resources of its ancestors. With the rules
we have so far, all available resources are included if we take the active re-
sources of a gap together with the active resources of its ancestors. So it is
sound to close a gap when the goal is among the available resources, and our
extended use of QED is sound.

But we can be even more generous since, by the law for lemmas, adding to a
collection of resources something that is entailed by them will not change what
they entail.  In short,  we can state rules for closing gaps and have them be
sound if the conclusion of the gap is among its active resources, is among the
active resources of its ancestors, or is something entailed by these resources.

The available resources of a gap always include its active resources and the ac-
tive resources of its ancestors, but in 2.4.4  we will consider rules which add to
the available resources certain conclusions entailed by these resources. And we
have just seen that this sort of addition will not undermine the soundness of the
extended use of QED.

Although we will sometimes need to distinguish soundness and safety (or
even consider strictness) in later discussions, most often we will not. We will
say that a system is conservative when its rules are all safe and sound (which,
remember, comes to the same thing as being all safe and strict). So in a conser-
vative system, lurking counterexamples are neither added nor lost as we de-
velop a derivation, though they may be spread out among an increasing num-
ber of descendant gaps, something we will see illustrated in the next section’s
example.
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2.3.5. Confirming counterexamples
A dead-end open gap is always has a counterexample lurking in it, and any
counterexample  lurking in  it  lurks  already in  the  ultimate  argument  of  the
derivation. We will finish off derivations by exhibiting a counterexample lurk-
ing in a dead-end open gap and calculating the truth values of the original
premises and conclusions on that interpretation. In the case of the example
discussed in 2.3.1 , this calculation is shown in the following table:

A B C (A ∧ ⊤) ∧ B / B ∧ (⊤ ∧ C)
T T F T T Ⓣ Ⓕ T F

Here the values of unanalyzed components have not been repeated on the
right, but they are used to calculate the values of compounds containing them,
with the order of calculation being guided by parentheses. In performing this
calculation we are confirming that the counterexample lurking in the dead-end
gap really does constitute a counterexample to the ultimate argument; and we
will say that, in constructing the table, we are confirming a counterexample. It
will be our standard way of concluding the treatment of an argument whose
derivation fails.

It is not always the case that all unanalyzed components of the ultimate ar-
gument all appear among the resources and goal of a dead-end gap. When un-
analyzed components  do not  appear  there,  values  must  still  be  assigned to
them in order for a truth value to be defined for each sentence in the ultimate
argument; but it will not matter what value we assign to these further unana-
lyzed components. If an interpretation separates the active resources of a gap
from its goal, any way we choose to extend it to unanalyzed components not
appearing in the gap’s proximate argument will still be a counterexample to
that proximate argument and therefore also to the ultimate argument.

The example below is designed to illustrate this. Of the three interpretations
shown, the first  is  a counterexample lurking in only the first  dead-end gap
(since it assigns the value T to the goal of the second dead-end gap), and the
last lurks only in the second open gap (for a similar reason); but the middle
one  lurks  in  both  open  gaps.  With  4  unanalyzed  components,  there  are
2×2×2×2 = 2  = 16 possible interpretations, so there are 13 interpretations that
do not lurk in either gap. The soundness and safety of our rules insures that the
3 interpretations shown below constitute counterexamples to the ultimate argu-
ment and that the other 13 do not.

4

   
│A ∧ B 1
├─

1 Ext │A
1 Ext │B (4)

│
││○ A, B ⊭ C
│├─
││C 2
│
│││●
││├─

4 QED│││B 3
││
│││○ A, B ⊭ D
││├─
│││D 3
│├─

3 Cnj ││B ∧ D 2
├─

2 Cnj │C ∧ (B ∧ D)
A B C D A ∧ B / C ∧ (B ∧ D)
T T F T Ⓣ Ⓕ T lurks in first dead-end gap
T T F F Ⓣ Ⓕ F lurks in both dead-end gaps
T T T F Ⓣ Ⓕ F lurks in second dead-end gap

While a dead-end gap specifies just one assignment of truth values to the vo-
cabulary actually appearing in its proximate argument, this assignment may be
provided by more than one interpretation of the derivation as a whole if the
derivations contains further vocabulary. That happens in both gaps here, and it
also happens that a single interpretation of the whole derivation is a counterex-
ample lurking in both of the gaps. That’s why we end up with 3 interpretations
all told.

A B C D
T T F T
T T F F
T T T F

A B C D
T T F T
T T F F

A B C D
T T F F
T T T F

Fig. 2.3.5-1. Counterexamples lurking in the dead-end gaps of the example
above.

Since each of these interpretations lurks in all ancestors of the dead-end gap or
gaps in which it lurks, any one of the three is enough to provide a counterex-
ample to the ultimate argument. Beginning with chapter 6, it will prove to be

○─○ 

┌○ 
│ 
┤ 
└○ 

─○─○ 

┌○─● 
┤ 
└○─○



most convenient to assign F to an unanalyzed component whenever we have a
choice, and here that would lead us to the middle interpretation in the case of
both gaps. But, for now, when an unanalyzed component does not appear in
the proximate argument of a dead-end gap, the choice of the value to assign to
it is entirely arbitrary.
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2.3.6. Reaching decisions
We know that  if  a  system of derivations has individual  rules that  are both
sound and safe and is, as a whole, sufficient, it will never give us an incorrect
answer regarding the validity of an argument. But it is entirely possible that
such a system will give us no answer at all. Of course, if we ever run out of
rules to apply, we will have an answer. For then either all gaps will have closed
or we will have an open gap that has reached a dead end, and both results pro-
vide an answer. However, without some guarantee that we will eventually run
out of rules, we have no guarantee that we will eventually have an answer.
And such a guarantee is not trivial; in fact, once we get to the last two chap-
ters, we will be working in a system some of whose derivations do go on for-
ever.

We will say that a system is decisive when we always reach a point where
either all gaps are closed or there is a dead-end open gap. It should be clear
that our system so far is decisive. The rules Ext and Cnj replace conjunctions
among the resources and goals of a gap by simpler sentences and must there-
fore eventually eliminate all conjunctions. And when the proximate argument
of a gap contains no conjunctions, the only rules that might apply are QED,
ENV, and EFQ. Each of these closes a gap and there will be only a limited
number of gaps to close, so we must eventually run out of things to do.

But we will go on to consider further rules, and some of these will be suffi-
ciently differently from those we have considered so far that, even when a sys-
tem is decisive, it may not be as easy to see that it is. So let’s look at some
questions that arise in making this judgment. As we do this, it is worth remem-
bering that, in assessing decisiveness, we are not really interested in whether a
system reaches some valuable goal, only in whether we are bound to run out of
things to do when we apply its rules.

One way to judge whether that is so is to provide some count of how much
there is that might be done, and see whether each rule of the system reduces
that count. However, it is not always easy to describe a single quantity that is
always reduced, and the reason can be seen even with our current system. The
rules QED, ENV, and EFQ reduce the number of open gaps, and that is cer-
tainly a relevant quantity. The rules Ext and Cnj, on the other hand, reduce the
complexity of proximate arguments, something else that cannot go on for ever.
While complexity may seem too abstract to be reduced to a single number, the
simple expedient of counting the number of connectives in a proximate argu-
ment actually provides a useful quantity in the present setting. So far, so good,
but the real problem arises in putting these two numbers together.

This problem is easiest to see by considering Cnj. While the proximate argu-



ments of both its children are simpler than that of their parent, it adds to the to-
tal number of open gaps. It is tempting to say that this is acceptable because
the increase in the number of open gaps is no greater than the decrease in the
complexity, so the sum of the two is not increased. But this would be wrong on
two counts. First, it is not enough that we avoid increasing the quantity we are
watching: rules that merely kept it the same might go on for ever doing that.
Second, our system would still be decisive if Cnj added 10, 100, or even a mil-
lion new gaps when it eliminated a single connective. For, in the absence of a
rule that added connectives, it would eventually run out of connectives to elim-
inate, and we would be forced to use other rules which did reduce one quantity
without increasing the other.

This is not to say that there is no way of putting the number of open gaps
and the complexity of proximate arguments together to produce a useful quan-
tity, but any way of doing that must recognize their asymmetry: we can add
gaps as we reduce the number of connectives but only provided we add no
new connectives when we close gaps. However, we will not look at ways of
actually combining these quantities. We will simply employ the abstract idea
of a rule moving things along. We will call a rule that does this progressive,
understanding that  whether a rule is  progressive depends not only on what
quantities it might reduce but also on what other rules are present. The com-
mon idea associated with our various uses of this term progressive will be
that, if all our rules are progressive, each moves us far enough along that we
can never apply them more than a limited (though perhaps very large) number
of times before we run out of things to do.

So a system all of whose rules are progressive will be decisive; that is, we
will always reach a point at which no more rules can be applied. At that point,
any gap that is left open will have reached a dead end, and the derivation will
have provided an answer about the validity of the original system. And we saw
earlier that if a system is sufficient and conservative, the existence or non-exis-
tence of an open gap when no more rules apply provides a correct answer re-
garding validity of the ultimate argument.  A system that always eventually
provides an answer and a correct one, can be said to provide a decision proce‐
dure for validity.
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2.3.7. Soundness and completeness
Our current system is sufficient, conservative, and decisive, and it therefore
provides a decision procedure. But we can cut up its properties in another way.
Because it is decisive as well as accurate in its answers, we can say both of the
following about any derivation:

(1) The ultimate argument of a derivation is valid if and only if at some
stage all gaps have closed.

(2) The ultimate argument of a derivation is invalid if and only if eventually
we reach a dead-end open gap.

The if parts of these together say that the system is accurate, and we have seen
that they follow from its conservativeness (along with sufficiency in the case
of the second statement). The only if parts follow from the if parts given deci-
siveness. (For example, if the ultimate argument is valid, it must be the case
that all gaps close because otherwise, given decisiveness, we would reach a
dead-end gap and the ultimate argument would not be valid.) Moreover, the
only if parts of the two claims above together imply decisiveness because an
argument will always be either valid or invalid, so they tell us that eventually
either all gaps close or we reach a dead-end gap.

But these two claims, like the properties of soundness and safety, are not of
equal importance. The first is closely tied to the use of derivations to establish
validity while the second is similarly related to their use to find counterexam-
ples and establish invalidity. The first is of special interest also because it can
be established in some cases where decisiveness fails, and we will take it as
the key property of our system of derivations in chapters 7 and 8 when we
must abandon decisiveness.

It is standard to give different names to the two parts of the first statement:

(1a) The ultimate argument of a derivation is valid if at some stage all gaps
have closed

(1b) The ultimate argument of a derivation is valid only if at some stage all
gaps have closed

When we can be sure that (1a) is true, we say that the system is sound. We
have seen that a system will be sound in this sense if all its rules are sound.
When we can be sure that (1b) is true, we say the system is complete because
such a system provides a proof for each valid argument.

We can show that a system is complete if we know (i) that its rules are safe
and the system as whole is sufficient and we know also that (ii) any derivation
whose ultimate argument is valid eventually reaches an end. Property (ii) is not



full decisiveness since it applies only to derivations whose ultimate argument
is valid. This sort of partial decisiveness is something we will be able to estab-
lish for the systems of chapters 7 and 8, for which full decisiveness does not
hold. And, because this partial decisiveness is enough to provide complete-
ness, all systems that we will study in the course are both sound and complete.
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2.3.8. Formal validity

As was noted earlier, the use of the term valid in connection with derivations
requires some qualification. In the context of derivations, as in the context of
analyses, Roman capital letters are used to stand for particular sentences that
are not analyzed further, and such sentences need not be logically independent.
That  means that  a  given extensional  interpretation of  unanalyzed sentences
need not be realized in any possible world. So, in the example of 2.3.1 , even
though the appearance of a dead-end gap leads us to write “B, A, ⊤ ⊭ C”, it
might be that the particular sentences A and B do together entail the particular
sentence C, and it could even be that C is tautology or that A and B are mutu-
ally exclusive. In short, knowing that there is an extensional interpretation of
analyzed sentences that assigns them certain truth values does not show that it
is logically possible for the sentences to have those truth values.

On the other hand, our interest in derivations is as a way of applying general
principles of formal logic. And, even though these principles are applied to
particular sentences, their application depends only on the features of these
sentences  that  are  displayed in  symbolic  analyses.  In  particular,  the  use of
derivation rules does not depend on the specific identity of unanalyzed compo-
nents. This means that when the gaps of a derivation do all close we know not
only that its premises entail its conclusion but also that the same is true for any
argument having the same form. One way of putting this is to say that we
know the argument to be formally valid or, more precisely, to be valid in virtue
of the form exhibited in the particular analysis we have used. Since formal va-
lidity is a stronger property than simple validity, knowing that an argument is
formally valid is enough to tell us it is valid; and we will usually drop the qual-
ification formal for this reason. But it is important to remember that when an
argument is labeled “invalid” on the basis of a derivation, this judgment is rel-
ative to a particular analysis of it. Indeed, if this were not so, we could stop af-
ter studying conjunction: the point of considering further logical forms is to
recognize the validity of arguments that count as formally invalid when con-
sidered solely in terms of conjunction.

The idea of validity in virtue of form can itself be spelled out by saying that
an argument is formally valid with respect to a given analysis when any way
of associating sentences with its unanalyzed components produces a valid ar-
gument. So when the derivation of 2.2.5  showed us that (A ∧ B) ∧ C, D ⊨ C ∧
(A ∧ D), this told us something not only about the specific sentences (A ∧ B)
∧ C, D, and C ∧ (A ∧ D) but about any sentences that are related in the way
indicated by these analyses—that is, about the sentences could be formed in
these ways from any choice of sentences, A, B, C, and D. Such choice of ac-



tual sentences, one for each of a group of unanalyzed components, is an inten-
sional interpretation in the sense discussed in 2.1.8 , so we can say that an ana-
lyzed argument is formally valid when every intensional interpretation of it is
valid.

When a derivation leads to a dead-end gap, what we know, speaking most
strictly, is that its ultimate argument is not formally valid. That is because one
test of formal validity is whether there is an extensional interpretation of the
argument  that  separates  its  premises  from it  conclusion.  And we will  look
more closely at why that is so.

First, if there is an extensional intepretation that provides a counterexample
to an argument, we can construct an intensional interpretation by assigning to
each component an actual sentence with the truth assigned by the extensional
interpretation, and this interpretation will yield an actual argument having the
same form as the original one but with actually true premises and an actually
true  conclusion.  In  example  from 2.3.1 ,  the  counterexample  given  by  the
dead-end gap assigns T to A and B and F to C. So we might associate English
sentences with these unanalyzed components as follows:

A: Atlanta is in Georgia
B: Boston is in Massachusetts
C: Chicago is in Massachusetts

If so, the proximate argument of the dead-end gap will be

Boston is in Massachusetts
Atlanta is in Georgia

⊤

Chicago is in Massachusetts

and the ultimate argument of the derivation will be

Atlanta is in Georgia and ⊤; moreover, Boston
is in Massachusetts

Boston and Chicago are both in Massachusetts

To get something completely in English, we can replace ⊤ by any tautology. If
we use Atlanta is Atlanta, we get

Atlanta is in Georgia and is Atlanta; moreover,
Boston is in Massachusetts

Boston and Chicago are both in Massachusetts

Each  of  these  particular  arguments  has  a  false  conclusion  along  with  true

premises not merely in some possible world but in the actual world, so they are
certainly invalid. Because the latter two have the same form as the ultimate ar-
gument of the derivation, that ultimate argument is not valid with respect to the
form displayed in its analysis. If in that argument, the unanalyzed A, B, and C
happen to be sentences such that A, B ⊨ C, the argument will in fact be valid.
For example, it might be

All  humans are mortal  and are human;  more-
over, Socrates is human

Socrates is both human and mortal

But it will remain true that it is not valid with respect to the form displayed in
the symbolic analysis, and we have shown it is not by giving another interpre-
tation of this form that is not valid.

We have seen that an argument whose premises are separated from its con-
clusion by an extensional interpretation is not formally valid. The converse is
also true. That is, if an argument is not formally valid, its premises are sepa-
rated from its conclusion by some extensional interpretation. The claim that an
argument is formally valid is a generalization about both intensional interpre-
tations and possible worlds, and a counterexample to this generalization is pro-
vided an intensional interpretation and a possible world with the property that
the  actual  argument  that  results  from the  intensional  interpretation  has  its
premises separated from its conclusion by the possible world. But any inten-
sional interpretation and possible world will determine an assignment of truth
values to the unanalyzed components of the argument. In the example above
the value T is assigned to the unanalyzed component A by associating the sen-
tence Atlanta is in Georgia with A and considering the truth value of this
sentence in the actual world. Since any intensional interpretation and possible
world will determine an extensional interpretation in this way, any counterex-
ample to the formal validity of a symbolic argument will provide an exten-
sional interpretation that separates its premises from its conclusion.

This means that even if we do not define formally validity directly in terms
of inseparability of premises from conclusion by extensional interpretations
but instead in terms of validity under any intensional interpretation, it will still
be true that an argument is formally valid if and only if no extensional inter-
pretation separates its premises from its conclusion.
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2.3.s. Summary
When a derivation is constructed for an invalid argument,  eventually we
will find that an open gap has reached a dead end  without closing. We mark
such a gap with a empty circle ○ and write its active resources and goal with
the sign ⊭ between to indicate that they do not form a valid argument. And
we will see that the invalidity of the proximate argument of a dead-end gap
implies the invalidity of the ultimate argument  for which the derivation is
constructed.

We will often be concerned with formal validity, so we extend to assign-
ments of truth values the idea of constituting a counterexample to an argu-
ment. The fact that any dead-end open gap has its active resources separated
from its conclusion by some interpretation indicates that our system is suffi-
cient  in the sense of having enough rules to close all dead-end gaps whose
proximate arguments are valid.

When speaking of the tree structure of the gaps of a proof, it is convenient
to use a genealogical metaphor and to speak of a gap at one stage as the
parent  of the gaps that derive from it at the next stage, gaps that are its chil-
dren . Children of a gap’s children, their children, and so on are descendants
of the gap, and it is an ancestor  of them. We can state a necessary and suffi-
cient condition for a counterexample to its proximate argument lurk  in a
gap in terms of the existence of lurking counterexamples at later stages.

We  can  be  sure  that  a  counterexample  to  the  proximate  argument  of  a
dead-end gap is a counterexample to the derivation’s ultimate argument pro-
vided all our rules are safe  in the sense of never introducing new lurking
counterexamples. When the converse is true, when we our rules never allow
us to ignore lurking counterexamples, they are strict . Since our real interest
is in the ultimate argument of a derivation, it is really enough to attend to
lurking counterexamples when they also lurk in all ancestors of a gap. Rules
that insure that we do this are sound; when all rules are safe, sound rules are
also strict. The idea of soundness enables us to justify the use of available
but inactive resources  (to, for example, close gaps) even when not all rules
are safe. A system whose rules are all sound and also safe is conservative .

When an interpretation is a counterexample to the proximate argument of a
dead-end open gap, this interpretation is also a counterexample to the ulti-
mate argument of the derivation, and we will confirm such a counterexam-
ple  as a way of finishing off a derivation that fails.

A system will  be decisive  (in  the sense that  any derivation will  always

7

8

come to an end) provided its rules are all progressive  (in the sense of al-
ways leading us closer to a point where no more can be done). Many rules
are progressive because they either close a gap or replace a goal or active re-
source by one or more simpler sentences. A decisive system which is suffi-
cient and conservative (and is therefore correct in the answers it gives) pro-
vides a decision procedure  for formal validity.

Not all systems we consider will provide decision procedures but all will be
sound  in the sense of providing proofs only for valid arguments and com-
plete  in the sense of leading us to a proof whenever an argument is formally
valid.

An argument that is valid may have a form that is invalid  in the sense that
some intensional interpretation of the unanalyzed components appearing in
the form—i.e., some way of associating actual sentences with them—yields
an invalid argument. Formal validity implies validity, so a derivation that
succeeds shows both, but one that fails only shows formal invalidity.
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2.3.x. Exercise questions
Use the basic system of derivations to check each of the claims below. If a
derivation indicates that a claim fails, confirm a counterexample. That is, give
an interpretation that separates the active resources of an open gap from its
goal and calculate truth values for the premises and conclusion from it—as is
done in the example in 2.3.5  (though you need only provide a single coun-
terexample even when the derivation leads you to several):
1. A ⊨ A ∧ B
2. A ∧ B ⊨ A ∧ (B ∧ A)
3. B ∧ E, C ∧ ⊤ ⊨ (A ∧ B) ∧ (C ∧ D)
4. A ∧ B, B ∧ C, C ∧ D ⊨ A ∧ D
5. A, B ∧ A, D ⊨ B ∧ ((C ∧ A) ∧ D)

For more exercises, use the exercise machine .
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2.3.xa. Exercise answers

1. │A (2)
├─
││●
│├─

2 QED││A 1
│
││○ A ⊭ B
│├─
││B 1
├─

1 Cnj │A ∧ B
A B A / A ∧ B
T F Ⓣ Ⓕ

2. │A ∧ B 1
├─

1 Ext │A (4),(6)
1 Ext │B (5)

│
││●
│├─

4 QED││A 2
│
│││●
││├─

5 QED│││B 3
││
│││●
││├─

6 QED│││A 3
│├─

3 Cnj ││B ∧ A 2
├─

2 Cnj │A ∧ (B ∧ A)



3. │B ∧ E 1
│C ∧ ⊤ 2
├─

1 Ext │B (5)
1 Ext │E
2 Ext │C (7)
2 Ext │⊤

│
│││○ B, C, E, ⊤ ⊭ A
││├─
│││A 4
││
│││●
││├─

5 QED│││B 4
│├─

4 Cnj ││A ∧ B 3
│
│││●
││├─

7 QED│││C 6
││
│││○ B, C, E, ⊤ ⊭ D
││├─
│││D 6
│├─

6 Cnj ││C ∧ D 3
├─

3 Cnj │(A ∧ B) ∧ (C ∧ D)
A B C D E B ∧ E , C ∧ ⊤ / (A ∧ B) ∧ (C ∧ D)
F T T F T Ⓣ Ⓣ T F Ⓕ F

This derivation could have been ended after stage 4 when the first open gap has
reached a dead end. Often answers will show a derivation continued further than
necessary in order to show how the further steps would have worked out. The
counterexample confirmed here lurks in both dead-end gaps; there are others that
lurk in only one of the two. Notice that ⊤ is not assigned a value at the left of the
table. Since its value is fixed by the stipulation that it is a tautology, a value need
not and cannot be assigned to it as part of an extensional interpretation.

4. │A ∧ B 1
│B ∧ C 2
│B ∧ D 3
├─

1 Ext │A (5)
1 Ext │B
2 Ext │B
2 Ext │C
3 Ext │B
3 Ext │D (6)

│
││●
│├─

5 QED││A 4
│
││●
│├─

6 QED││D 4
├─

4 Cnj │A ∧ D

Clearly, there is redundancy in the active resources of
the  gaps  after  stage  3  of  this  derivation.  Since  both
gaps close,  the exploitation of the second premise at
stage 2 is not necessary (though it would be necessary
before any gap could reach a dead end). It would be
possible to state rules so that the resource B was not re-
peated at stages 2 and 3, but such repetition does not
ordinarily enlarge derivations significantly and makes
it easier to check whether rules have been applied fully
and correctly.

5. │A (6)
│B ∧ A 1
│D (7)
├─

1 Ext │B (5)
1 Ext │A

│
││●
│├─

5 QED││B 2
│
││││○ A,B,D ⊭ C
│││├─
││││C 4
│││
││││●
│││├─

6 QED││││A 4
││├─

4 Cnj │││C ∧ A 3
││
│││●
││├─

7 QED│││D 3
│├─

3 Cnj ││(C ∧ A) ∧ D 2
├─

2 Cnj │B ∧ ((C ∧ A) ∧ D)
A B C D A , B ∧ A , D / B ∧ ((C ∧ A) ∧ D)
T T F T Ⓣ Ⓣ Ⓣ Ⓕ F F
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