A.4. Derivation rules
Basic system
| 
| Rules for developing gaps |  
| logical form | as a resource
 | as a goal
 |  
| atomic sentence
 |  | IP |  
| negation ¬ φ
 | CR (if φ not atomic
 & goal is ⊥)
 | RAA |  
| conjunction φ ∧ ψ
 | Ext | Cnj |  
| disjunction φ ∨ ψ
 | PC | PE |  
| conditional φ → ψ
 | RC (if goal is ⊥)
 | CP |  
| universal ∀x θx
 | UI | UG |  
| existential ∃x θx
 | PCh | NcP |  
In addition, if the conditions for applying a rule are met except for differences between co-aliases, then the rule can be applied and is notated by adding "="; QED= and Nc= are examples of this.
 |  | 
| Rules for closing gaps |  
| when to close | rule |  
| co-aliases | resources | goal |  |  
|  | φ | φ | QED |  
|  | φ and ¬ φ | ⊥ | Nc |  
|  |  | ⊤ | ENV |  
|  | ⊥ |  | EFQ |  
| τ—υ |  | τ = υ | EC |  
| τ—υ | ¬ τ = υ | ⊥ | DC |  
| τ1—υ1, …, τn—υn | Pτ1…τn | Pυ1…υn | QED= |  
| τ1—υ1, …, τn—υn | Pτ1…τn ¬ Pυ1…υn
 | ⊥ | Nc= |  
| Detachment rules (optional) |  
| required resources | rule |  
| main | auxiliary |  |  
| φ → ψ | φ | MPP |  
| ¬± ψ | MTT |  
| φ ∨ ψ | ¬± φ or ¬± ψ | MTP |  
| ¬ (φ ∧ ψ) | φ or ψ | MPT |  | 
Additional rules (not guaranteed to be progressive)
| 
| Attachment rules |  
| added resource | rule |  
| φ ∧ ψ | Adj |  
| φ → ψ | Wk |  
| φ ∨ ψ | Wk |  
| ¬ (φ ∧ ψ) | Wk |  
| τ = υ | CE |  
| θυ1…υn | Cng |  
| ∃x θx | EG |  |  | 
| Rule for lemmas |  
| prerequisite | rule |  
| the goal is ⊥ | LFR |  | 
Diagrams
Rules from chapter 2
Extraction (Ext)
| 
|  | │⋯ |  |  |  | │φ ∧ ψ |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││⋯ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │φ ∧ ψ | n |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n Ext | ││φ |  |  | n Ext | ││ψ |  |  |  | ││ |  |  |  | ││⋯ |  |  |  | │⋯ |  |  | 
Conjunction (Cnj)
| 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ ∧ ψ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │││ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││φ | n |  |  | ││ |  |  |  | │││ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││ψ | n |  |  | │├─ |  |  | n Cnj | ││φ ∧ ψ |  |  |  | │⋯ |  |  | 
Quod Erat Demonstrandum (QED)
| 
|  | │⋯ |  |  |  | │φ [available] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │φ | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││● |  |  |  | │├─ |  |  | n QED | ││φ |  |  |  | │⋯ |  |  | 
Ex Nihilo Verum (ENV)
|  | → | 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││● |  |  |  | │├─ |  |  | n ENV | ││⊤ |  |  |  | │⋯ |  |  | 
Ex Falso Quodlibet (EFQ)
| 
|  | │⋯ |  |  |  | │⊥ |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │⊥ | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││● |  |  |  | │├─ |  |  | n EFQ | ││φ |  |  |  | │⋯ |  |  | 
Adjunction (Adj)
| 
|  | │⋯ |  |  |  | │φ [available] |  |  |  | │⋯ |  |  |  | │ψ [available] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │φ | (n) |  |  | │⋯ |  |  |  | │ψ | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n Adj | ││φ ∧ ψ | X |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | 
Lemma for Reductio (LFR)
| 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││⊥ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │││ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││φ | n |  |  | ││ |  |  |  | │││φ |  |  |  | ││├─ |  |  |  | │││ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││⊥ | n |  |  | │├─ |  |  | n LFR | ││⊥ |  |  |  | │⋯ |  |  | 
Rules from chapter 3
Indirect Proof (IP)
| 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ [atomic] |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │││¬ φ |  |  |  | ││├─ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││⊥ | n |  |  | │├─ |  |  | n IP | ││φ |  |  |  | │⋯ |  |  | 
Completing the Reductio (CR)
| 
|  | │⋯ |  |  |  | │¬ φ [φ is not atomic] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││⊥ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │¬ φ | n |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │││ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││φ | n |  |  | │├─ |  |  | n CR | ││⊥ |  |  |  | │⋯ |  |  | 
Reductio ad Absurdum (RAA)
| 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││¬ φ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │││φ |  |  |  | ││├─ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││⊥ | n |  |  | │├─ |  |  | n RAA | ││¬ φ |  |  |  | │⋯ |  |  | 
Non-contradiction (Nc)
| 
|  | │⋯ |  |  |  | │¬ φ [available] |  |  |  | │⋯ |  |  |  | │φ [available] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││⊥ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │¬ φ | (n) |  |  | │⋯ |  |  |  | │φ | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││● |  |  |  | │├─ |  |  | n Nc | ││⊥ |  |  |  | │⋯ |  |  | 
Rules from chapter 4
Proof by Cases (PC)
| 
|  | │⋯ |  |  |  | │φ ∨ ψ |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││χ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │φ ∨ ψ | n |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │││φ |  |  |  | ││├─ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││χ | n |  |  | ││ |  |  |  | │││ψ |  |  |  | ││├─ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││χ | n |  |  | │├─ |  |  | n PC | ││χ |  |  |  | │⋯ |  |  | 
Proof of Exhaustion (PE)
| 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ ∨ ψ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │││¬± φ |  |  |  | ││├─ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││ψ | n |  |  | │├─ |  |  | n PE | ││φ ∨ ψ |  |  |  | │⋯ |  |  | OR | 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │││¬± ψ |  |  |  | ││├─ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││φ | n |  |  | │├─ |  |  | n PE | ││φ ∨ ψ |  |  |  | │⋯ |  |  | 
Modus Tollendo Ponens (MTP)
| 
|  | │¬± φ [available] |  |  |  | │⋯ |  |  |  | │φ ∨ ψ |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││χ |  |  |  | │⋯ |  |  | → | 
|  | │¬± φ | (n) |  |  | │⋯ |  |  |  | │φ ∨ ψ | n |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n MTP | ││ψ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││χ |  |  |  | │⋯ |  |  | 
| 
|  | │¬± ψ [available] |  |  |  | │⋯ |  |  |  | │φ ∨ ψ |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││χ |  |  |  | │⋯ |  |  | → | 
|  | │¬± ψ | (n) |  |  | │⋯ |  |  |  | │φ ∨ ψ | n |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n MTP | ││φ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││χ |  |  |  | │⋯ |  |  | 
Modus Ponendo Tollens (MPT)
| 
|  | │φ [available] |  |  |  | │⋯ |  |  |  | │¬ (φ ∧ ψ) |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | → | 
|  | │φ | (n) |  |  | │⋯ |  |  |  | │¬ (φ ∧ ψ) | n |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n MPT | ││¬± ψ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | 
| 
|  | │ψ [available] |  |  |  | │⋯ |  |  |  | │¬ (φ ∧ ψ) |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | → | 
|  | │ψ | (n) |  |  | │⋯ |  |  |  | │¬ (φ ∧ ψ) | n |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n MPT | ││¬± φ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | 
Weakening (Wk)
| 
|  | │⋯ |  |  |  | │φ [available] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │φ | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n Wk | ││φ ∨ ψ | X |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | 
| 
|  | │⋯ |  |  |  | │ψ [available] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │ψ | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n Wk | ││φ ∨ ψ | X |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | 
Weakening (Wk)
| 
|  | │⋯ |  |  |  | │¬± φ [available] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │¬± φ | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n Wk | ││¬ (φ ∧ ψ) | X |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | 
| 
|  | │⋯ |  |  |  | │¬± ψ [available] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │¬± ψ | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n Wk | ││¬ (φ ∧ ψ) | X |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | 
Rules from chapter 5
Rejecting a Conditional (RC)
| 
|  | │⋯ |  |  |  | │φ → ψ |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││⊥ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │φ → ψ | n |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │││ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││φ | n |  |  | ││ |  |  |  | │││ψ |  |  |  | ││├─ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││⊥ | n |  |  | │├─ |  |  | n RC | ││⊥ |  |  |  | │⋯ |  |  | 
Conditional Proof (CP)
| 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ → ψ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │││φ |  |  |  | ││├─ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││ψ | n |  |  | │├─ |  |  | n CP | ││φ → ψ |  |  |  | │⋯ |  |  | 
Modus Ponendo Ponens (MPP)
| 
|  | │φ [available] |  |  |  | │⋯ |  |  |  | │φ → ψ |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | → | 
|  | │φ | (n) |  |  | │⋯ |  |  |  | │φ → ψ | n |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n MPP | ││ψ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | 
Modus Tollendo Tollens (MTT)
| 
|  | │¬± ψ [available] |  |  |  | │⋯ |  |  |  | │φ → ψ |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | → | 
|  | │¬± ψ | (n) |  |  | │⋯ |  |  |  | │φ → ψ | n |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n MTT | ││¬± φ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | 
Weakening (Wk)
| 
|  | │ψ [available] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | → | 
|  | │ψ | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n Wk | ││φ → ψ | X |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | 
Weakening (Wk)
| 
|  | │¬± φ [available] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | → | 
|  | │¬± φ | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n Wk | ││φ → ψ | X |  |  | ││ |  |  |  | │├─ |  |  |  | ││θ |  |  |  | │⋯ |  |  | 
Rules from chapter 6
Equated Co-aliases (EC)
| 
|  | │⋯ |  |  |  | │[τ and υ are co-aliases] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││τ = υ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │[τ and υ are co-aliases] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││● |  |  |  | │├─ |  |  | n EC | ││τ = υ |  |  |  | │⋯ |  |  | 
Distinguished Co-aliases (DC)
| 
|  | │⋯ |  |  |  | │[τ and υ |  |  |  | │    are co-aliases] |  |  |  | │⋯ |  |  |  | │¬ τ = υ |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││⊥ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │[τ and υ |  |  |  | │    are co-aliases] |  |  |  | │⋯ |  |  |  | │¬ τ = υ | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││● |  |  |  | │├─ |  |  | n DC | ││⊥ |  |  |  | │⋯ |  |  | 
QED given equations (QED=)
| 
|  | │⋯ |  |  |  | │[τ1…τn and |  |  |  | │   υ1…υn are |  |  |  | │   co-alias series] |  |  |  | │⋯ |  |  |  | │Pτ1…τn |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││Pυ1…υn |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │[τ1…τn and |  |  |  | │   υ1…υn are |  |  |  | │   co-alias series] |  |  |  | │⋯ |  |  |  | │Pτ1…τn | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││● |  |  |  | │├─ |  |  | n QED= | ││Pυ1…υn |  |  |  | │⋯ |  |  | 
Note: Two series of terms are co-alias series when their corresponding members are co-aliases.
Non-contradiction given equations (Nc=)
| 
|  | │⋯ |  |  |  | │[τ1…τn and υ1…υn |  |  |  | │    are co-alias series] |  |  |  | │⋯ |  |  |  | │¬ Pτ1…τn |  |  |  | │⋯ |  |  |  | │Pυ1…υn |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││⊥ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │[τ1…τn and υ1…υn |  |  |  | │    are co-alias series] |  |  |  | │⋯ |  |  |  | │¬ Pτ1…τn | (n) |  |  | │⋯ |  |  |  | │Pυ1…υn | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││● |  |  |  | │├─ |  |  | n Nc= | ││⊥ |  |  |  | │⋯ |  |  | 
Note: Two series of terms are co-alias series when their corresponding members are co-aliases.
Co-alias Equation (CE)
| 
|  | │⋯ |  |  |  | │[τ and υ |  |  |  | │    are co-aliases] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │[τ and υ |  |  |  | │    are co-aliases] |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n CE | ││τ = υ | X |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ |  |  |  | │⋯ |  |  | 
Congruence (Cng)
| 
|  | │⋯ |  |  |  | │[τ1…τn and υ1…υn |  |  |  | │    are co-alias series] |  |  |  | │⋯ |  |  |  | │θτ1…τn |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │[τ1…τn and υ1…υn |  |  |  | │    are co-alias series] |  |  |  | │⋯ |  |  |  | │θτ1…τn | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n Cng | ││θυ1…υn | X |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ |  |  |  | │⋯ |  |  | 
Note: θ can be an abstract, so θτ1…τn and θυ1…υn are any formulas that differ only in the occurrence of terms and in which the corresponding terms are co-aliases.
Rules from chapter 7
Universal Instantiation (UI)
| 
|  | │⋯ |  |  |  | │∀x …x… |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │∀x …x… | τ:n |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n UI | ││…τ… |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ |  |  |  | │⋯ |  |  | 
Universal Generalization (UG)
| 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││∀x …x… |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ⓐ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││…a… | n |  |  | │├─ |  |  | n UG | ││∀x …x… |  |  |  | │⋯ |  |  | 
Rules from chapter 8
Proof by Choice (PCh)
| 
|  | │⋯ |  |  |  | │∃x θx |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │∃x θx | n |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ⓐ |  |  |  | │││θa |  |  |  | ││├─ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││φ | n |  |  | │├─ |  |  | n PCh | ││φ |  |  |  | │⋯ |  |  | 
Non-constructive Proof (NcP)
| 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││∃x θx |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | │││∀x ¬± θx |  |  |  | ││├─ |  |  |  | │││ |  |  |  | ││├─ |  |  |  | │││⊥ | n |  |  | │├─ |  |  | n NcP | ││∃x θx |  |  |  | │⋯ |  |  | 
Existential Generalization (EG)
| 
|  | │⋯ |  |  |  | │θτ |  |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  |  | ││ |  |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ |  |  |  | │⋯ |  |  | → | 
|  | │⋯ |  |  |  | │θτ | (n) |  |  | │⋯ |  |  |  | │ |  |  |  | ││⋯ |  |  | n EG | ││∃x θx | X |  |  | ││ |  |  |  | │├─ |  |  |  | ││φ |  |  |  | │⋯ |  |  |