|
g.
|
| │∀x (Fx ∧ Gx) | a:3,b:7 |
| ├─ | |
| ││ⓐ | |
3 UI | │││Fa ∧ Ga | 4 |
4 Ext | │││Fa | |
4 Ext | │││Ga | (5) |
| │││● | |
| ││├─ | |
5 QED | │││Fa | 2 |
| │├─ | |
2 UG | ││∀x Fx | 1 |
| │ | |
| ││ⓑ | |
7 UI | │││Fb ∧ Gb | 8 |
8 Ext | │││Fb | |
8 Ext | │││Gb | (9) |
| │││● | |
| ││├─ | |
9 QED | │││Gb | 6 |
| │├─ | |
6 UG | ││∀x Gx | 1 |
| ├─ | |
1 Cnj | │∀x Fx ∧ ∀x Gx | |
|
|
| │∀x Fx ∧ ∀x Gx | 1 |
| ├─ | |
1 Ext | │∀x Fx | a:3 |
1 Ext | │∀x Gx | a:4 |
| │ⓐ | |
3 UI | ││Fa | (5) |
4 UI | ││Ga | (5) |
5 Adj | ││Fa ∧ Ga | X, (6) |
| ││● | |
| │├─ | |
6 QED | ││Fa ∧ Ga | 2 |
| ├─ | |
2 UG | │∀x (Fx ∧ Gx) | |
Reusing the term a as the independent term of the second general argument of the derivation on the left would have caused no logical problems since the two gaps are different arguments boxed off from one another; however, we will hold to the simplest interpretation of the scope line and not allow terms flagging scope line to appear anywhere outside their indicated scope.
|