5.4.xa. Exercise answers

1. a.
│A → B 2
├─
││A (2)
│├─
2 MPP ││B (3)
││●
│├─
3 QED ││B 1
├─
1 PE │¬ A ∨ B
 
│¬ A ∨ B 2
├─
││A (2)
│├─
2 MTP ││B (3)
││●
│├─
3 QED ││B 1
├─
1 CP │A → B
  b.
│(A ∧ B) → C 3
├─
││A (4)
│├─
│││¬ C (3)
││├─
3 MTT │││¬ (A ∧ B) 4
4 MPT │││¬ B
│││○ A,¬ C,¬ B ⊭ ⊥
││├─
│││⊥ 2
│├─
2 IP ││C 1
├─
1 CP │A → C
   
ABC(AB)C/AC
TFFF
   
│A → C 3
├─
││A ∧ B 2
│├─
2 Ext ││A (3)
2 Ext ││B
3 MPP ││C (4)
││●
│├─
4 QED ││C 1
├─
1 CP │(A ∧ B) → C
  c.
│A → C 3,7
├─
│││A (3)
││├─
3 MPP │││C
│││
││││¬ B
│││├─
││││○ A, C, ¬ B ⊭ ⊥
│││├─
││││⊥ 4
││├─
4 IP │││B 2
│├─
2 CP ││A → B 1
│││B
││├─
││││¬ C (7)
│││├─
7 MTT ││││¬ A
││││○ B, ¬ C, ¬ A ⊭ ⊥
│││├─
││││⊥ 6
││├─
6 IP │││C 5
│├─
5 CP ││B → C 1
├─
1 Cnj │(A → B) ∧ (B → C)
   
ABCAC/(AB)(BC)
TFTFT
FTFTF

The two rows represent counterexamples lurking in the first and second gap, respectively.

   
│(A → B) ∧ (B → C) 1
├─
1 Ext │A → B 3
1 Ext │B → C 4
││A (3)
│├─
3 MPP ││B (4)
4 MPP ││C (5)
││●
│├─
5 QED ││C 2
├─
2 CP │A → C
  d.
││(A → B) → A 3
│├─
│││¬ A (3),(7)
││├─
3 MTT │││¬ (A → B)
│││
│││││A (7)
││││├─
││││││¬ B
│││││├─
││││││●
│││││├─
7 Nc ││││││⊥ 6
││││├─
6 IP │││││B 5
│││├─
5 CP ││││A → B 4
││├─
4 CR │││⊥ 2
│├─
2 IP ││A 1
├─
1 CP │((A → B) → A) → A
   

The following is a second approach to this derivation; it uses one of the forms of Wk for the conditional:

││(A → B) → A 4
│├─
│││¬ A (3),(5)
││├─
3 Wk │││A → B X,(4)
4 MPP │││A (5)
│││●
││├─
5 Nc │││⊥ 2
│├─
2 IP ││A 1
├─
1 CP │((A → B) → A) → A
2. a.
│(A ∧ B) → C 2
│(C ∨ D) → E 4
│A (1)
│B (1)
├─
1 Adj │A ∧ B X,(2)
2 MPP │C (3)
3 Wk │C ∨ D X,(4)
4 MPP │E (5)
│●
├─
5 QED │E
  b.
│(A ∨ ¬ B) → C 2
├─
││¬ C (2)
│├─
2 MTT ││¬ (A ∨ ¬ B) (5)
││
│││¬ B (4)
││├─
4 Wk │││A ∨ ¬ B X,(5)
│││●
││├─
5 Nc │││⊥ 3
│├─
3 IP ││B 1
├─
1 CP │¬ C → B
  c.
│¬ (A ∧ B) 2
│B ∨ C 3
│D → ¬ C
├─
││A (2)
│├─
2 MPT ││¬ B (3)
3 MTP ││C (4)
4 MTT ││¬ D (5)
││●
│├─
5 QED ││¬ D 1
├─
1 CP │A → ¬ D
  d.
│C → ¬ (A ∨ B) 3
│E ∨ ¬ (D ∧ ¬ C) 5
│D (4)
├─
││A (2)
│├─
2 Wk ││A ∨ B X,(3)
3 MTT ││¬ C (4)
4 Adj ││D ∧ ¬ C X,(5)
5 MTP ││E (6)
││●
│├─
6 QED ││E 1
├─
1 CP │A → E
  e.
Tom will go through Chicago and visit Sue 1
Tom won’t go through both Chicago and2
    Indianapolis
Tom won’t visit Ursula without going through 3
    Indianapolis
├─
1 ExtTom will go through Chicago (2)
1 ExtTom will visit Sue (4)
2 MPTTom won’t go through Indianapolis (3)
3 MPTTom won’t visit Ursula (4)
4 AdjTom will visit Sue but not Ursula X,(5)
│●
├─
5 QEDTom will visit Sue but not Ursula
  f.
Either we spend a bundle on television1
     or we won’t have wide public exposure
If we spend a bundle on television, we’ll go2
    into debt
Either we have wide public exposure4
     or our contributions will dry up
We’ll go into debt if our contributions dry up6
     and we don’t have large reserves
We won’t have large reserves(5)
├─
││We’ll spend a bundle on television(2)
│├─
2 MPP││We’ll go into debt(3)
││●
│├─
3 QED││We’ll go into debt1
││We won’t have wide public exposure(4)
│├─
4 MTP││Our contributions will dry up(5)
5 Adj││Our contributions dry upX,(6)
││     and we won’t have large reserves
6 MPP││We’ll go into debt(7)
││●
│├─
7 QED││We’ll go into debt1
├─
1 PCWe’ll go into debt
  g.
If Adams supports the plan, it will go though3
     provided Brown doesn’t oppose it
Brown won’t oppose the plan5
     if either Collins or Davis supports it
├─
││Both Adams and Davis will support the plan2
│├─
2 Ext││Adams will support the plan(3)
2 Ext││Davis will support the plan(4)
3 MPP││The plan will go though provided Brown6
││    doesn’t oppose it
4 Wk││Either Collins or Davis will support the planX,(5)
5 MPP││Brown won’t oppose the plan(6)
6 MPP││The plan will go through(7)
││●
│├─
7 QED││The plan will go through1
├─
1 CPThe plan will go through
     if both Adams and Davis support it
Glen Helman 17 Jul 2012