|
k.
|
Parallel arguments are again completed differently in the two gaps of each derivation—in the first, to show approaches with attachment rules and without them and, in the second, to show two ways of using attachment rules.
|
|
|
| │(A → B) ∧ (B → C) | 1 |
| ├─ | |
1 Ext | │A → B | 4 |
1 Ext | │B → C | 5,10 |
| │ | |
| ││A ∨ B | 3 |
| │├─ | |
| │││A | (4) |
| ││├─ | |
4 MPP | │││B | (5) |
5 MPP | │││C | |
6 Adj | │││B ∧ C | X,(7) |
| │││● | |
| ││├─ | |
7 QED | │││B ∧ C | 3 |
| ││ | |
| │││B | (9),(10) |
| ││├─ | |
| ││││● | |
| │││├─ | |
9 QED | ││││B | 8 |
| │││ | |
10 MPP | ││││C | (11) |
| ││││● | |
| │││├─ | |
11 QED | ││││C | 8 |
| ││├─ | |
8 Cnj | │││B ∧ C | 3 |
| │├─ | |
3 PC | ││B ∧ C | 2 |
| ├─ | |
2 CP | │(A ∨ B) → (B ∧ C) | |
|
|
| │(A ∨ B) → (B ∧ C) | 4,10 |
| ├─ | |
| │││A | (3) |
| ││├─ | |
3 Wk | │││A ∨ B | X,(4) |
4 MPP | │││B ∧ C | 5 |
5 Ext | │││B | (6) |
5 Ext | │││C | |
| │││● | |
| ││├─ | |
6 QED | │││B | 2 |
| │├─ | |
2 CP | ││A → B | 1 |
| │ | |
| │││B | (11) |
| ││├─ | |
| ││││¬ C | (9) |
| │││├─ | |
9 Wk | ││││¬ (B ∧ C) | (10) |
10 MTT | ││││¬ (A ∨ B) | (12) |
11 Wk | ││││A ∨ B | (12) |
| ││││● | |
| │││├─ | |
12 Nc | ││││ ⊥ | 8 |
| ││├─ | |
8 IP | │││C | 7 |
| │├─ | |
7 CP | ││B → C | 1 |
| ├─ | |
1 Cnj | │(A → B) ∧ (B → C) | |
|