Appendices

Appendix A. Reference

A.0. Overview

A.1. Definitions and notation for basic concepts

The full range of deductive properties and relations

A.2. Logical forms

Forms expressed using one or more logical constants together with symbolic and English notation or readings

A.3. Truth tables

Tables that stipulate the meaning of the constants of truth-functional logic

A.4. Derivation rules

A guide to the use of derivation rules with links to the rules themselves

Glen Helman 11 Jul 2012

A.1. Definitions and notation for basic concepts

Most deductive properties or relation concerns a set or some specific number of *assumptions* and a set or some specific number of *alternatives*. When there is only one alternative, it is a *conclusion*. This is shown in the following table, where cells are labeled in boldface by the concept expressed as a noun, with the verbal or adjectival form shown in italics.

alternatives

		atternatives			
		set Σ	two ψ_1, ψ_2	one (concl.) ψ	none
	set Γ	relative exhaustiveness Γ renders Σ exhaustive		entailment Γ <i>entails</i> ψ	inconsistency Γ is inconsistent
assumptions	two φ_1, φ_2				$\begin{array}{c} \textbf{mutual} \\ \textbf{exclusiveness} \\ \phi_1 \text{ and } \phi_2 \text{ are} \\ \textit{mutually} \\ \textit{exclusive} \end{array}$
	one φ			implication φ <i>implies</i> ψ	absurdity φ is <i>absurd</i>
	none	exhaustiveness Σ is exhaustive	(joint) exhaustiveness ψ_1 and ψ_2 are (jointly) exhaustive	tautologousness ψ is tautologous (or is a tautology)	

Not appearing in the table are two relations that each abbreviate conjunctions of two claims drawn from the ones above.

conjunctive relation	componen	t relations
(logical) equivalence φ and ψ are (logically) equivalent	$\phi \text{ implies } \psi$	ψ implies φ
contradictoriness φ and ψ are <i>contradictory</i>	φ and ψ are mutually exclusive	φ and ψ are jointly exhaustive

There are also two alternative ways of applying the concept of inconsistency:

alternative statements (for assumptions Γ and φ)			
exclusion Γ <i>excludes</i> φ	relative inconsistency ϕ is inconsistent with Γ	inconsistency of the union Γ with φ added is <i>inconsistent</i>	

Note that in this case all sentences involved count as assumptions.

All concepts appearing in the first table can be defined in the same way, as saying that their assumptions cannot be separated from their alternatives. This idea can be stated more specifically in two ways:

NEGATIVE DEFINITION: there is no possible world in which the assumptions (if any) are all true while the alternatives (if any) are all false.

POSITIVE DEFINITION: in each possible world in which the assumptions (if any) are all true, at least one alternative is true.

When there are no assumptions or no alternatives, the corresponding clause may be dropped from the negative form. The same is true for the clause regarding assumptions in the positive form; and, if there are no alternatives, that definition can be restated as: in each possible world, the assumptions are not all true (i.e., at least one is false).

The following table gives an explicit definition for each of these concepts and also indicates compact notation for the concept.

concept	negative definition	positive definition
φ is a <i>tautology</i> ⊨ φ	There is no possible world in which ϕ is false.	ϕ is true in every possible world.
φ is <i>absurd</i> φ ⊨	There is no possible world in which ϕ is true.	$\boldsymbol{\phi}$ is false in every possible world.
φ <i>implies</i> ψ φ ⊨ ψ	There is no possible world in which ϕ is true and ψ is false.	ψ is true in every possible world in which ϕ is true.
φ and $ψ$ are mutually exclusive $φ Δ ψ$	There is no possible world in which ϕ and ψ are both true.	In each possible world, at least one of ϕ and ψ is false.
φ and $ψ$ are (jointly) exhaustive $φ ∇ ψ$	There is no possible world in which ϕ and ψ are both false.	In each possible world, at least one of ϕ and ψ is true.
φ and $ψ$ are (logically) equivalent $φ ≃ ψ$	There is no possible world in which ϕ and ψ have different truth values.	In each possible world, ϕ and ψ have the same truth value as each other.
φ and ψ are <i>contradictory</i> φ ⋈ ψ	There is no possible world in which ϕ and ψ have the same truth value.	In each possible world, ϕ and ψ have opposite truth values.
Γ is inconsistent $\Gamma \vDash$	There is no possible world in which all members of Γ are true.	In each possible world, at least one member of Γ is false.
Γ is <i>exhaustive</i> $\models \Gamma$	There is no possible world in which all members of Γ are false.	In each possible world, at least one member of Γ is true.
Γ entails φ $\Gamma \vDash \varphi$	There is no possible world in which φ is false while all members of Γ are true.	ϕ is true in every possible world in which all members of Γ are true.
Γ excludes φ Γ , φ \vDash	There is no possible world in which ϕ is true while all members of Γ are true.	ϕ is false in every possible world in which all members of Γ are true.
Γ renders Σ exhaustive $\Gamma \vDash \Sigma$	There is no possible world in which all members of Γ are true while all members of Σ are false.	In each possible world in which all members of Γ are true, at least one member of Σ is true

All these concepts can be expressed in terms of relative exhaustiveness and also in terms of entailment. To express them in terms of relative exhaustiveness, simply list the assumptions (if any) to the left of \vDash and list the alternatives (if any) to its right. The ex-

pression in terms of entailment for the concepts in the first table is shown below.

alternatives

		Σ	ψ_1, ψ_2	Ψ	none
suc	Γ	$\Gamma, \Sigma^{\bowtie} \vDash \bot$		Γ⊨ψ	Γ⊨⊥
assumptions	ϕ_1,ϕ_2				$\phi_1, \phi_2 \models \bot$
nssn	φ			$\phi \vDash \psi$	$\phi \vDash \bot$
,	none	$\Sigma^{\bowtie} \vDash \bot$	${\psi_1}^{\bowtie} \vDash \psi_2$	⊨ψ	

Here θ^{\bowtie} is any sentence contradictory to θ (such as its negation); and Σ^{\bowtie} is any result of replacing each member of Σ by a sentence that is contradictory to it. The joint exhaustiveness of ψ_1 and ψ_2 may also be expressed by $\psi_2^{\bowtie} \vDash \psi_1$ and by ψ_1^{\bowtie} , $\psi_2^{\bowtie} \vDash \bot$. The general rule is that alternatives can be dropped if their contradictories are made assumptions (and vice versa) and that \bot may used as a conclusion if there are no alternatives already.

Glen Helman 09 Sep 2012

A.2. Logical forms

Forms for which there is symbolic notation

	Symbolic notation	English notation	n or English reading
Negation	$\neg \phi$		not φ
Conjunction	φΛψ	both ϕ and ψ	$(\phi \text{ and } \psi)$
Disjunction	φ∨ψ	either φ or ψ	(φ <mark>or</mark> ψ)
The conditional	$\begin{array}{c} \phi \rightarrow \psi \\ \psi \leftarrow \phi \end{array}$	if φ then ψ yes ψ if φ	(φ <mark>implies</mark> ψ) (ψ if φ)
Identity	$\tau = \upsilon$		τ is υ
Predication	$\theta \tau_1 \tau_n$	θ fits $\tau_1,, \tau_n$	A series of terms $\tau_1,, \tau_n$ can be read (series) $\tau_1,, \tau_n$
Compound term	$\gamma \tau_1 \tau_n$	$\gamma \text{ of } \tau_1, \dots, \tau_n$ $\gamma \text{ applied to } \tau_1, \dots, \tau_n$	τ _n (using the expression on to distinguish this use of and from its use in conjunction n and adding series when nec- essary to avoid ambiguity)
Predicate abstrac	et $\left[\varphi\right]_{\mathbf{x}_1\mathbf{x}_n}$	what φ	says of x_1x_n
Functor abstract	$\left[\tau\right]_{\mathbf{x}_{1}\dots\mathbf{x}_{n}}$	τfo	$\mathbf{x}_1\mathbf{x}_n$
Universal quantification	$\forall x \ \theta x$	· ·	rall x θx x, is such that θx
Restricted $(\forall x: \rho x) \theta x$ universal		forall x st ρx θx everything, x, such that ρx is such that θ	
Existential quantification	∃х θх		some x θx x, is such that θx
		ne x st ρx θx n that ρx is such that θx	
Definite description	lx ρx		e x st ρx x, such that ρx

Some paraphrases of other forms

Truth-functional compounds

neither φ nor ψ		
ψ only if φ	$\neg\psi \leftarrow \neg\phi$	
ψ unless φ	ψ ← ¬ φ	
	Generalizations	
All Cs are such that (they)	(∀x: x is a C) x .	
No Cs are such that (they)	$(\forall x: x \text{ is a } C) \neg \dots x$	
Only Cs are such that (they)	(∀x:¬x is a C)¬x	·
with: among Bs	add to the restriction:	x is a B
except Es	_	¬ x is an E
other than τ		$\neg x = \tau$
	Numerical quantifier phrases	
At least 1 C is such that (it)	$(\exists x: x \text{ is a } C) \dots x$.	
At least 2 Cs are such that (they)	$(\exists x: x \text{ is a } C) (\exists y: y \text{ is a } C \land \neg y = x) ($	x ∧ y)
Exactly 1 C is such $ (\exists x: x \text{ is a C}) (\dots x \dots \wedge (\forall y: y \text{ is a C} \wedge \neg y = x) \neg \dots y \dots $ $ \text{that } (\dots \text{it } \dots) $ $ or $ $ (\exists x: x \text{ is a C}) (\dots x \dots \wedge (\forall y: y \text{ is a C} \wedge \dots y \dots) x = y) $		
Definit	te descriptions (on Russell's analysi.	s)
The C is such that (it)	$(\exists x: x \text{ is a } C \land (\forall y: \neg y = x) \neg y)$ or $(\exists x: x \text{ is a } C \land (\forall y: y \text{ is a } C) x$	

Glen Helman 13 Jul 2012

A.3. Truth tables

Tautology	Absurdity	Negation
T	<u> </u>	φ ¬ φ Τ F
	D	F T
Conjunction	Disjunction	Conditional
φψφΛψ	φψφνψ	$\varphi \psi \varphi \to \psi$
гт т	ттІ т	TTIT

Glen Helman 12 Jul 2012

A.4. Derivation rules

Basic system

Rules for developing gaps			
logical form	as a resource	as a goal	
atomic sentence		IP	
negation ¬ φ	$\begin{array}{c} CR\\ (\text{if } \phi \text{ not atomic}\\ \& \text{ goal is } \bot) \end{array}$	RAA	
$ \begin{array}{c} conjunction \\ \phi \wedge \psi \end{array}$	Ext	Cnj	
$\begin{array}{c} disjunction \\ \phi \lor \psi \end{array}$	PC	PE	
$\begin{array}{c} conditional \\ \phi \rightarrow \psi \end{array}$	$\begin{array}{c} RC \\ (\text{if goal is } \bot) \end{array}$	CP	
universal ∀x θx	UI	UG	
existential	PCh	NcP	

In addition, if the conditions for applying a rule are met except for differences between co-aliases, then the rule can be applied and is notated by adding "="; QED= and Nc= are examples of this.

ules for closing	gaps	
vhen to close		rule
s resources	goal	
φ	φ	QED
ϕ and \neg ϕ	Τ	Nc
	Т	ENV
Τ		EFQ
	$\tau = \upsilon$	EC
$\neg \tau = \upsilon$	Т	DC
$-v_n$ $P\tau_1\tau_n$	Pv_1v_n	QED=
$-v_n P \tau_1 \tau_n$	Τ	Nc=
$\neg Pv_1v_n$		
achment rules (d	optional)	
uired resources	rule	
in auxiliar	y	
φ	MPP	_
¬ ψ		<u>, </u>
ψ ¬± φ or ¬=	ψ MTP	,
	when to close $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Additional rules (not guaranteed to be progressive)

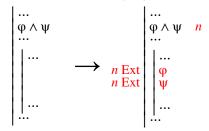
Attachment rules		
added resource	rule	
φ Λ ψ	Adj	
$\phi \rightarrow \psi$	Wk	
φ∨ψ	Wk	
$\neg (\phi \land \psi)$	Wk	
$\tau = \upsilon$	CE	
$\theta v_1 \dots v_n$	Cng	
∃х θх	EG	

Rule for lemmas prerequisite rule the goal is \bot LFR

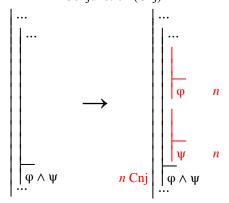
Diagrams

Rules from chapter 2

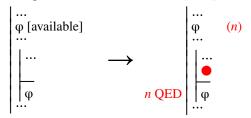
Extraction (Ext)



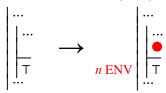
Conjunction (Cnj)



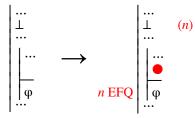
Quod Erat Demonstrandum (QED)



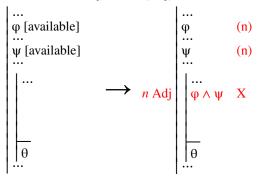
Ex Nihilo Verum (ENV)



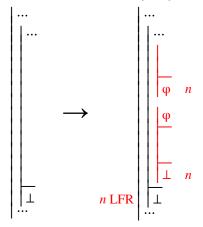
Ex Falso Quodlibet (EFQ)



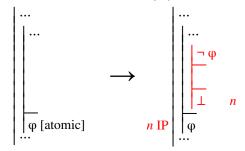
Adjunction (Adj)



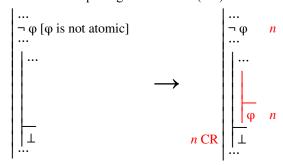
Lemma for Reductio (LFR)



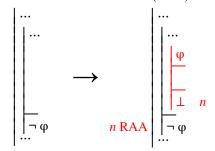
Rules from chapter 4



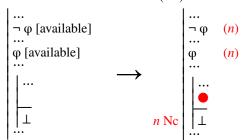
Completing the *Reductio* (CR)



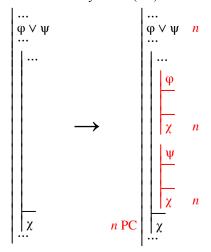
Reductio ad Absurdum (RAA)



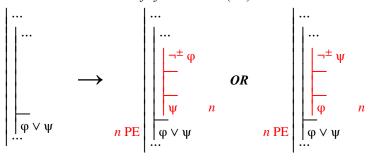
Non-contradiction (Nc)



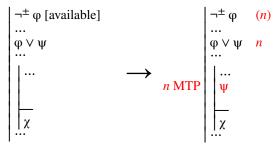
Proof by Cases (PC)



Proof of Exhaustion (PE)



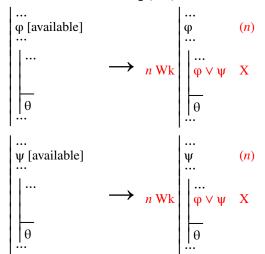
Modus Tollendo Ponens (MTP)



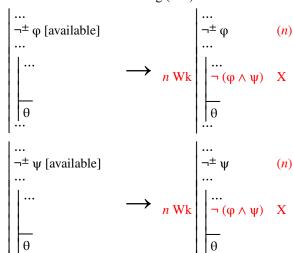
$$\begin{vmatrix} \neg^{\pm} \psi \text{ [available]} & & \neg^{\pm} \psi & (n) \\ \dots & & & & \\ \neg \psi \lor \psi & & \dots \\ | \dots & & & \\ | \dots & \\ | \dots & \\ | \dots & \\ | \chi & \dots & \\ | \dots &$$

Modus Ponendo Tollens (MPT)

Weakening (Wk)

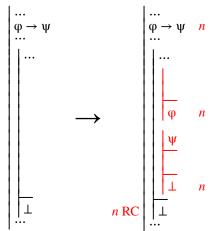


Weakening (Wk)

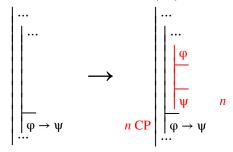


Rules from chapter 5

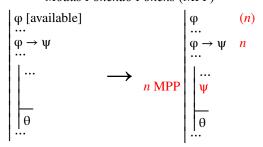
Rejecting a Conditional (RC)



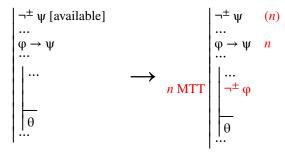
Conditional Proof (CP)



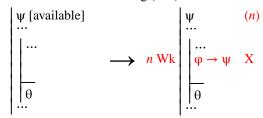
Modus Ponendo Ponens (MPP)



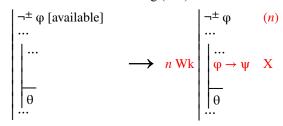
Modus Tollendo Tollens (MTT)



Weakening (Wk)

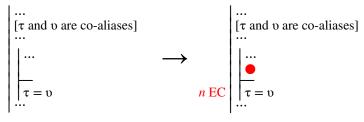


Weakening (Wk)

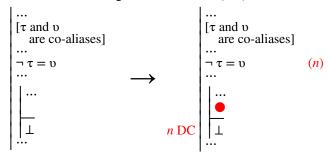


Rules from chapter 6

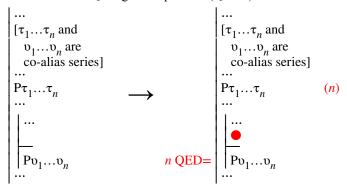
Equated Co-aliases (EC)



Distinguished Co-aliases (DC)



QED given equations (QED=)



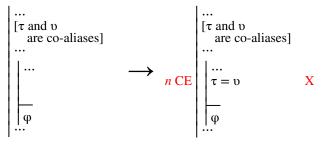
Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Non-contradiction given equations (Nc=)

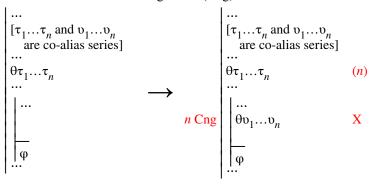
$$\begin{array}{c} \dots \\ [\tau_1...\tau_n \text{ and } \upsilon_1...\upsilon_n \\ \text{ are co-alias series}] \\ \dots \\ \neg P\tau_1...\tau_n \\ \dots \\ P\upsilon_1...\upsilon_n \\ \dots \\ \hline \\ \bot \\ \dots \\ \end{array} \begin{array}{c} \dots \\ [\tau_1...\tau_n \text{ and } \upsilon_1...\upsilon_n \\ \text{ are co-alias series}] \\ \dots \\ \neg P\tau_1...\tau_n \\ \dots \\ \hline \\ P\upsilon_1...\upsilon_n \\ \dots \\ \end{array} \begin{array}{c} \dots \\ \neg P\tau_1...\tau_n \\ (n) \\ \dots \\ \hline \\ \vdots \\ \dots \\ \end{array}$$

Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Co-alias Equation (CE)



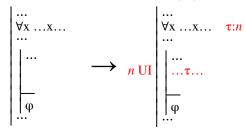
Congruence (Cng)



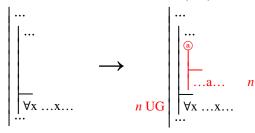
Note: θ can be an abstract, so $\theta \tau_1 ... \tau_n$ and $\theta \upsilon_1 ... \upsilon_n$ are any formulas that differ only in the occurrence of terms and in which the corresponding terms are co-aliases.

Rules from chapter 7

Universal Instantiation (UI)

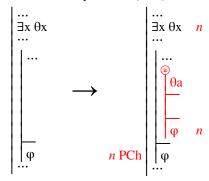


Universal Generalization (UG)

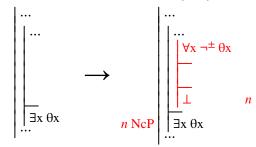


Rules from chapter 8

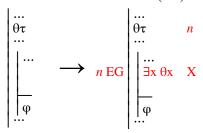
Proof by Choice (PCh)



Non-constructive Proof (NcP)



Existential Generalization (EG)



Glen Helman 13 Jul 2012

Appendix B. Laws for relative exhaustiveness

Atomic sentences

The first of the following laws is stated only for unanalyzed sentences because laws of the same form for equations and other predications are special cases of the second and third laws:

 Γ , $A \models A$, Σ

 $\Gamma \vDash \tau = v$, Σ (where τ and v are co-aliases given the equations in Γ)

 Γ , $P\tau_1...\tau_n \models P\upsilon_1...\upsilon_n$, Σ (where τ_i and υ_i , for i from 1 to n, are co-aliases given the equations in Γ)

Non-atomic sentences

For each logical constant which forms non-atomic sentences, there are two laws, one for cases where it appears among the assumptions and one for cases where it appears among the alternatives.

Constant	As an assumption	As an alternative
Т	$\Gamma, T \vDash \Sigma$ if and only if $\Gamma \vDash \Sigma$	$\Gamma \vDash T, \Sigma$
	$\Gamma, \bot \vDash \Sigma$	$\Gamma \vDash \bot, \Sigma$ if and only if $\Gamma \vDash \Sigma$
	$\Gamma, \neg \varphi \vDash \Sigma$ if and only if $\Gamma \vDash \varphi, \Sigma$	$\Gamma \vDash \neg \varphi, \Sigma$ if and only if $\Gamma, \varphi \vDash \Sigma$
٨	Γ , $\varphi \wedge \psi \vDash \Sigma$ if and only if Γ , φ , $\psi \vDash \Sigma$	$\Gamma \vDash \varphi \land \psi, \Sigma$ if and only if both $\Gamma \vDash \varphi, \Sigma$ and $\Gamma \vDash \psi, \Sigma$
V	$\Gamma, \varphi \lor \psi \vDash \Sigma$ if and only if both $\Gamma, \varphi \vDash \Sigma$ and $\Gamma, \psi \vDash \Sigma$	$\Gamma \vDash \varphi \lor \psi, \Sigma$ if and only if $\Gamma \vDash \varphi, \psi, \Sigma$
\rightarrow	$\Gamma, \varphi \to \psi \vDash \Sigma$ if and only if both $\Gamma \vDash \varphi, \Sigma$ and $\Gamma, \psi \vDash \Sigma$	$\Gamma \vDash \varphi \rightarrow \psi, \Sigma$ if and only if $\Gamma, \varphi \vDash \psi, \Sigma$
\forall	Γ , $\forall x \ \theta x \vDash \Sigma$ if and only if Γ , $\forall x \ \theta x$, $\theta \tau \vDash \Sigma$	$\Gamma \vDash \forall x \ \theta x, \Sigma$ if and only if $\Gamma \vDash \theta \alpha, \Sigma$
3	Γ , $\exists x \ \theta x \vDash \Sigma$ if and only if Γ , $\theta \alpha \vDash \Sigma$	$\Gamma \vDash \exists x \ \theta x, \Sigma$ if and only if $\Gamma \vDash \theta \tau, \exists x \ \theta x, \Sigma$

where τ is any term and α is independent in the sense that it does not appear in θ , Γ , or Σ

Glen Helman 13 Jul 2012