Appendices

Appendix A. Reference

A.0. Overview

- A.1. Definitions and notation for basic concepts The full range of deductive properties and relations
- A.2. Logical forms

Forms expressed using one or more logical constants together with symbolic and English notation or readings

A.3. Truth tables

Tables that stipulate the meaning of the constants of truth-functional logic

A.4. Derivation rules

A guide to the use of derivation rules with links to the rules themselves

Glen Helman 11 Jul 2012

A.1. Definitions and notation for basic concepts

Most deductive properties or relation concerns a set or some specific number of *assumptions* and a set or some specific number of *alternatives*. When there is only one alternative, it is a *conclusion*. This is shown in the following table, where cells are labeled in boldface by the concept expressed as a noun, with the verbal or adjectival form shown in italics.

alternatives

		$\frac{set}{\Sigma}$	two ψ_1, ψ_2	one (concl.) ψ	none
	set Γ	relative exhaustiveness Γ renders Σ		entailment Γ <i>entails</i> ψ	inconsistency Γ is
		exhaustive			inconsistent
assumptions	$two \ \phi_1, \phi_2$				$\begin{array}{c} \textbf{mutual}\\ \textbf{exclusiveness}\\ \phi_1 \text{ and } \phi_2 \text{ are}\\ \textbf{mutually}\\ \textbf{exclusive} \end{array}$
	one φ			implication φ <i>implies</i> ψ	absurdity φ is <i>absurd</i>
	none	exhaustiveness Σ is <i>exhaustive</i>	(joint) exhaustiveness ψ_1 and ψ_2 are (jointly) exhaustive	tautologousness ψ is tautologous (or is a tautology)	

Not appearing in the table are two relations that each abbreviate conjunctions of two claims drawn from the ones above.

conjunctive relation	componen	t relations
(logical) equivalence φ and ψ are (<i>logically</i>) equivalent	ϕ implies ψ	ψ implies ϕ
contradictoriness φ and ψ are <i>contradictory</i>	φ and ψ are mutually exclusive	ϕ and ψ are jointly exhaustive

There are also two alternative ways of applying the concept of inconsistency:

alternative statements (for assumptions Γ and φ)

exclusion relative inconsistency inconsistency of the union Γ excludes φ ϕ is inconsistent with Γ Γ with φ added is inconsistent

Note that in this case all sentences involved count as assumptions.

All concepts appearing in the first table can be defined in the same way, as saying that their assumptions cannot be separated from their alternatives. This idea can be stated more specifically in two ways:

- NEGATIVE DEFINITION: there is no possible world in which the assumptions (if any) are all true while the alternatives (if any) are all false.
- POSITIVE DEFINITION: in each possible world in which the assumptions (if any) are all true, at least one alternative is true.

When there are no assumptions or no alternatives, the corresponding clause may be dropped from the negative form. The same is true for the clause regarding assumptions in the positive form; and, if there are no alternatives, that definition can be restated as: *in each possible world, the assumptions are not all true* (i.e., *at least one is false*).

The following table gives an explicit definition for each of these concepts and also indicates compact notation for the concept.

concept	negative definition	positive definition	
φ is a <i>tautology</i> ⊨ φ	There is no possible world in which ϕ is false.	ϕ is true in every possible world.	
φ is <i>absurd</i> φ ⊨	There is no possible world in which ϕ is true.	ϕ is false in every possible world.	
φ <i>implies</i> ψ φ ⊨ ψ	There is no possible world in which ϕ is true and ψ is false.	ψ is true in every possible world in which ϕ is true.	
ϕ and ψ are mutually exclusive $\phi \Delta \psi$	There is no possible world in which ϕ and ψ are both true.	In each possible world, at least one of φ and ψ is false.	
φ and ψ are (jointly) exhaustive φ マ ψ	There is no possible world in which ϕ and ψ are both false.	In each possible world, at least one of φ and ψ is true.	
ϕ and ψ are (logically) equivalent $\phi \simeq \psi$	There is no possible world in which ϕ and ψ have different truth values.	In each possible world, φ and ψ have the same truth value as each other.	
φ and $ψ$ are <i>contradictory</i> $φ \bowtie ψ$	There is no possible world in which ϕ and ψ have the same truth value.	In each possible world, φ and ψ have opposite truth values.	
Γ is <i>inconsistent</i> Γ⊨	There is no possible world in which all members of Γ are true.	In each possible world, at least one member of Γ is false.	
Γ is <i>exhaustive</i> ⊨ Γ	There is no possible world in which all members of Γ are false.	In each possible world, at least one member of Γ is true.	
$\Gamma \text{ entails } \varphi$ $\Gamma \vDash \varphi$	There is no possible world in which φ is false while all members of Γ are true.	φ is true in every possible world in which all members of Γ are true.	
Γ <i>excludes</i> φ Γ, φ ⊨	There is no possible world in which φ is true while all members of Γ are true.	φ is false in every possible world in which all members of Γ are true.	
$\Gamma \text{ renders } \Sigma$ exhaustive $\Gamma \vDash \Sigma$	There is no possible world in which all members of Γ are true while all members of Σ are false.	In each possible world in which all members of Γ are true, at least one member of Σ is true	

All these concepts can be expressed in terms of relative exhaustiveness and also in terms of entailment. To express them in terms of relative exhaustiveness, simply list the assumptions (if any) to the left of \vDash and list the alternatives (if any) to its right. The ex-

pression in terms of entailment for the concepts in the first table is shown below.

		Σ	ψ_1, ψ_2	ψ	none
suo	Г	$\Gamma, \Sigma^{\bowtie} \vDash \bot$		$\Gamma\vDash\psi$	Γ⊨⊥
mpti	ϕ_1,ϕ_2				$\phi_1,\phi_2\models\bot$
nsst	φ			$\phi\vDash\psi$	$\phi \vDash \bot$
2	none	$\Sigma^{\bowtie} \vDash \bot$	$\psi_1^{\bowtie}\vDash\psi_2$	$\vDash \psi$	

alternatives

Here θ^{\bowtie} is any sentence contradictory to θ (such as its negation); and Σ^{\bowtie} is any result of replacing each member of Σ by a sentence that is contradictory to it. The joint exhaustiveness of ψ_1 and ψ_2 may also be expressed by $\psi_2^{\bowtie} \models \psi_1$ and by ψ_1^{\bowtie} , $\psi_2^{\bowtie} \models \bot$. The general rule is that alternatives can be dropped if their contradictories are made assumptions (and vice versa) and that \bot may used as a conclusion if there are no alternatives already.

Glen Helman 09 Sep 2012

A.2. Logical forms

	Symbolic notation	<i>i</i> English notation	or English reading
Negation	$\neg \phi$		<mark>not</mark> φ
Conjunction	$\phi \wedge \psi$	both ϕ and ψ	$(\phi \text{ and } \psi)$
Disjunction	$\phi \vee \psi$	<mark>either</mark> φ or ψ	(φ <mark>or</mark> ψ)
The conditional	$\begin{array}{l} \phi \rightarrow \psi \\ \psi \leftarrow \phi \end{array}$	if φ <mark>then</mark> ψ yes ψ if φ	(φ <mark>implies</mark> ψ) (ψ if φ)
Identity	$\tau = \upsilon$		τ <mark>is</mark> υ
Predication	$\theta \tau_1 \dots \tau_n$	θ fits $\tau_1,, \tau_n$	A series of terms $\tau_1,, \tau_n$ can be read (series) $\tau_1,, \tau_n$
Compound term	$\gamma \tau_1 \dots \tau_n$	$\gamma \text{ of } \tau_1,, \tau_n$ $\gamma \text{ applied to } \tau_1,, \tau_n$	τ_n (using the expression on to distinguish this use of and from its use in conjunction and adding series when nec- essary to avoid ambiguity)
Predicate abstrac	t $\left[\phi\right]_{x_1x_n}$	what φ s	ays of x ₁ x _n
Functor abstract	$[\tau]_{x_1x_n}$	τ fo	$\mathbf{r} \mathbf{x}_1 \dots \mathbf{x}_n$
Universal quantification	$\forall x \ \theta x$	for everything,	rall x θx x, is such that θx
Restricted universal	(∀x: ρx) θx	forall everything, x, such	x <mark>st</mark> ρx θx ι that ρx is such that θx
Existential quantification	∃x θx	fors something, :	ome x θx x, is such that θx
Restricted existential	(∃x: ρx) θx	forsom something, x, such	e x st ρx θx that ρx is such that θx
Definite description	Ιχ ρχ	the the thing,	e x st ρx x, such that ρx

Forms for which there is symbolic notation

neither φ nor	$ \psi \qquad \neg (\phi \lor \psi) \\ \neg \phi \land \neg \psi $			
ψ only if ϕ	$\neg \psi \leftarrow \neg \phi$	$\neg \psi \leftarrow \neg \phi$		
ψ unless ϕ	$\psi \leftarrow \neg \phi$			
	Generalizations			
All Cs are such that (they	(∀x: x i s a C) x)			
No Cs are such that (they	(∀x: x is a C) ¬ ;)	X		
Only Cs are such that (they	(∀x: ¬ x is a C) ¬)	Х		
with: among B	s add to the restriction	: x is a B		
except E	2s	¬ x is an E		
other tha	nτ	$\neg x = \tau$		
	Numerical quantifier phrases			
At least 1 C is su that (it	uch (∃x: x is a C) x)			
At least 2 Cs are so that (they	uch $(\exists x: x \text{ is } a C) (\exists y: y \text{ is } a C \land \neg y = x)$)	(x∧y)		
Exactly 1 C is such that (it)	(∃x: x is a C) (x ∧ (∀y: y is a C / or (∃x: x is a C) (x ∧ (∀y: y is a C	$(\exists x: x \text{ is a } C) (\dots x \dots \land (\forall y: y \text{ is a } C \land \neg y = x) \neg \dots y \dots)$ or $(\exists x: x \text{ is a } C) (\dots x \dots \land (\forall y: y \text{ is a } C \land \dots y \dots) x = y)$		
De	finite descriptions (on Russell's analys	sis)		
The C is such that (it	$(\exists x: x \text{ is a } C \land (\forall y: \neg y = x) \neg y \\ or$	(is a C) x x = y) x		
	$(\Box \mathbf{x}, \mathbf{x}, \mathbf{y}, \mathbf$	л у <i>ј</i> л		

Truth-functional compounds

Glen Helman 13 Jul 2012

A.3. Truth tables

Tautology		Ŀ.	Absurdity			Negation	
		$\frac{\perp}{\Sigma}$			$\phi \neg \phi$		
Т			F				
						1	1
Conj	unction	D	isju	nction	(Con	ditional
φψ	φΛΨ	φ	ψ	φνψ	ç	ψ	$\phi\rightarrow\psi$
ТТ	Т	Т	Т	Т	Т	T	Т
ΤF	F	Т	F	Т	Т	F	F
FΤ	F	F	Т	Т	F	Т	Т
F F	F	F	F	F	F	F	Т

Glen Helman 12 Jul 2012

A.4. Derivation rules

Rules for	r developing ga	ips
logical form	as a resource	as a goal
atomic		ĪP
sentence		
negation	CR	RAA
$\neg \phi$	(if $\boldsymbol{\phi}$ not atomic	
	& goal is ⊥)	
conjunction	Ext	Cnj
$\phi \wedge \psi$		
disjunction	PC	PE
$\phi \vee \psi$		
conditional	RC	СР
$\phi \to \psi$	(if goal is \perp)	
universal	UI	UG
$\forall x \; \theta x$		
existential ∃x θx	PCh	NcP

Basic system

Rul	les for closing	gaps	
wh	en to close		rule
co-aliases	resources	goal	
	φ	φ	QED
	ϕ and $\neg \phi$	\bot	Nc
		Т	ENV
	\perp		EFQ
τ—υ		$\tau = \upsilon$	EC
τ—υ	$\neg \tau = \upsilon$	\perp	DC
$\tau_1 - \upsilon_1, \dots, \tau_n - \upsilon_n$	$p_n \mathbf{P} \mathbf{\tau}_1 \dots \mathbf{\tau}_n \mathbf{H}$	$\mathfrak{v}_1 \ldots \mathfrak{v}_n$	QED=
$\tau_1 - \upsilon_1, \ldots, \tau_n - \upsilon_n$	$\rho_n = P\tau_1 \dots \tau_n$	T	Nc=
	$\neg Pv_1v_n$		
Detac	hment rules (o	ptional)	
requi	ired resources	rule	
main	auxiliary		
$(0 \rightarrow)$	φ	MPI	>
φ → ($\psi = -\frac{1}{2}\psi$	MTT	Γ
$\phi \lor \psi$	$\phi = -\frac{1}{\phi} \phi \text{ or } -\frac{1}{\phi}$	ψMTI	2
$\neg (\phi \land)$	ψ) φorψ	MPT	Γ

except for differences between co-aliases, then the rule can be applied and is notated by adding "="; QED= and Nc= are examples of this.

In addition, if the conditions for applying a rule are met

Additional rules (not guaranteed to be progressive)

Attachment ru	les
added resource	rule
$\phi \land \psi$	Adj
$\phi \to \psi$	Wk
$\phi \lor \psi$	Wk
$\neg (\phi \land \psi)$	Wk
$\tau = \upsilon$	CE
$\theta v_1 \dots v_n$	Cng
∃x θx	EG

Rule for lemmasprerequisiterulethe goal is \perp LFR

Modus Tollendo Ponens (MTP)

Modus Ponendo Ponens (MPP)

Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Non-contradiction given equations (Nc=)

Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Note: θ can be an abstract, so $\theta \tau_1 \dots \tau_n$ and $\theta \upsilon_1 \dots \upsilon_n$ are any formulas that differ only in the occurrence of terms and in which the corresponding terms are co-aliases.

Rules from chapter 7

Glen Helman 13 Jul 2012

Appendix B. Laws for relative exhaustiveness

Atomic sentences

The first of the following laws is stated only for unanalyzed sentences because laws of the same form for equations and other predications are special cases of the second and third laws:

 $\Gamma, A \models A, \Sigma$

 $\Gamma \models \tau = v, \Sigma$ (where τ and v are co-aliases given the equations in Γ)

Γ, $P\tau_1...\tau_n \models P\upsilon_1...\upsilon_n$, Σ (where τ_i and υ_i , for *i* from 1 to *n*, are co-aliases given the equations in Γ)

Non-atomic sentences

For each logical constant which forms non-atomic sentences, there are two laws, one for cases where it appears among the assumptions and one for cases where it appears among the alternatives.

Constant	As an assumption	As an alternative
Т	$\Gamma, \top \vDash \Sigma$ if and only if $\Gamma \vDash \Sigma$	$\Gamma \vDash T, \Sigma$
T	$\Gamma, \bot \models \Sigma$	$\Gamma \vDash \bot, \Sigma$ if and only if $\Gamma \vDash \Sigma$
_	$\Gamma, \neg \phi \vDash \Sigma$ if and only if $\Gamma \vDash \phi, \Sigma$	$\Gamma \vDash \neg \varphi, \Sigma$ if and only if $\Gamma, \varphi \vDash \Sigma$
٨	$ \begin{split} & \Gamma, \phi \land \psi \vDash \Sigma \\ & \text{if and only if} \\ & \Gamma, \phi, \psi \vDash \Sigma \end{split} $	$\begin{split} \Gamma \vDash \phi \land \psi, \Sigma \\ \text{if and only if} \\ \text{both } \Gamma \vDash \phi, \Sigma \text{ and } \Gamma \vDash \psi, \Sigma \end{split}$
V	$\begin{array}{l} \Gamma, \phi \lor \psi \vDash \Sigma \\ \text{if and only if} \\ \text{both } \Gamma, \phi \vDash \Sigma \text{ and } \Gamma, \psi \vDash \Sigma \end{array}$	$\Gamma \vDash \varphi \lor \psi, \Sigma$ if and only if $\Gamma \vDash \varphi, \psi, \Sigma$
\rightarrow	$\begin{array}{l} \Gamma, \phi \to \psi \vDash \Sigma \\ \text{if and only if} \\ \text{both } \Gamma \vDash \phi, \Sigma \text{ and } \Gamma, \psi \vDash \Sigma \end{array}$	$\begin{split} \Gamma \vDash \phi &\to \psi, \Sigma \\ \text{if and only if} \\ \Gamma, \phi \vDash \psi, \Sigma \end{split}$
A	$\Gamma, \forall x \ \theta x \models \Sigma$ if and only if $\Gamma, \forall x \ \theta x, \theta \tau \models \Sigma$	$\Gamma \vDash \forall x \ \theta x, \Sigma$ if and only if $\Gamma \vDash \theta \alpha, \Sigma$
Э	$\Gamma, \exists x \ \theta x \vDash \Sigma$ if and only if $\Gamma, \theta \alpha \vDash \Sigma$	$\Gamma \vDash \exists x \ \theta x, \Sigma$ if and only if $\Gamma \vDash \theta \tau, \exists x \ \theta x, \Sigma$

where τ is any term and α is independent in the sense that it does not appear in θ , Γ , or Σ

Glen Helman 13 Jul 2012