
8.6. Arguments involving descriptive reference
8.6.0. Overview
When definite descriptions are given Russell’s analysis, their properties follow
from the properties of the logical constants used in their analysis, but the de-
scription operator requires special treatment.

8.6.1. The role of definite descriptions in entailment
The basic principle for definite descriptions is a law describing the interpre-
tation of the description operator discussed in 8.4.3 .

8.6.2. Derivations for the description operator
Because definite descriptions are not formulas but have formulas as compo-
nents, the derivation rule for them takes a different form from those we have
seen so far.

8.6.3. Consequences for adequacy
The new rule has effects both for what is needed to show the completeness
of the system and what is necessary to search for finite structures.
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8.6.1. The role of definite descriptions in entailment
If Russell’s analysis of definite descriptions is accepted, their logical properties
follow from those of the logical constants used in the analysis; but the descrip-
tion operator is a new symbol, and studying its logical properties requires stat-
ing new principles for it. We looked at the logical properties of the description
operator informally in 8.4.3 . Now we will look at a way of stating a principle
of entailment that captures these properties.

First, we must first find a place for the description operator in our semantic
scheme. All our logical constants so far—whether the connectives, the quanti-
fiers, or the identity predicate—have been ways of producing compound for-
mulas. The description operator, on the other hand, yields a compound term
when it is applied to a predicate. This means that the extension of the operator
I will be a function from the extensions of one-place predicates to reference
values. We can represent the extension of a one-place predicate by the set of
reference values of which it is true, so the extension of the description operator
can be seen as a function which takes a set of reference values as input and
yields a single reference value as output.

According to the account of definite descriptions we are considering, a term
Ix ρx formed using the description operator refers to the single value in the ex-
tension of ρ if there is just one value, and otherwise its reference value is the
Nil. This means that the extension of the description operator is not settled un-
til we identify the Nil as a specific value in the referential range. This identifi-
cation must  be considered a further  component  of  a  structure,  a  respect  in
which two structures may differ. So when we make the description operator a
part of our language, we require that a structure distinguish a member of the
referential range as the Nil. This will serve as the reference value of the con-
stant individual term ∗ introduced in 8.4.3 . Then, to find the semantic value
given to Ix ρx by a structure, we find the extension the structure gives to the
predicate ρ. If the extension of ρ has just one member, that reference value will
be the extension of Ix ρx; otherwise, the extension of Ix ρx is the value the
structure assigns to ∗.

A specification made regarding structures and the interpretation of logical
vocabulary will typically result in some logical law. For example, the require-
ment that the referential range serve both as a source of extensions for terms
and as the domain of unrestricted universals gives us the principle of universal
instantiation.  And  even  the  simple  requirement  that  a  referential  range  be
non-empty yields the law ∀x θx ⊨ ∃x θx, which assures us that universal predi-
cates are exemplified. In the case of our specifications for definite descriptions
and the Nil, we get a principle that identifies a certain sentence as a tautology.



LAW FOR DESCRIPTIONS.
⊨ (∃z: ρz ∧ (∀y: ρy) z=y) Ixρx = z

∨ ((∀x: ρx)(∃y: ρy) ¬ x=y ∧ Ixρx = ∗) (for any predicate ρ)

This tautology is a disjunction whose two components express the two alterna-
tives for  the reference value of  a  definite  description.  Let  us  see how that
works in a little more detail.

The existential quantifier in the first disjunct should be familiar as one way
of writing the quantifier that Russell used to analyze definite descriptions. The
whole first disjunct might be read as Something such that (ρ fits it and it
is all that ρ fits) is such that (the thing that ρ fits is it) or, a little more
idiomatically, as The thing that ρ fits is something that ρ fits uniquely.

The second disjunct of the sentence is a conjunction whose first conjunct
says  Anything that  ρ  fits is  such that something  ρ  fits is  different
from it. This is a compact but somewhat roundabout way of saying that the
extension of ρ does not have exactly one member—i.e., if we can find any-
thing in it, we can find something else in it, too. The second conjunct of this
part of the sentence can be read as The thing that ρ fits is the Nil.

Putting this all together, the law tells us that the following is a tautology:

Either (i) Ix ρx refers to something that ρ fits uniquely, or (ii)
ρ does not fit exactly one thing and Ix ρx refers to the Nil

The first disjunct specifies the reference of the definite description when this is
determined by the description, and the second disjunct specifies the reference
when the description does not succeed in determining it.

In 8.4.3  the content of an analysis using the description operator was ex-
pressed using a similar disjunction. On that account, a sentence θ(Ix ρx) says
that either (i) ρ is true of exactly one thing and (∃x: ρx) θx is true or (ii) ρ is
not true of exactly one thing and θ∗. Given the law for descriptions, the prop-
erties of identity will tell us that

θ(Ix ρx) ≃ ((∃x: ρx) (∀y: ρy) x = y ∧ (∃x: ρx) θx)
∨ ((∀x: ρx) (∃y: ρy) ¬ x = y ∧ θ∗)

and the right-hand side is a more formal version of the disjunction used in
8.4.3.
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8.6.2. Derivations for the description operator
Although, in stating the tautologousness of a single long sentence, the law for
the description operator takes a somewhat different form than those we consid-
ered for other logical constants, the real novelty in handling this constant lies
in the fact that it is used to form terms rather than sentences. This means that
what we must account for is not the role of a premise or conclusion. Instead,
we need to account for what a definite description refers to.

The law for the description operator provides a way to draw conclusions
about what a definite description refers to. We will implement this law in a
rule that amounts to a couple steps in the exploitation of the sentence the law
asserts to be a tautology. In particular, our rule will lead us directly to what we
would get as the result of using a proof by cases to exploit the disjunctive law
(restated using unrestricted quantifiers) and then using proof by choice and ex-
traction for its existential first disjunct. The remaining non-atomic sentences in
the law are universals so we cannot expect to go further in a single step. We
will call this rule Securing a Description (SD).

⋯
Ix ρx: …

⋯
│⋯
││⋯
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
│├─
││φ
│⋯

→

⋯
Ix ρx: …, n

⋯
│⋯
││⋯
││ⓐ
│││ρa
│││∀x (ρx → a = x)
│││Ix ρx = a
││├─
│││
││├─
│││φ n
││
│││∀x (ρx → ∃y (ρy ∧ ¬ x = y))
│││Ix ρx = ∗
││├─
│││
││├─
│││φ n
│├─

n SD││φ
│⋯

Fig. 8.6.2-1. Developing a derivation at stage n by securing a definite descrip-
tion; the independent term a is new to the derivation.

There are really no preconditions for the use of this rule, but it is relevant only
when the definite description in question actually appears in the gap being de-
veloped. The description is displayed above the derivation (perhaps among a



list of other definite descriptions) and the stage number of the development is
listed after it to show that it has been handled—we will say secured—at that
stage in developing some gap. The description may need to be secured in a
number of different gaps at different stages, so this stage is perhaps only the
latest of a long list.

The term secure was used in 7.8.1  in connection with the rule ST, which
was intended to provide a way to locate finite structures when the normal de-
velopment of a gap would introduce ever more complex compound terms. Our
aim in the rule SD is different but the consequences are similar. When a defi-
nite description is secured, it will be in the same alias set as some simple term,
either the independent term introduced in the first gap or the term ∗. However,
SD is not designed to search for finite structures, and we are as interested in
the other assumptions introduced in each of the two gaps as in the equations
that actually secure the description.

The occurrence of the definite description operator in an argument forces us
to consider ∗ among the terms which will be grouped into alias sets. This is not
merely because this term will be introduced into one of the gaps that is the re-
sult  of applying SD. The semantics of the description operator require that
range of reference values contain a distinguished nil value. This value must be
included among the reference values of the terms for which we exploit univer-
sals if we are to insure that the universal is true. And that means we will need
to exploit a universal for ∗ (or a co-alias) before a gap reaches a dead end. This
is true even if ∗ does not actually appear in the gap (in which case it will be its
only co-alias). Thus the terms to be considered when forming alias sets are not
merely the terms appearing the resources and goals of the gap and its ancestors
but also ∗ if any definite description appears among the terms we need to con-
sider.  Although it  is  possible for new definite descriptions to appear in the
course of a derivation, this will happen only if one appears in the initial argu-
ment, so the requirement for including ∗ is that it must be counted among the
terms whenever a definite description appears in the argument whose validity
we are considering.

As an example of the use of SD, here is a derivation showing that if have the
premise There was at most one winner, we can conclude The winner won
if anything did.

Ix Wx: 3
│¬ ∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) (14)
├─
│ⓐ
│││Wa (6), (10)
││├─
│││ⓑ
││││Wb (4)
││││∀x (Wx → b = x)
││││Ix Wx = b a, b—IxWx, ∗
│││├─
││││●
│││├─

4 QED=││││W(Ix Wx) 3
│││
││││∀x (Wx → ∃y (Wy ∧ ¬ x = y)) a:5
││││Ix Wx = ∗ a, c, IxWx—∗
│││├─

5 UI ││││Wa → ∃y (Wy ∧ ¬ a = y) 6
6 MPP ││││∃y (Wy ∧ ¬ a = y) 7

││││
││││ⓒ
│││││Wc ∧ ¬ a = c 8
││││├─

8 Ext │││││Wc (10)
8 Ext │││││¬ a = c (11)

│││││
││││││¬ W(Ix Wx)
│││││├─

10 Adj ││││││Wc ∧ Wa X, (11)
11 Adj ││││││¬ a = c ∧ (Wc ∧ Wa) X, (12)
12 EG ││││││∃y (¬ y = c ∧ (Wc ∧ Wy)) X, (13)
13 EG ││││││∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) X, (14)

││││││●
│││││├─

14 Nc ││││││⊥ 9
││││├─

9 IP │││││W(Ix Wx) 7
│││├─

7 PCh ││││W(Ix Wx) 3
││├─

3 SD │││W(Ix Wx) 2
│├─

2 CP ││Wa → W(Ix Wx)) 1
├─

1 UG │∀y (Wy → W(Ix Wx))

Notice that the list of alias sets in the first gap includes ∗ even though that term
does not appear in either resources or goals of that gap because a definite de-
scription does appear in the initial conclusion.

Notice also that both the premise and the hedge if anything did in the con-
clusion played a role in closing the second gap in the derivation above. Since
both are required to insure the existence and uniqueness of a winner, it is to be
expected that the absence of either would keep us from ruling out the possibil-



ity that the definite description is undefined (which is the possibility explored
by the second gap).

It may seem odd that The winner won is not a tautology. But on both of the
accounts of definite descriptions that  we have considered,  it  entails  Some-
thing won, and that is not a tautology. It follows that The winner didn’t win is
not absurd if it is contradictory to The winner won, and a derivation showing
this when the sentence is interpreted using the description operator provides
another example of the use of SD.

Ix Wx: 1
│¬ W(Ix Wx) (2)
├─
│ⓐ
││Wa (2)
││∀y (Wx → a = x)
││Ix Wx = a (Ix Wx)—a
│├─
││●
│├─

2 Nc=││⊥
│
││∀y (Wx → ∃y (Wy ∧ ¬ x = y)) ∗:3
││Ix Wx = ∗ (Ix Wx)—∗
│├─

3 UI ││W∗ → ∃y (Wy ∧ ¬ ∗ = y) 4
││
││││¬ W∗
│││├─
││││○ ¬ W(Ix Wx), Ix Wx = ∗,
││││ ¬ W∗ ⊭ ⊥
│││├─
││││⊥ 5
││├─

5 IP │││W∗ 4
││
│││∃y (Wy ∧ ¬ ∗ = y)
││├─
│││(unfinished)
││├─
│││⊥ 4
│├─

4 RC ││⊥ 1
├─

1 SD │⊥

①
∗W

The definite description Ix Wx does not appear in the diagram of the coun-
terexample because, as a compound expression, its value is determined by the
values shown there. In particular, the fact that the extension of W is empty in-

sures that Ix Wx has the same reference value as ∗, and that would be true even
if the referential range contained more than this value.

The sentence The winner didn’t win is contingent also on Russell’s analy-
sis provided we interpret it as the denial of The winner won. For the latter
sentence will be contingent according to Russell’s analysis since it is true on
that analysis if and only if there is exactly one winner. However, on Russell’s
analysis, an interpretation giving the winner widest scope—that is, an inter-
pretation of  the sentence as  The winner is such that (he or she didn’t
win)—is absurd since it implies Some winner didn’t win and thus that some-
thing has both the property of winning and the property of not winning. This is
another consequence of the ambiguity that can arise with definite descriptions
on Russell’s account. The sentence The winner won is definitely contingent
on his way of analyzing it, but The winner didn’t win may be either contin-
gent or absurd, depending on whether the negation or definite description is
understood to have wider scope.
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8.6.3. Consequences for adequacy
Our stipulations about the interpretation of definite descriptions insure that any
interpretation of the vocabulary in a description Ix ρx will be (or can be ex-
tended so that it is) a counterexample to one of the two gaps that result from
SD—that’s why there is no precondition for the application of this rule—so
SD is strict and its addition will not disturb the soundness of our system. SD is
also clearly safe since the new gaps it introduces differ from their parent only
by having added resources.  But the argument we had used to establish the
completeness of the system of derivations—in particular, the argument used in
7.7.4  to show that  any fully developing gap has a counterexample lurking
throughout—will no longer apply since this argument assumed that the refer-
ence values of all terms could be settled without considering the extensions of
predicates, something that is not true in the case of definite descriptions.

We will not consider ways of reformulating that argument for a system in-
cluding SD. Instead we will consider the completeness of a system of deriva-
tions for definite descriptions that employs not only SD but also certain uses of
the rule LFR. The stipulations we have made concerning the interpretation of
the description operator can be imposed on a structure simply by requiring that
it make true every sentence of the form:

∀w  … ∀w  ( (∃z: ρz ∧ (∀y: ρy) z = y) Ix ρx = z
∨ ((∀x: ρx) (∃y: ρy) ¬ x = y ∧ Ix ρx = ∗) )

where we follow the form of the law for descriptions but apply a quantifier
∀w  for each variable w  that appears unbound in ρ. We will call this sentence a
meaning postulate for the description Ix ρx. Making all these meaning postu-
lates true comes to the same thing as making true all instances of that law for a
language expanded by the range of the structure. When assessing the validity
of a particular argument, all that is relevant is the interpretation of the definite
descriptions actually appearing in the argument (provided we take this to in-
clude descriptions containing variables that are not bound within the descrip-
tion). And the correct intepretation of these descriptions can be insured by the
truth of the meaning postulates for them. That is, if Δ includes the meaning
postulate for each description in an argument Γ  /  φ,  this argument is  valid
given the interpretation of the description operator if and only if the argument
Γ, Δ / φ is valid even without stipulating the interpretation of definite descrip-
tions—i.e., even if we treat them as unanalyzed individual terms.

Now, any question of validity can be reduced to a question of the validity of
a reductio argument, so let us limit consideration to such arguments. Given an
argument Γ / ⊥, let δ be the conjunction of the meaning postulates for all de-
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││
│├─
││φ
│⋯

→

⋯
Ix ρx:…, n

⋯
│⋯
││⋯
│││ρσ
│││∀x (ρx → σ = x)
│││Ix ρx = σ
││├─
│││
││├─
│││φ n
││
││⋮
││
│││ρτ
│││∀x (ρx → τ = x)
│││Ix ρx = τ
││├─
│││
││├─
│││φ n
││
││ⓐ
│││ρa
│││∀x (ρx → a = x)
│││Ix ρx = a
││├─
│││
││├─
│││φ n
││
│││∀x (ρx → ∃y (ρy ∧ ¬ x = y))
│││Ix ρx = ∗
││├─
│││
││├─
│││φ n
│├─

n SD+││φ
│⋯

Fig. 8.6.3-1. Developing a derivation at stage n by
securing  a  definite  description;  the  independent
term a is new to the derivation and the terms σ, …,
τ include at least one from each current alias set
for the gap.

scriptions appearing in the members of Γ.  Now suppose that Γ  /  ⊥  is valid
when we fix the interpretation of definite descriptions. We have seen that Γ, δ /
⊥ will be valid without fixing this interpretation. Therefore, a derivation for Γ,
δ / ⊥ will close using only the basic system of previous chapters, so it will cer-
tainly close if we add the rules SD and LFR. And the rule SD will enable us to
show that the meaning postulate for any description is a tautology, so it will
certainly enable us to show the validity of Γ / δ. Finally, the rule LFR lets us
establish the validity of Γ / ⊥ if we can show both Γ ⊨ δ and Γ, δ ⊨ ⊥. In short,
the system of derivations with SD and LFR is complete because SD enables us
to establish any meaning postulate, and we can establish the validity of all ar-
guments involving descriptions when we add their meaning postulates as fur-
ther premises.

Since  it  introduces  a
new  independent  term,
the rule  SD introduces a
new way that gaps can be
prevented  from  reaching
a  dead  end.  It  can  be
modified to search for fi-
nite structures in the way
we  have  done  for  other
rules  using  independent
terms,  and  named,  fol-
lowing  the  same  pattern
as with those rules, as Se‐
curing a Description Sup‐
plemented (SD+).

When we use this rule,
we consider the possibil-
ity that one of the already
existing  alias  sets  pro-
vides names of an object
that uniquely satisfies the
description.

Notice  that  one  of
these alias sets will be the
one including ∗. And that
is  to  be  expected  since
there  are  two  different



ways in which the Nil might end up as the reference value of a definite de-
scription. This will happen not only when the description fails to be uniquely
satisfied but also when the Nil is the one value satisfying it uniquely. Indeed,
the reference of any term τ  will  uniquely satisfy the predicate [  _ = τ],  so
whether or not [ _ is a C] is not uniquely satisfied [ _ = the thing that is a C]
will be—though, of course, perhaps only by the Nil.

Glen Helman 11 Jul 2012

1

2

3

8.6.s. Summary
In order to assign a meaning to the description operator with respect to a ref-
erential range, a reference value must be singled out as the Nil . This serves
as the reference value of the constant ∗ and as the reference value of the de-
scription Ix ρx when the extension of ρ is empty or has more than one mem-
ber. Then the law for descriptions  asserts that either (i) Ix ρx is something
that is the sole thing ρ is true of or (ii) ρ is not true of exactly one thing and
Ix ρx has the Nil as its reference value.

A definite description is not a sentence, so it is handled in derivations not by
exploiting it or planning for it as a goal but by securing  it—that is, by insur-
ing that its reference is settled in the way required by the law for descrip-
tions. The rule for doing this is Securing a Description (SD) .

This rule is  enough to enable us to establish meaning postulates ,  which
state that definite descriptions are interpreted as we intend. Although the ar-
gument used for completeness of the system of derivations no longer ap-
plies, it is easy to see that the system is complete if we allow the rule LFR to
be used to introduce meaning postulates as lemmas. The rule SD introduces
a new term, so to search for finite counterexamples, we need an alternative
form, Securing a Description Supplemented (SD+) .
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8.6.x. Exercise questions
Analyze each of the following first using Russell’s approach to definite de-
scriptions and then again using the description operator.  Use derivations to
check each form of the argument for validity.
1. The winner was an amateur

An amateur was a winner
2. An amateur was a winner

There was at most one winner
The winner was an amateur

The exercise machine  doesn’t incorporate rules for the description operator;
but you can use it for the logical forms derived from Russell’s analysis.
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8.6.xa. Exercise answers
1. │∃x ((Wx ∧ ∀y (¬ y = x → ¬ Wy)) ∧ Ax) 1

├─
│ⓐ
││(Wa ∧ ∀y (¬ y = a → ¬ Wy)) ∧ Aa 2
│├─

2 Ext ││Wa ∧ ∀y (¬ y = a → ¬ Wy) 3
2 Ext ││Aa (4)
3 Ext ││Wa (4)
3 Ext ││∀y (¬ y = a → ¬ Wy)
4 Adj ││Aa ∧ Wa X, (5)
5 EG ││∃x (Ax ∧ Wx) X, (6)

││●
│├─

6 QED││∃x (Ax ∧ Wx) 1
├─

1 PCh │∃x (Ax ∧ Wx)

 Ix Wx: 3
│A(Ix Wx) (3)
├─
││∀x ¬ (Ax ∧ Wx) Ix Wx:2
│├─

2 UI ││¬ (A(Ix Wx) ∧ W(Ix Wx)) 3
3 MPT││¬ W(Ix Wx) (5)

││
││ⓐ
│││Wa (5)
│││∀x (Wx → a = x)
│││Ix Wx = a IxWx—a, ∗
││├─
│││●
││├─

5 Nc= │││⊥ 4
││
│││∀x (Wx → ∃y (Wy ∧ ¬ x = y)) ∗:6
│││Ix Wx = ∗ IxWx—∗
││├─

6 UI │││W∗ → ∃y (Wy ∧ ¬ ∗ = y)) 7
│││
│││││¬ W∗
││││├─
│││││○ A(Ix Wx),¬ W(Ix Wx),
││││├─     ¬ W∗,(IxWx)=∗ ⊭ ⊥
│││││⊥ 8
│││├─

8 IP ││││W∗ 7
│││
││││∃y (Wy ∧ ¬ ∗ = y)
│││├─
││││(unfinished)
│││├─
││││⊥ 7
││├─

7 RC │││⊥ 4
│├─

4 SD ││⊥ 1
├─

1 NcP │∃x (Ax ∧ Wx)

 

①
∗

A

W



2. │∃x (Ax ∧ Wx) 1
│¬ ∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) (15)
├─
│ⓐ
││Aa ∧ Wa 2
│├─

2 Ext ││Aa (5)
2 Ext ││Wa (6), (11)

││
│││∀x ¬ ((Wx ∧ ∀y (¬ y = x → ¬ Wy)) ∧ Ax) a:4
││├─

4 UI │││¬ ((Wa ∧ ∀y (¬ y = a → ¬ Wy)) ∧ Aa) 5
5 MPT │││¬ (Wa ∧ ∀y (¬ y = a → ¬ Wy)) 6
6 MPT │││¬ ∀y (¬ y = a → ¬ Wy) 7

│││
││││ⓑ
││││││¬ b = a (12)
│││││├─
│││││││Wb (11)
││││││├─

11 Adj │││││││Wa ∧ Wb X, (12)
12 Adj │││││││¬ b = a ∧ (Wa ∧ Wb) X, (13)
13 EG │││││││∃y (¬ y = a ∧ (Wa ∧ Wy)) X, (14)
14 EG │││││││∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) X, (15)

│││││││●
││││││├─

15 Nc │││││││⊥ 10
│││││├─

10 RAA││││││¬ Wb 9
││││├─

9 CP │││││¬ b = a → ¬ Wb 8
│││├─

8 UG ││││∀y (¬ y = a → ¬ Wy) 7
││├─

7 CR │││⊥ 3
│├─

3 NcP ││∃x ((Wx ∧ ∀y (¬ y = x → ¬ Wy)) ∧ Ax) 1
├─

1 PCh │∃x ((Wx ∧ ∀y (¬ y = x → ¬ Wy)) ∧ Ax)

 Ix Wx: 2
│∃x (Ax ∧ Wx) 1
│¬ ∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) (16)
├─
│ⓐ
││Aa ∧ Wa 2
│├─

2 Ext ││Aa (6)
2 Ext ││Wa (5), (8), (12)

││
││ⓑ
│││Wb
│││∀y (Wy → b = y) a:4
│││Ix Wx = b a, b—IxWx, ∗
││├─

4 UI │││Wa → b = a 5
5 MPP │││b = a a—b—IxWx, ∗

│││●
││├─

6 QED=│││A(Ix Wx) 3
││
│││∀x (Wx → ∃y (Wy ∧ ¬ x = y)) a:7
│││Ix Wx = ∗ a, c, IxWx—∗
││├─

7 UI │││Wa → ∃y (Wy ∧ ¬ a = y) 8
8 MPP │││∃y (Wy ∧ ¬ a = y) 9

│││
│││ⓒ
││││Wc ∧ ¬ a = c 10
│││├─

10 Ext ││││Wc (12)
10 Ext ││││¬ a = c (13)

││││
│││││¬ A(Ix Wx)
││││├─

12 Adj │││││Wc ∧ Wa X, (13)
13 Adj │││││¬ a = c ∧ (Wc ∧ Wa) X, (14)
14 EG │││││∃y (¬ y = c ∧ (Wc ∧ Wy)) X, (15)
15 EG │││││∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) X, (16)

│││││●
││││├─

16 Nc │││││⊥ 11
│││├─

11 IP ││││A(Ix Wx) 9
││├─

9 PCh │││A(Ix Wx) 3
│├─

3 SD ││A(Ix Wx) 1
├─

1 PCh │A(Ix Wx)
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