
8.5. Proofs by choice and proofs of existence
8.5.0. Overview
Although formal  proofs  for  disjunction  involve  some new ideas,  these  are
mainly recombinations of ideas used for disjunction and universals.

8.5.1. Proof by choice
A conclusion can be derived from an existential by choosing a new name for
the example whose existence it claims.

8.5.2. Constructive and non-constructive proof
A claim of exemplification can be established either by constructing an ex-
ample or by reducing to absurdity the assumption that there is no such ex-
ample.

8.5.3. Derivations for existentials
Our selection of derivation rules for existentials is analogous to that for dis-
junction, with two basic rules supplemented by an often useful attachment
rule.

8.5.4. First-order logic
This completes our account of entailment for first-order logic, which has
come to replace the theory of syllogisms as the generally accepted core of
deductive logic.
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8.5.1. Proof by choice
As has been the case elsewhere in this chapter, our discussion of principles of
entailment for existentials can build on our discussion of universals in the last
chapter. The differences between the principles governing universal and exis-
tential quantifiers will, in most cases, be analogous to differences between the
principles for conjunction and disjunction. The laws of entailment for the uni-
versal quantifiers were modifications of laws for conjunction, and the rules for
the existential quantifiers will nearly all be based in a similar way on rules for
disjunction. Our planning rule for existential sentences is the one exception to
this, and even it is analogous to a rule that could have been used for disjunc-
tion.

These analogies with the universal quantifier on the one hand and with dis-
junction on the other derive from the truth conditions for the unrestricted exis-
tential, which follow the conditions for disjunction in precisely the way the
conditions for the universal follow those for conjunction. A sentence ∃x θx is
true in a structure if and only if it has at least one true instance in a language
expanded by the range R of that structure. In other words, an existential claim
behaves like a disjunction of its instances when these instances are taken from
a language that has a name for each reference value in the structure. However,
as was the case with the universal, the set of instances can vary from one struc-
ture to another, so general laws of entailment cannot employ any definite in-
formation about what the instances of an existential sentence are.

We will begin our discussion of principles of entailment with the role of an
unrestricted existential as a premise. First, recall the corresponding principle
for disjunction. A disjunctive premise may be used to draw a conclusion by
way of a proof by cases. In such a proof, we suppose in turn that each of the
disjuncts is true and argue for the conclusion in each case. A comparable way
of arguing from an existential  would be to establish many case arguments,
each one considering an instance of the existential as one case. Since we can-
not associate the existential with any definite set of instances, there is no way
to delimit the range of case arguments we would need to consider, so we must
use adapt a device from our treatment of the universal: we need to set out the
indefinitely many arguments by offering a general pattern. That is, to use an
existential premise to draw a conclusion, we draw the conclusion from one in-
stance of the existential in a way that sets a pattern for all other instances.

This sort of argument may be called a proof by choice, a name which re-
flects another way of looking at the principle behind it. Consider the two argu-
ments below.



Anyone who worked late
got overtime

If anything broke down,
Tom worked late

Something broke down

Tom got overtime

Anyone who worked late
got overtime

If anything broke down,
Tom worked late

E broke down

Tom got overtime

The validity of the argument on the left can be traced to the validity of the one
on the right. In the latter, we use the premise E broke down in place of the ex-
istential Something broke down, so we argue for the conclusion from an in-
stance of the existential. When we replace an existential by an instance of it,
we are choosing E as a name for an example that the existential claims to exist,
so this is an argument to proceeds by way of the choice of a name.

Of course, we cannot assume that the “something” claimed to exist by an
existential premise is some thing that we have other information about. That is,
choosing a name really means choosing a new name. For an unrestricted exis-
tential tells us nothing about the example it claims to exist except for the prop-
erty it is said to exemplify. So the name we choose must be one that could ap-
ply to anything that has this property. And that returns us to the first way of
looking at proofs by choice: they must argue from one instance of an existen-
tial in a way that sets a pattern for all such instances.

Recalling the test we used for the generality of arguments in the case of the
universal quantifiers, we can expect our analysis of the role of an existential as
a premise to make reference to a term that is independent in an appropriate
sense. We will want a term α that has no connection to the premises and con-
clusion of the argument—including the existential ∃x θx—apart from the as-
sumption θα. So suppose the term α is unanalyzed term and does not appear in
the set Γ, the sentence φ, or the existential ∃x θx, and consider the two argu-
ments

Γ, ∃x θx / φ
Γ, θα / φ.

We can argue that each is valid if and only if the other is if we can show that a
structure is a counterexample to the validity of one if and only if it is a coun-
terexample to the validity of the other. If a structure S separates the premises
of the first from its conclusion, it will assign θ a non-empty extension, and we
can form a structure S′ that separates the second argument’s premises from its
conclusion by assigning a value in this extension to the term α. For that assign-
ment will not change the extension of θ or the truth values of φ and the mem-

bers Γ since α does not appear in these expressions, so θα will be true and the
conclusion and the other premises will  keep the same truth values.  On the
other hand, any structure separating the second argument’s premises from its
conclusion will give θ a non-empty extension (because the value of the term α
will be in it) so this structure will make ∃x θx true and also separate the first
argument’s premises from its conclusion. Thus we will have a counterexample
to the validity of one argument if and only if we have a counterexample to the
validity of the other, so each argument is valid if and only if the other is.

This gives us our principle describing the role of the unrestricted existential
as a premise.

LAW FOR THE UNRESTRICTED EXISTENTIAL AS A PREMISE. Γ, ∃x θx ⊨ φ if
and only if Γ, θα ⊨ φ (for any set Γ, predicate θ, and sentence φ and any
unanalyzed term α that does not appear in Γ, θ, or φ)

The corresponding principle for the restricted existential combines these ideas
with the properties of conjunction:

Γ, (∃x: ρx) θx ⊨ φ if and only if Γ, ρα, θα ⊨ φ
(for any set Γ,  predicates ρ  and θ,  and sentence φ  and any unanalyzed
term α that does not appear in Γ, ρ, θ, or φ)

That is,  having a restricted existential as an assumption comes to the same
thing as assuming that an independent term refers to something that is in the
domain and has the attribute.
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8.5.2. Constructive and non-constructive proof
Let us now turn to the task of establishing an existential conclusion. As the ti-
tle suggests, we will consider two ways of doing this. In the first and most gen-
eral of these, we establish a claim ∃x θx that a property θ is exemplified by re-
ducing to absurdity the claim ∀x ¬  θx that nothing has this property. This way
of drawing an existential conclusion is called a non-constructive proof because
it enables us to establish a claim of exemplification without ever describing a
particular example. The use of the term construction here can be traced his-
torically to geometry, where claims of exemplification are typically established
by a geometric construction of the figure that is claimed to exist; but the term
construction has come to be applied in mathematics to other techniques that
specify particular examples.

We will adopt the idea of non-constructive proof as our basic principle for
the existential as a conclusion.

LAW FOR THE UNRESTRICTED EXISTENTIAL AS A CONCLUSION. Γ ⊨ ∃x θx if
and only if Γ, ∀x ¬  θx ⊨ ⊥ (for any set Γ and predicate θ)

This principle does not explain the role of the existential as a conclusion di-
rectly,  but  instead  makes  a  connection  with  the  role  of  the  universal  as  a
premise. We are led to do things in this way by entailment’s focus on a single
sentence as the conclusion. Were we to consider relative exhaustiveness rather
than entailment, a law for ∃ that makes no reference to ∀ would be easier to
state because the consideration of multiple alternatives makes it  possible to
formulate a principle dual to the principle for the universal as a premise; see
appendix B for the form this principle takes.

The second rule for existential conclusions takes a more direct approach. A
constructive proof of a claim of exemplification establishes the claim by first
producing an example of the sort that is claimed to exist. The move from an
example to a claim of exemplification appears formally as a step from an in-
stance of an existential  to the existential  itself.  The principle of entailment
governing this step is commonly known as existential generalization:

θτ ⊨ ∃x θx (for any term τ)

The conclusion of this entailment is not a generalization in the sense in which
we have been using the term. But it may be said of someone who is making
heavy use of words like something and someone that he is “speaking in gen-
eralities” and is not being specific. The principle of existential generalization
is a license to move from a specific claim to a generality of an existential sort.
We cannot rely on this principle alone, but it does provide a useful supplement

±

±

in the way the principle of weakening supplements the law for disjunction as a
conclusion. And, like weakening, we will count existential generalization as an
attachment principle. (What is attached? In form, we could say it is the exis-
tential quantifier; in what is said, it is the other instances of the conclusion, the
other ways in which it could be true.)

Although non-constructive proofs of exemplification have been common in
modern  mathematics,  some have  questioned  their  value.  The  doubts  about
them have not usually been doubts about their validity (though Brouwer, who
was mentioned in 3.1.3 , could be said to have doubted that—in spite of the
fact  that  early  in  his  career  he  produced some non-constructive  proofs  for
which he is still famous). The feature of non-constructive proofs that lies be-
hind these doubts is a different sort of weakness that is granted even by those
who accept such proofs happily:  because they do not produce an example,
non-constructive proofs may provide little insight into the reasons why a claim
of exemplification is true.

The deepest  concerns about  non-constructive proof  are  focused on argu-
ments  about  abstract  and,  especially,  infinite  structures,  and  even  Brouwer
thought that non-constructive proofs were valid for reasoning about ordinary
claims concerning the world of sense experience. Still, the indirection and un-
informativeness of non-constructive arguments can be felt with ordinary rea-
soning and is often unnecessary, so it is worthwhile considering the alternative.

Before considering the implementation of these principles of entailment in
derivations, let us look a little more closely at the reasons why our general ac-
count of the existential as the conclusion has been made parasitic on our ac-
count of the universal as a premise. First, recall our account of the role of dis-
junction as conclusion. In one of its forms it is this: Γ ⊨ φ ∨ ψ if and only if Γ,
¬  φ ⊨ ψ. We could have avoided the asymmetric treatment of the two compo-
nents in this principle if we had resorted to an even heavier use of negation;
applying the idea behind IP to the right side of the law, we get this: Γ ⊨ φ ∨ ψ
if and only if Γ, ¬  φ, ¬  ψ ⊨ ⊥. That is, a disjunction is a valid conclusion if
and only if we can reduce to absurdity the supposition that its components are
both  false.  A strict  analogue for  the  existential  of  this  rule  for  disjunction
would say that we can conclude an existential ∃x θx from premises Γ if and
only if we can reduce to absurdity the result of adding denials of all the in-
stances of ∃x θx to Γ. But, since there is no definite set of instances, we cannot
take this approach literally. So, instead of adding the denials of all instances of
the existential, we add the corresponding generalization ∀x ¬  θx.

Any approach to existential conclusions that is more analogous to the princi-
ple for disjunctions as a conclusion would force us to consider repeated partial
planning for existential goals as we consider we consider repeated partial ex-
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ploitation of universal premises. And that would involve a far greater modifi-
cation of the system of derivations than the rules we will now go on to con-
sider.
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8.5.3. Derivations for existentials
To implement the laws we have just been considering, we will again use ideas
introduced in connection with universals. In particular, a proof by choice will
be marked by a veil of ignorance flagged by an independent term, and it will
have a supposition that sets out the example chosen. However, the complica-
tions that appeared with the rules for exploiting universals may be left with
those rules, since we manage planning for an existential conclusion simply by
passing the buck on to universals.

The  two  basic  rules  for  the  unrestricted  existential  are  Proof  by  Choice
(PCh) and Non-constructive Proof (NcP):

│⋯
│∃x θx
│⋯
││⋯
││
││
││
││
││
││
│├─
││φ
│⋯

→

│⋯
│∃x θx n
│⋯
││⋯
││ⓐ
│││θa
││├─
│││
││├─
│││φ n
│├─

n PCh││φ
│⋯

Fig. 8.5.3-1. Developing a derivation at stage n by exploiting an unrestricted ex-
istential; the independent term a is new to the derivation.

│⋯
││⋯
││
││
││
││
││
│├─
││∃x θx
│⋯

→

│⋯
││⋯
│││∀x ¬  θx
││├─
│││
││├─
│││⊥ n
│├─

n NcP││∃x θx
│⋯

Fig. 8.5.3-2. Developing a derivation at stage n by planning for an unrestricted
existential.

Notice that the existential is rendered inactive in the first rule. Also remember
that the independent term that is used in this rule should be new to the deriva-
tion; that will insure that the supposition that is introduced represents the only
information about this independent term that may be used in closing the gap.

The second rule will often be a very indirect way of reaching an existential
goal,  and the attachment rule,  Existential  Generalization (EG), which imple-
ments the idea of constructive proof, can simplify derivations considerably:
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│⋯
│θτ
│⋯
││⋯
││
││
│├─
││φ
│⋯

→

│⋯
│θτ n
│⋯
││⋯

n EG││∃x θx X
││
│├─
││φ
│⋯

Fig. 8.5.3-3. Developing a derivation at stage n by adding an unrestricted exis-
tential that has an instance among the active resources.

Although this is an attachment rule and therefore not part of the basic system,
you should be as ready to use it as the two above.

Here are two derivations that illustrate these rules. Each shows that a claim
of uniformly general exemplification implies the corresponding claim of gen-
eral exemplification without a claim of uniformity.

│∃x ∀y Rxy 1
├─
│ⓐ
││∀y Ray b:3
│├─
││ⓑ

3 UI │││Rab (6)│││
││││∀x ¬ Rxb a:5
│││├─

5 UI ││││¬ Rab (6)
││││●
│││├─

6 Nc ││││⊥ 4
││├─

4 NcP│││∃x Rxb 2
│├─

2 UG ││∀y ∃x Rxy 1
├─

1 PCh│∀y ∃x Rxy

 │∃x ∀y Rxy 1
├─
│ⓐ
││∀y Ray b:3
│├─
││ⓑ

3 UI │││Rab (4)│││
│││

4 EG │││∃x Rxb X,(5)
│││
│││●
│││
│││
││├─

5 QED│││∃x Rxb 2
│├─

2 UG ││∀y ∃x Rxy 1
├─

1 PCh │∀y ∃x Rxy

The derivation on the left uses a non-constructive proof of the existential that
is set as the goal in stage 2 while the one on the right uses EG to give a con-
structive proof of this existential. Both derivations begin by exploiting the ex-
istential premise, but derivations for the same entailment could have been de-
veloped by planning for the initial conclusion first; and, when NcP is used, it
would be possible to postpone the exploitation of the initial premise until after
NcP is applied. (It would be a good exercise at this point to write down these
other derivations for this argument.) The savings in length and complexity that
were achieved by using EG in this case are typical.

Since EG can be used only when the resources entail an existential, it often
cannot  be  used in  derivations  that  fail,  and NcP is  required  even in  some

│⋯
│∃x θx
│⋯
││⋯
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
│├─
││φ
│⋯

→ │⋯
│∃x θx n
│⋯
││⋯
│││θσ
││├─
│││
││├─
│││φ n
││
││⋮
││
│││θτ
││├─
│││
││├─
│││φ n
││
││ⓐ
│││θa
││├─
│││
││├─
│││φ n
│├─

n PCh+││φ
│⋯

Fig.  8.5.3-4.  Developing  a  deriva-
tion at stage n by exploiting an un-
restricted or a restricted existential;
the independent  term a is  new to
the derivation and the terms σ, …,
τ  include  at  least  one  from  each
current alias set for the gap

derivations for valid existential conclusions. A derivation showing the obver-
sion principle ¬ ∀x Fx ⊨ ∃x ¬ Fx is simple example of this.

│¬ ∀x Fx (2)
├─
││∀x Fx (2)
││●
│├─

2 Nc ││⊥ 1
├─

1 NcP│∃x ¬ Fx
EG could not have been applied here because the premise does not entail any
sentence ¬ Fτ from which we could generalize.

Arguments  for  the  soundness  and
completeness of this system carry over
from  7.7  without  any  new  wrinkles.
We solved all the key problems there,
and  a  number  are  not  even  repeated
here.  However,  we  cannot  avoid  the
consequences  of  the  failure  of  deci-
siveness. If we wish to find finite coun-
terexamples  whenever  they  exist,  we
need to use a modified rule for exploit-
ing existential resources in the way the
rule for  planning for a universal  goal
was modified in 7.8.1 . Without such a
rule, we will not reach dead-end open
gap in any derivation whose resources
contain  a  weak,  though  unrestricted,
claim of general exemplification (e.g.,
a sentence of the form ∀x ∃y Rxy). The
modified rule needed to search for fi-
nite counterexamples is Supplemented
Proof by Choice (PCh+).

The  following  derivation  illustrates
this rule. It shows that a claim of general exemplification need not imply uni-
formity. That is, it finds a counterexample to the entailment ∀x ∃y Rxy ⊨ ∃y
∀x Rxy.



│∀x ∃y Rxy a:2, c:9
├─
││∀y ¬ ∀x Rxy a:3, c:10
│├─

2 UI ││∃y Ray 5
3 UI ││¬ ∀x Rxa 4

││
││││Raa (7)
│││├─
│││││●
││││├─

7 QED │││││Raa 6
││││
││││ⓒ
││││││¬ Rca (15)
│││││├─

9 UI ││││││∃y Rcy 12
10 UI ││││││¬ ∀x Rxc 11

││││││
││││││││Rca (15)
│││││││├─
││││││││(unfinished but closes)
│││││││├─
││││││││∀x Rxc 12
│││││││
││││││││Rcc
│││││││├─
││││││││││¬ Rac
│││││││││├─
││││││││││○ Raa, ¬ Rca, Rcc, ¬ Rac ⊭ ⊥
│││││││││├─
││││││││││⊥ 14
││││││││├─

14 IP │││││││││Rac 13
││││││││
│││││││││(unfinished but closes)
││││││││├─
│││││││││Rcc 13
││││││││
││││││││ⓔ
│││││││││(unfinished)
││││││││├─
│││││││││Rec 13
│││││││├─

13 UG+ ││││││││∀x Rxc 12
│││││││
│││││││ⓓ
││││││││Rcd
│││││││├─
││││││││(unfinished)
│││││││├─
││││││││∀x Rxc 12
││││││├─

12 PCh+│││││││∀x Rxc 11
│││││├─

11 CR ││││││⊥ 8
││││├─

8 IP │││││Rca 6
│││├─

6 UG+ ││││∀x Rxa 5
│││
│││ⓑ
││││Rab
│││├─
││││(unfinished)
│││├─
││││∀x Rxa 5
││├─

5 PCh+ │││∀x Rxa 4
│├─

4 CR ││⊥ 1
├─

1 NcP │∃y ∀x Rxy

 

①
a

②
c

R

Although this is long and cumbersome, the development of the dead-end gap
goes through the kinds steps you would need to go through in your own think-
ing to arrive the same counterexample (the bracketed numbers link steps in
this thinking with the stages of the derivation):

The premise says that everything stands in relation R to something
or other. And, to make the conclusion false, we need to know that
there is nothing that has everything standing in the relation R to it
[1]. So we must have an object a such that a stands in R to something
but not everything stands in R to a [2-4]. Now we can’t be sure that a
is related to itself; but we can still consider this possibility as one
way of making it true that a is related to something by R, so let’s
suppose that Raa [5]. But we also need to make it false that every-
thing stands in R to a,  so let’s suppose we have an object c that
doesn’t stand in R to a [6-8]. Now c must stand in R to something and
it can’t have everything standing in R to it [9-11, cf. 2-4]. Let’s try
supposing it stands in R to itself (though it might be something else
that it is related to) [12]. Now, we must also be sure that not every-
thing stands in R to c, but nothing keeps us from supposing that a
does not [13-14]. Summing up, we’ve described a possible world con-
taining  objects  a  and c  where Raa,  ¬  Rca,  Rcc,  ¬  Rac;  and that’s
enough to make the premise true and the conclusion false.

Developing the unfinished gaps would lead to other counterexamples. For ex-
ample, the last open gap in this derivation explores the possibility of making
the premise true by having a stand in R to another object  b and it  would,
among other things, lead us to a counterexample in which each of a and b is
stands in R to the other but neither stands in R to itself.
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8.5.4. First-order logic
Although we will go on in 8.6  to give some consideration to derivations for
the description operator, our system of derivations is now essentially complete.
It is intended to capture entailments that derive from truth-functional logic and
the logical properties of identity, predication, and the quantifiers. This range of
logical  forms is  the  concern  of  first-order  logic.  (Usage  varies  a  little,  and
sometimes identity is not included; in that case, our subject is “first-order logic
with identity.”) Beginning about a century ago, first-order logic came to re-
place the theory of syllogisms as the commonly accepted core of deductive
logic. In the current practice of mathematics, for example, even very abstract
general principles falling beyond its scope would be treated as special axioms
(of the theory of sets for example) while principles of first-order logic would
be accepted as background assumptions within the context of which the conse-
quences of special axioms are assessed.

The theory of syllogisms itself appears as an account of a very special col-
lections of arguments. The outlines of this collection were sketched in 7.5.6 ,
but having the existential quantifier makes it possible to provide more detail in
a compact way. The four moods, the logical forms recognized by the theory,
are as follows (with the vowels that serve as their traditional labels):

A: (∀x: ρx) θx E: (∀x: ρx) ¬ θx
I: (∃x: ρx) θx O: (∃x: ρx) ¬ θx

and the four figures are the following patterns of occurence of the three predi-
cates that can appear in a syllogism (where the predicate shown on the left is
the resticting predicate of the sentence and the one on the right is its quantified
predicate):

µ θ
ρ µ

ρ θ

θ µ
ρ µ

ρ θ

µ θ
µ ρ

ρ θ

θ µ
µ ρ

ρ θ
1 2 3 4

Here µ is the middle term.
Of the 64 syllogisms of the first figure, the following four are valid:

(∀x: µx) θx
(∀x: ρx) µx

(∀x: ρx) θx

(∀x: µx) ¬ θx
(∀x: ρx) µx

(∀x: ρx) ¬ θx

(∀x: µx) θx
(∃x: ρx) µx

(∃x: ρx) θx

(∀x: µx) ¬ θx
(∃x: ρx) µx

(∃x: ρx) ¬ θx
Barbara Celarent Darii Ferio

Notice that the pattern of vowels in the traditional name shown below each ar-

st nd rd th

gument matches the moods of its premises and conclusion. The proportion of
valid arguments in the other figures is similar, and there are fifteen valid syllo-
gisms all told.

One of the limitations of theory of syllogisms is an inability to consider log-
ical relations between the restricitng and quantified predicates of a generaliza-
tion or claim of exemplification. For example, using the resources of first-or-
der logic, we can account for the fact that Every horse is a mammal implies
Any head of a horse is a head of a mammal (an entailment mentioned in
7.1.1).

(∀x: Hx) Mx

(∀x: (∃y: Hy) Dxy) (∃z: Mz) Dxz

H: [ _ is a horse]; M: [ _ is a mammal]; D: [ _ is a head of _ ]

│∀x (Hx → Mx) b:5
├─
│ⓐ
│││∃y (Hy ∧ Day) 3
││├─
│││ⓑ
││││Hb ∧ Dab 4
│││├─

4 Ext ││││Hb (6)
4 Ext ││││Dab (7)
5 UI ││││Hb → Mb 6
6 MPP││││Mb (7)
7 Adj ││││Mb ∧ Dab X, (8)
8 EG ││││∃z (Mz ∧ Daz) X, (9)

││││●
│││├─

9 QED││││∃z (Mz ∧ Daz) 3
││├─

3 PCh │││∃z (Mz ∧ Daz) 2
│├─

2 CP ││∃y (Hy ∧ Day) → ∃z (Mz ∧ Daz) 1
├─

1 UG │∀x (∃y (Hy ∧ Dxy) → ∃z (Mz ∧ Dxz))

(The use of adjunction and existential generalization at stages 7 and 8 saves us
having to enter ∀z ¬ (Mz ∧ Daz) as a supposition to be reduced to absurdity.)
Even though this  argument  is  closely  related  to  syllogisms—the active  re-
sources and goal after the use of CP at stage 2 form a valid syllogism of the
third figure known as Disamis—its validity cannot be explained without an
analysis of the restricting and quantified predicates of the conclusion, some-
thing the theory of syllogisms does not provide for.

Although first-order logic forms the core of deductive logic, it is not the
whole of it. One way to go beyond it is to study the sort of non-truth-func-
tional connectives noted in 3.1.2 . Another is to consider further sorts of quan-



tifiers.  The qualification first-order  derives from the fact that we analyze
quantification only over individuals and not over properties and relations. Thus
we cannot analyze the sentence Objects a and b are identical if and only if
every property of one is a property of the other,  and we cannot ask
whether this sentence is a tautology. The representation of such higher-order
quantification symbolically would present few new problems. We would need
bindable  variables  that  functioned  syntactically  as  predicates,  notation  for
complex predicates of predicates (with our quantifiers serving as simple predi-
cates of predicates), and quantifiers applying to such predicates of predicates.
This  would  give  us  second-order  logic.  To  go  further,  we  might  introduce
quantification for predicates of predicates—and so on. If this process is contin-
ued to all (finite) orders, we end up with what is known as higher-order logic or
(simple) type theory.

While higher-order logic introduces nothing really new in its syntax, the ac-
count of entailment for it is a completely different game, and the new prob-
lems appear already with second-order logic.  In particular,  there can be no
sound system for settling questions of validity for second-order logic that is
even complete, much less decisive. Indeed, a full understanding of validity for
second-order logic would provide a full understanding of all truths concerning
positive integers. But it was shown by Kurt Gödel in the early 1930s that these
truths cannot be captured by anything like a system of derivations. (This is the
result  mentioned in 7.7.1  as the basis  on which Church showed that  there
could be no system of derivations for first-order logic that was decisive as well
as sound and complete.)

So there is reason to distinguish the theory of first-order quantification from
higher-order  logic.  Frege’s  work did not  make this  distinction.  The subject
matter he addressed included the whole of what is now known as type theory
because  he  was  interested  in  connections  with  arithmetic,  whose  truths  he
wished to explain as logical tautologies. Although he provided what was es-
sentially a complete account of validity for first-order logic, his treatment of
other areas introduced inconsistencies. These were repaired shortly after (in
the first decade of the 20  century) by Bertrand Russell, whose work led to the
current conception of type theory. First-order logic came to be distinguished
within type theory and was permanently set in its present form by Gödel when
he showed that Frege’s initial ideas provided a complete account of validity for
this part of logic.

Glen Helman 11 Jul 2012
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8.5.s. Summary
Existentials bear the kind of analogy to disjunctions that universals bear to
conjunctions, and their role in entailment reflects this. Our principle for the
unrestricted existential as premise  says that the existential will support a
proof by choice . This is a sort of proof by cases in which cases for each in-
stance of the existential are handled not one by one but by using an inde-
pendent term  to make a general argument. This instance can be thought of
as an example, chosen in ignorance of its identity, of the sort that the exis-
tential claims to exist.

There are two approaches to establishing an existential conclusion. Our gen-
eral principle for the unrestricted existential as a conclusion  uses the idea of
non-constructive proof , in which a claim of exemplification is based on the
reduction to absurdity of a corresponding negative universal. In a construc-
tive  proof  using  existential  generalization ,  an  existential  conclusion  is
based on the proof of an instance, which thus “constructs” an example of the
sort the existential claims to exist.

The laws for existential premises and conclusions are implemented in ex-
ploitation and planning rules using some ideas from the rules for universals.
The  principles  for  unrestricted  existentials  are  implemented  in  the  rules
Proof  by  Choice  (PCh) ,  Non-constructive  Proof  (NcP) ,  and  Existential
Generalization (EG) . Also as was the case with the universal quantifier, to
uncover  counterexamples  to  invalid  arguments  using finite  ranges (when
such counterexamples exist), we would need a supplemented form of proof,
in this case PCh+.

The system we have now completed accounts for the entailments of what is
known as first-order logic . It has come to been seen as the core of deductive
logic. Until a century ago that status was given to the theory of syllogims ,
which can be regarded as a portion of first-order logic which does not make
use of the possibility of analyzing the restricting and quantified predicates of
generalizations or claims of exemplification.

The qualification first-order  indicates that we consider quantification
only over individuals and not over properties, properties of those properties,
or any other second-order  or higher-order  entities. Although higher-order
logic, or type theory, has attracted interest since Frege, it cannot be given a
complete system of derivations.

Glen Helman 11 Jul 2012



8.5.x. Exercise questions
1. Use the system of derivations to establish each of the following:

a. ∃x Fx, ∀x (Fx → Gx) ⊨ ∃x Gx
b. ∃x (Fx ∧ Gx), ∀x (Gx → Hx) ⊨ ∃x (Fx ∧ Hx) [this is the syllogism

Darii]
c. ∀x (Fx → Ga) ≃ ∃x Fx → Ga
d. Fa ≃ ∃x (x = a ∧ Fx)
e. ∃x (Fx ∧ ∀y Rxy) ⊨ ∀x ∃y (Fy ∧ Ryx)
f. ∃x (Gx ∧ Fx), ¬ Fa ⊨ ∃x (¬ x = a ∧ Gx)
g. ∀x (Fx → Ga),∀x (Ga → Fx), ∃x Fx ⊨ ∀x Fx
h. Everyone loves everyone who loves anyone, Someone loves

someone ⊨ Everyone loves everyone
i. Something is such that nothing other than it is done ≃ At

most one thing is done
2. Use derivations to check each of the claims below; if a derivation indi-

cates that a claim fails, present a counterexample that lurks in an open
gap. You need not worry about infinite derivations.
a. ∃x Fx, ∃x Gx ⊨ ∃x (Fx ∧ Gx)
b. ∃x (Fx ∧ Gx), ∃x (Fx ∧ Hx), ∀x (Fx → ∀y (Fy → x = y)) ⊨ ∃x (Gx

∧ Hx)
3. In the following, choose one of each bracketed pair of premises and one

each bracketed pair of words or phrases in the conclusion so as to make a
valid argument; then analyze the premises and conclusion and construct a
derivation to show that the argument is valid.
a. Some road sign was colored

[Every stop sign was a road sign | Every road sign was a traffic
marker]

[If anything was red, it was colored | If anything was colored,
it was painted]

Some [stop sign | traffic marker] was [red | painted]
b. Someone who owns a snake was pleased

[Every cobra is a snake | Every snake is a reptile]

Someone who owns a [cobra | reptile] was pleased

For more exercises, use the exercise machine .

Glen Helman 11 Jul 2012

8.5.xa. Exercise answers
1. Some of the derivations below are given in two forms, one that does not

use EG and another that does.
 a. │∃x Fx 1

│∀x (Fx → Gx) a:2
├─
│ⓐ
││Fa (3)
│├─

2 UI ││Fa → Ga 3
3 MPP││Ga

│││∀x ¬ Gx a:5
││├─

5 UI │││¬ Ga (6)
│││●
││├─

6 Nc │││⊥
│├─

4 NcP ││∃x Gx 1
├─

1 PCh │∃x Gx

│∃x Fx 1
│∀x (Fx → Gx) a:2
├─
│ⓐ
││Fa (3)
│├─

2 UI ││Fa → Ga 3
3 MPP││Ga (4)
4 EG ││∃x Gx X, (5)

││●
│├─

5 QED││∃x Gx 1
├─

1 PCh │∃x Gx

 b. │∃x (Fx ∧ Gx) 1
│∀x (Gx → Hx) a:3
├─
│ⓐ
││Fa ∧ Ga 2
│├─

2 Ext ││Fa (7)
2 Ext ││Ga (4)
3 UI ││Ga → Ha 4
4 MPP││Ha (8)

││
│││∀x ¬ (Fx ∧ Hx) a:6
││├─

6 UI │││¬ (Fa ∧ Ha) 7
7 MPT│││¬ Ha (8)

│││●
││├─

8 Nc │││⊥ 5
│├─

5 NcP ││∃x (Fx ∧ Hx) 1
├─

1 PCh │∃x (Fx ∧ Hx)

 │∃x (Fx ∧ Gx) 1
│∀x (Gx → Hx) a:3
├─
│ⓐ
││Fa ∧ Ga 2
│├─

2 Ext ││Fa (5)
2 Ext ││Ga (4)
3 UI ││Ga → Ha 4
4 MPP││Ha (5)
5 Adj ││Fa ∧ Ha X, (6)
6 EG ││∃x (Fx ∧ Hx) X, (7)

││●
│├─

7 QED││∃x (Fx ∧ Hx) 1
├─

1 PCh │∃x (Fx ∧ Hx)

 c. │∀x (Fx → Ga) b:3
├─
││∃x Fx 2
│├─
││ⓑ
│││Fb (4)
││├─

3 UI │││Fb → Ga 4
4 MPP│││Ga (5)

│││●
││├─

5 QED│││Ga 2
│├─

2 PCh ││Ga 1
├─

1 CP │∃x Fx → Ga



  │∃x Fx → Ga 4
├─
│ⓑ
│││Fb (8)
││├─
││││¬ Ga (4)
│││├─

4 MTT││││¬ ∃x Fx 5
││││
││││││∀x ¬ Fx b:7
│││││├─

7 UI ││││││¬ Fb (8)
││││││●
│││││├─

8 Nc ││││││⊥ 6
││││├─

6 NcP │││││∃x Fx 5
│││├─

5 CR ││││⊥ 3
││├─

3 IP │││Ga 2
│├─

2 CP ││Fb→Ga 1
├─

1 UG │∀x (Fx → Ga)

│∃x Fx → Ga 4
├─
│ⓑ
│││Fb (3)
││├─

3 EG │││∃x Fx X, (4)
4 MPP│││Ga (5)

│││●
││├─

5 QED│││Ga 2
│├─

2 CP ││Fb → Ga 1
├─

1 UG │∀x (Fx → Ga)

 d. │Fa (3)
├─
││∀x ¬ (x = a ∧ Fx) a:2
│├─

2 UI ││¬ (a = a ∧ Fa) 3
3 MPT││¬ a = a (4)

││●
│├─

4 DC ││⊥ 1
├─

1 NcP │∃x (x = a ∧ Fx)

 │Fa (2)
├─

1 EC │a = a X, (2)
2 Adj │a = a ∧ Fa X, (3)
3 EG │∃x (x = a ∧ Fx) X, (4)

│●
├─

4 QED│∃x (x = a ∧ Fx)

  │∃x (x = a ∧ Fx) 1
├─
│ⓑ
││b = a ∧ Fb 2
│├─

2 Ext ││b = a a—b
2 Ext ││Fb (3)

││●
│├─

3 QED=││Fa 1
├─

1 PCh │Fa

 e. │∃x (Fx ∧ ∀y Rxy) 2
├─
│ⓐ
││ⓑ
│││Fb ∧ ∀y Rby 3
││├─

3 Ext │││Fb (6)
3 Ext │││∀y Rby a:7

│││
││││∀y ¬ (Fy ∧ Rya) b:5
│││├─

5 UI ││││¬ (Fb ∧ Rba) 6
6 MPT││││¬ Rba (8)
7 UI ││││Rba (8)

││││●
│││├─

8 Nc ││││⊥ 4
││├─

4 NcP │││∃y (Fy ∧ Rya) 2
│├─

2 PCh ││∃y (Fy ∧ Rya) 1
├─

1 UG │∀x ∃y (Fy ∧ Ryx)

 │∃x (Fx ∧ ∀y Rxy) 2
├─
│ⓐ
││ⓑ
│││Fb ∧ ∀y Rby 3
││├─

3 Ext │││Fb (5)
3 Ext │││∀y Rby a:4
4 UI │││Rba (5)
5 Adj │││Fb ∧ Rba X, (6)
6 EG │││∃y (Fy ∧ Rya) X, (7)

│││●
││├─

7 QED│││∃y (Fy ∧ Rya) 2
│├─

2 PCh ││∃y (Fy ∧ Rya) 1
├─

1 UG │∀x ∃y (Fy ∧ Ryx)

 f. │∃x (Gx ∧ Fx) 1
│¬ Fa (6)
├─
│ⓑ
││Gb ∧ Fb 2
│├─

2 Ext ││Gb (5)
2 Ext ││Fb (6)

││
│││∀x ¬ (¬ x = a ∧ Gx) b:4
││├─

4 UI │││¬ (¬ b = a ∧ Gb) 5
5 MPT│││b = a a—b

│││●
││├─

6 Nc= │││⊥ 3
│├─

3 NcP ││∃x (¬ x = a ∧ Gx) 1
├─

1 PCh │∃x (¬ x = a ∧ Gx)

 g. │∀x (Fx → Ga) c:3
│∀x (Ga → Fx) b:5
│∃x Fx 2
├─
│ⓑ
││ⓒ
│││Fc (4)
││├─

3 UI │││Fc → Ga 4
4 MPP│││Ga (6)
5 UI │││Ga → Fb 6
6 MPP│││Fb (7)

│││●
││├─

7 QED│││Fb 2
│├─

2 PCh ││Fb 1
├─

1 UG │∀x Fx



 h. (∀x: Px) (∀y: Py ∧ (∃z: Pz) Lyz) Lxy
(∃x: Px) (∃y: Py) Lxy

(∀x: Px) (∀y: Py) Lxy
│∀x (Px → ∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lxy)) b:7, a:14
│∃x (Px ∧ ∃y (Py ∧ Lxy)) 5
├─
│ⓐ
│││Pa (15)
││├─
│││ⓑ
│││││Pb (8), (19)
││││├─
│││││ⓒ
││││││Pc ∧ ∃y (Py ∧ Lcy) 6
│││││├─

6 Ext ││││││Pc (12), (17)
6 Ext ││││││∃y (Py ∧ Lcy) 10
7 UI ││││││Pb → ∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lby) 8
8 MPP ││││││∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lby) c:9
9 UI ││││││(Pc ∧ ∃z (Pz ∧ Lcz)) → Lbc 13

││││││
││││││ⓓ
│││││││Pd ∧ Lcd (11)
││││││├─

11 EG │││││││∃z (Pz ∧ Lcz) X, (12)
12 Adj │││││││Pc ∧ ∃z (Pz ∧ Lcz) X, (13)
13 MPP│││││││Lbc (17)
14 UI │││││││Pa → ∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lay) 15
15 MPP│││││││∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lay) b:16
16 UI │││││││(Pb ∧ ∃z (Pz ∧ Lyz)) → Lab 20
17 Adj │││││││Pc ∧ Lbc X, (18)
18 EG │││││││∃z (Pz ∧ Lbz) X, (19)
19 Adj │││││││Pb ∧ ∃z (Pz ∧ Lbz) X, (20)
20 MPP│││││││Lab (21)

│││││││●
││││││├─

21 QED│││││││Lab 10
│││││├─

10 PCh ││││││Lab 5
││││├─

5 PCh │││││Lab 4
│││├─

4 CP ││││Pb → Lab 3
││├─

3 UG │││∀y (Py → Lay) 2
│├─

2 CP ││Pa → ∀y (Py → Lay) 1
├─

1 UG │∀x (Px → ∀y (Py → Lxy))
Note that stages 10 and 11 serve only to move us from ∃y (Py ∧ Lcy) to
∃z (Pz ∧ Lcz)—i.e., to change a bound variable. If sentences that differ only
in the choice of a letter for a bound variable are regarded as the same (or if a
different variable had been chosen when analyzing the second premise), the
assumption Pc ∧ ∃y (Py ∧ Lcy) could be used as a premise for MPP and
stages 10-12 would not be needed.

 i. ∃x ¬ (∃y: ¬ y = x) Dy ≃ ¬ ∃x (∃y: ¬ y = x) (Dx ∧ Dy)
│∃x ¬ ∃y (¬ y = x ∧ Dy) 2
├─
││∃x ∃y (¬ y = x ∧ (Dx ∧ Dy)) 3
│├─
││ⓐ
│││¬ ∃y (¬ y = a ∧ Dy) 7
││├─
│││ⓑ
││││∃y (¬ y = b ∧ (Db ∧ Dy)) 4
│││├─
││││ⓒ
│││││¬ c = b ∧ (Db ∧ Dc) 5
││││├─

5 Ext │││││¬ c = b (13)
5 Ext │││││Db ∧ Dc 6
6 Ext │││││Db (10)
6 Ext │││││Dc (12)

│││││
│││││││∀y ¬ (¬ y = a ∧ Dy) b:9, c:11
││││││├─

9 UI │││││││¬ (¬ b = a ∧ Db) 10
10 MPT│││││││b = a a—b, c
11 UI │││││││¬ (¬ c = a ∧ Dc) 12
12 MPT│││││││c = a a—b—c

│││││││●
││││││├─

13 DC │││││││⊥ 8
│││││├─

8 NcP ││││││∃y (¬ y = a ∧ Dy) 7
││││├─

7 CR │││││⊥ 4
│││├─

4 PCh ││││⊥ 3
││├─

3 PCh │││⊥ 2
│├─

2 PCh ││⊥ 1
├─

1 RAA │¬ ∃x ∃y (¬ y = x ∧ (Dx ∧ Dy))

  │¬ ∃x ∃y (¬ y = x ∧ (Dx ∧ Dy)) (12)
├─
││∀x ∃y (¬ y = x ∧ Dy) a:2, b:5
│├─

2 UI ││∃y (¬ y = a ∧ Dy) 3
││
││ⓑ
│││¬ b = a ∧ Db 4
││├─

4 Ext │││¬ b = a
4 Ext │││Db (8)
5 UI │││∃y (¬ y = b ∧ Dy) 6

│││
│││ⓒ
││││¬ c = b ∧ Dc 7
│││├─

7 Ext ││││¬ c = b (9)
7 Ext ││││Dc (8)
8 Adj ││││Db ∧ Dc X, (9)
9 Adj ││││¬ c = b ∧ (Db ∧ Dc) X, (10)
10 EG││││∃y (¬ y = b ∧ (Db ∧ Dy)) X, (11)
11 EG││││∃x ∃y (¬ y = x ∧ (Dx ∧ Dy)) X, (12)

││││●
│││├─

12 Nc ││││⊥ 6
││├─

6 PCh│││⊥ 3
│├─

3 PCh││⊥ 1
├─

1 NcP│∃x ¬ ∃y (¬ y = x ∧ Dy)



2. a. │∃x Fx 1
│∃x Gx 2
├─
│ⓐ
││Fa (5)
│├─
││ⓑ
│││Gb (7)
││├─
││││∀x ¬ (Fx ∧ Gx) a:4, b:6
│││├─

4 UI ││││¬ (Fa ∧ Ga) 5
5 MPT││││¬ Ga
6 UI ││││¬ (Fb ∧ Gb) 7
7 MPT││││¬ Fb

││││○ Fa,¬ Fb,¬ Ga,Gb ⊭ ⊥
│││├─
││││⊥ 3
││├─

3 NcP │││∃x (Fx ∧ Gx) 2
│├─

2 PCh ││∃x (Fx ∧ Gx) 1
├─

1 PCh │∃x (Fx ∧ Gx)

①
a

②
b

F G

 b. │∃x (Fx ∧ Gx) 1
│∃x (Fx ∧ Hx) 3
│∀x (Fx → ∀y (Fy → x = y)) a:3
├─
│ⓐ
││Fa ∧ Ga 2
│├─

2 Ext ││Fa (6)
2 Ext ││Ga (11)

││
││ⓑ
│││Fb ∧ Hb 4
││├─

4 Ext │││Fb (8)
4 Ext │││Hb (12)
5 UI │││Fa → ∀y (Fy → a = y) 6
6 MPP │││∀y (Fy → a = y) b:7
7 UI │││Fb → a = b 8
8 MPP │││a = b a—b

│││
││││∀x ¬ (Gx ∧ Hx) a:10
│││├─

10 UI ││││¬ (Ga ∧ Ha) 11
11 MPT││││¬ Ha (12)

││││●
│││├─

12 Nc= ││││⊥ 9
││├─

9 NcP │││∃x (Gx ∧ Hx) 3
│├─

3 PCh ││∃x (Gx ∧ Hx) 1
├─

1 PCh │∃x (Gx ∧ Hx)

3. a. (∃x: Sx) Cx, (∀x: Sx) Tx, ∀x (Cx → Px) / (∃x: Tx) Px
│∃x (Sx ∧ Cx) 1
│∀x (Sx → Tx) a:3
│∀x (Cx → Px) a:5
├─
│ⓐ
││Sa ∧ Ca 2
│├─

2 Ext ││Sa (4)
2 Ext ││Ca (6)
3 UI ││Sa → Ta 4
4 MPP││Ta (7)
5 UI ││Ca → Pa 6
6 MPP││Pa (7)
7 Adj ││Ta ∧ Pa X, (8)
8 EG ││∃x (Tx ∧ Px) X, (9)

││●
│├─

9 QED││∃x (Tx ∧ Px) 1
├─

1 PCh │∃x (Tx ∧ Px)

 b. (∃x: Px ∧ (∃y: Sy) Oxy) Dx
(∀x: Sx) Rx

(∃x: Px ∧ (∃y: Ry) Oxy) Dx
│∃x ((Px ∧ ∃y (Sy ∧ Oxy)) ∧ Dx) 1
│∀x (Sx → Rx) b:6
├─
│ⓐ
││(Pa ∧ ∃y (Sy ∧ Oay)) ∧ Da 2
│├─

2 Ext ││Pa ∧ ∃y (Sy ∧ Oay) 3
2 Ext ││Da (11)
3 Ext ││Pa (10)
3 Ext ││∃y (Sy ∧ Oay) 3││

││ⓑ
│││Sb ∧ Oab 5
││├─

5 Ext │││Sb (7)
5 Ext │││Oab (8)
6 UI │││Sb → Rb 7
7 MPP │││Rb (8)
8 Adj │││Rb ∧ Oab X, (9)
9 EG │││∃y (Ry ∧ Oay) X, (10)
10 Adj │││Pa ∧ ∃y (Ry ∧ Oay) X, (11)
11 Adj │││(Pa ∧ ∃y (Ry ∧ Oay)) ∧ Da X, (12)
12 EG │││∃x ((Px ∧ ∃y (Ry ∧ Oxy)) ∧ Dx) X, (13)

│││●
││├─

13 QED│││∃x ((Px ∧ ∃y (Ry ∧ Oxy)) ∧ Dx) 4
│├─

4 PCh ││∃x ((Px ∧ ∃y (Ry ∧ Oxy)) ∧ Dx) 1
├─

1 PCh │∃x ((Px ∧ ∃y (Ry ∧ Oxy)) ∧ Dx)
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