
6.4. Describing models
6.4.0. Overview
The grammatical variety we have been considering brings with it a greater va-
riety of semantic values; in particular, the counterexamples to arguments that
are not formally valid are now more than simple assignments of truth values.

6.4.1. Extensions and ranges
While the extensions of individual terms are (like the extensions of sen-
tences) single values, the extensions of operators are (like the extensions of
connectives) functions.

6.4.2. Building structures
The extensions of predicates (functions from reference values to truth val-
ues) can be fully specified by telling the input for which they give output T,
and these cases can be presented in diagrams to which the extensions of
other items of non-logical vocabulary can be added.

6.4.3. Structures as counterexamples
Although extensional interpretations are now different, it is still true that a
dead-end open gap specifies the sort of counterexample that lurks in the gap.

Glen Helman 11 Jul 2012

6.4.1. Extensions and ranges
In this section, we will look at ways of describing the semantic values of the
new sorts of expression we have been considering and ways of using these val-
ues to present counterexamples to derivations that fail. First, let us collect and
sharpen what we know about the semantic values of the several kinds of ex-
pression we are considering. Table 6.4.1-1 gives a basic summary that you
may compare with the tables of grammatical categories given in 6.1.1 and
6.1.7 .

Expression Extension
sentence truth value

term reference value
 input output

connective truth function truth value(s) truth value
predicate property or relation reference value(s) truth value
functor reference function reference value(s) reference value

Table 6.4.1-1. The extensions of 5 kinds of expression.

In each case the intension of an expression is a specification of its extension in
each possible world. For example, the intension of an individual term is speci-
fies its reference value in each possible world; this is the sort of intensional en-
tity that was mentioned in 6.3.1 . In particular, while Barack Obama and the
U. S. president have the same extension in the actual world, they have differ-
ent intensions because their extensions differ in other possible worlds.

Since the extensions of the incomplete expressions are functions, they ex-
hibit generality: each such extension determines an output value for each input
value from some range of such values. In the case of connectives, the input
values are fixed as the two truth values T and F, and the range of generality of
truth functions is thus quite limited. We do not fix the range of reference val-
ues, but this range must be known before we know what functions are avail-
able as extensions of predicates and functors. We will refer to a specification
of the reference values as a referential range or often simply as a range, and
we will use the symbol R for it. (The word domain is often used for this idea,
but we will use that word for another concept.) The referential range can be
any set that is not empty.

Our logical constants have fixed extensions that we stipulate once and for
all. In the case of connectives these are given by their tables. The identity
predicate = has an extension that is settled once the referential range is settled:
this predicate is true of any pair of reference values whose members are the

same but false of any pair of different values. Further basic expressions—un-
analyzed sentences, unanalyzed terms other than variables, unanalyzed predi-
cates, and unanalyzed functors—form our non-logical vocabulary, and their ex-
tensions are not fixed.

As in truth-functional logic, items of non-logical vocabulary may be as-
signed extensions by extensional interpretations or assigned extensions for all
possible worlds by intensional interpretations. The extensions assigned to pred-
icates and functors by a given interpretation must have a generality that ex-
tends to the same range R, so we will speak of an extensional interpretation as
being an interpretation on a range R. The basic semantic information needed
for the logical forms we are now considering is then a range R and an exten-
sional interpretation (on that range) of certain items of non-logical vocabulary;
we will refer to this information as a structure for any expressions that can be
formed from this non-logical vocabulary and our logical vocabulary.

It will be convenient to assume that every reference value in the range of a
structure comes with a label. We will refer to this label as the ID of the value.
The assumption that all reference values have IDs is actually quite a heavy
one. The limitations of decimal notation in capturing irrational numbers like π
and the square root of 2 are essential; no system of finite expressions could
name all real numbers. So if a range includes all real numbers, its members
could not all be labeled by expressions in any ordinary sense. One way around
this is to think of IDs as mathematical abstractions—for example, as ID num-
bers that are not merely numerical expressions but genuine numbers. In this
way, the real numbers might be used as their own IDs. But, while these are im-
portant theoretical issues that have had considerable impact on the develop-
ment of logic, they will not affect us practically. Our chief interest will be in
structures indicated by the dead end gaps of derivations; and these will all have
finite (and usually very small) ranges, so there will be no problem in using nu-
merals (even single-digit numerals) as their IDs.

Glen Helman 11 Jul 2012

0

1

2
3

4

Fig. 6.4.2-1. A range of reference
values labeled by their IDs.

6.4.2. Building structures
Once a referential range R is specified, the extensions of the various sorts of
non-logical vocabulary can be specified in ways that extend the approach used
in truth-functional logic. Individual terms are merely assigned reference values
from R in the way sentences were assigned truth values. The extensions of
predicates and functors are functions and, as we have already seen, these can
be indicated by tables analogous to truth tables. Below is an example of an ex-
tensional interpretation of the following non-logical vocabulary:

sentences: A, B
individual terms: a, b, c, d, e

predicates: F (1-place), G (1-place), R (2-place)
functors: f (2-place)

We choose (arbitrarily) a referential range with five values whose IDs run from
0 to 4 and assign (again arbitrarily) extensions of the appropriate sorts to the
items of non-logical vocabulary.

R: 0, 1, 2, 3, 4 A B
T F

a b c d e
3 4 0 2 4

τ Fτ
0 F
1 T
2 T
3 F
4 T

τ Gτ
0 T
1 F
2 F
3 T
4 T

R 0 1 2 3 4
0 F F F F F
1 T F T F T
2 F T F F T
3 F T F T F
4 F F F F T

f 0 1 2 3 4
0 1 2 3 1 4
1 2 4 0 1 3
2 3 1 2 0 1
3 4 1 0 3 0
4 4 3 1 2 4

The truth-table row giving the values of A and B is dwarfed by the other infor-
mation in the structure, but the whole of the structure has the same signifi-
cance for our present analysis of logical form as did the assignment of truth
values in truth-functional logic.

Since we build in no assumptions about the
size of the range R, we can consider structures
that are quite small, and it is possible to repre-
sent small structures in pictorial diagrams. As
in Figure 6.4.2-1, let us depict a range by a
rectangle, with the values of the range shown
as circles that enclose numbers, which will
serve as the IDs of the reference values in the
range.

The extension of a simple term will be one of these reference values, and we
can show this by writing the term next to that value. Figure 6.4.2-2 shows the
extensions assigned above to the terms a, b, c, d, and e. The terms b and e are

written next to the same value because both were assigned that value as their
extension.

0c

1

2
d

3a

4
b,e

Fig. 6.4.2-2. A range with the extensions of five terms shown; two have the
same extension.

The extension of a one-place predicate is a function that yields a truth value
as output when it is applied to a reference value as input. We will say that it is
true or false of a reference value depending on its output for that value as in-
put. We can represent this sort of extension by writing the predicate next to the
values it is true of; we will then know that it is false of any other reference val-
ues. Figure 6.4.2-3A does this for the predicates F and G, again using the ex-
tensions originally given in tables.

0G

1F

2F
3G

4F, G

A

F

G
0

1

2
3

4

B

Fig. 6.4.2-3. A range with the extensions of two one-place predicates indicated
by labeling values (A) and enclosing sets of values (B).

This can make the diagram rather cluttered, but we can clean things up a little
by drawing a line around all the values a predicate is true of and labeling the
line rather than the values. This is done in Figure 6.4.2-3B. The second sort of
diagram corresponds fairly directly to what was the original concept of an ex-
tension—the class of things a predicate is true of—and we can say that the val-
ues a predicate is true of are in its extension.

Predicates with more than one place are not true or false of single values but
of pairs, triples, or longer series of values. For example, [_ is the father of
_] is true not of James Mill or of John Stuart Mill (his son) taken individually
but instead of the two taken together and in that order. Such an ordered pair of
values can be represented in our diagrams by an arrow from its first to its sec-
ond member. (We could represent longer series of values by adding legs be-

tween the head and tail of the arrow.) The extension of a 2-place predicate can
be thought of as the collection of pairs it is true of. Similarly, the extension of
a 3-place predicate will be a collection of triples, and the extension of a predi-
cate with some number n of places will be a collection of n-tuples (i.e., of se-
ries with length n).

There are a number of ways a collection of n-tuples can be depicted. We
might draw the arrows that represent its members and label each one as we ini-
tially labeled the values in the extension of a one-place predicate. This would
make for some more clutter, but it would be hard to avoid that by drawing a
line around a group of arrows. We might write the predicate once and draw a
line from it to each of the arrows in its extension, or we might draw different
styles of arrows for different predicates, labeling the style of arrows in a leg-
end like that of a road map. Each of these three approaches to labeling the ex-
tensions of many-place predicates has its value but we will most often use leg-
ends. Figure 6.4.2-4 shows this latter style of diagram for the extension that
was assigned to the 2-place predicate R.

0

1

2
3

4

R

Fig. 6.4.2-4. A range with the extension of a 2-place predicate indicated.

Notice that the predicate is true of the values 1 and 2 taken in either direction
and that it is also true of each of 3 and 4 paired with itself (and look back to
see how that information appeared in the table).

Figure 6.4.2-5A combines the extensions of the three predicates, and Figure
6.4.2-5B adds the interpretation of the unanalyzed sentence A.

F

G
0c

1

2
d

3a

4
b,e

R

A

F

G
0c

1

2
d

3a

4
b,e

A

R

B

Fig. 6.4.2-5. A range with the extensions of predicates (A) and predicates to-
gether with the indication that a sentence is true (B).

As was noted in 6.2.2 , unanalyzed sentences can be thought of as zero-place

predicates. That means that they do not express properties that may or may not
be true of objects or relations that may or may not hold between objects. In-
stead sentence express state of affairs that are simply true or false. One way to
indicate that in a diagram is to simply include a true sentence within the rec-
tangle, understanding any unanalyzed sentence that does not appear there to be
assigned the value F.

All that is left are the extensions of functors. We could use arrows here, too,
because a reference function establishes a relation between its input and output
values. For example, the squaring function relates 1 to itself, 2 to 4, 3 to 9, and
so on. However, this would make for a lot of arrows. A one-place function re-
lates each value to some other value (perhaps the Nil), so each value would be
at the tail of an arrow; and things get much worse with functions of two or
more places. We can get a somewhat more compact notation by adapting the
way we indicate the extensions of individual terms. Next to each output value
of a functor, we can write the functor with its places filled by IDs of the input
values for which it yields that output (for example, writing f01 next to the
value 2 to say that 2 is the output of f for inputs 0 and 1). Since the extension
of a functor may yield the same output for different input values, we may need
to write the functor next to an ID several times, each time filling its places
with the IDs of different input values. This is manageable for 1-place functors
because, for each such functor, we will need only as many labels as there are
possible input values—i.e., one for each member of the range. But for a func-
tion with two places, the number of labels is the square of the number of refer-
ence values and this number mounts rapidly. In the example we are consider-
ing, we would need to write the 2-place functor f 25 times to indicate all 25 en-
tries of the table shown earlier. Adding to these only the individual terms leads
to the rather cluttered diagram shown in Figure 6.4.2-6.

0
c, f12, f23,

f32, f34

1
f00, f03, f13, f21

f24, f31, f422
d, f01, f10,

f22, f43
3

a, f02, f14, f21,
f33, f414

b, e, f04, F12,
f30, f40, f44

Fig. 6.4.2-6. A range showing the extensions of a 2-place functor and several in-
dividual terms.

Most of the structures we consider will be quite small, and this approach
will be more feasible with them. Still, it is always possible to supplement a di-
agram with one or more tables, and that is the easiest approach for the example
we have been considering. The full interpretation is given in this way in Figure

6.4.2-7.

F

G
0c

1

2
d

3a

4
b,e

A

R

f 0 1 2 3 4
0 1 2 3 1 4
1 2 4 0 1 3
2 3 1 2 0 1
3 4 1 0 3 0
4 4 3 1 2 4

Fig. 6.4.2-7. A structure for a variety of non-logical vocabulary.

Now let us do something with this structure. Interpretations are assigned in
order to settle the truth values of sentences formed using the vocabulary that is
interpreted. This is analogous to calculating a truth value of a truth-functional
compound given an assignment of truth values to its ultimate components.
Below is the calculation of the truth value given to a sentence by the structure
we have been considering. It is followed by an explanation of the initial steps
in the process; this explanation refers to the way the interpretation is presented
in the diagram and table in Figure 6.4.2-7.

(G a ∧ R d e) → ((F (f a b) ∨ ¬ B) ∧ b = e)
T 3 T T 2 4 Ⓣ F 0 3 4 T T F T 4 T 4

Ga: a has 3 as its value and this value is in the area representing the exten-
sion of G, so Ga gets T

Rde: d and e have 2 and 4 as their extensions and the arrow for this pair is in
the extension assigned to R, so Rde gets T

F(fab): f yields the value 0 when given the extensions of a and b (the values 3
and 4) as input (as can be seen from the end of the next-to-last row of
the table for F), and 0 is not in the area marked as the extension of F;
thus fab gets 0 and F(fab) gets F

B: B gets the value F since, unlike A, it does not appear within the rectan-
gle

b = e: b and e both have 4 as their extension, so b = e gets T

The extensions of complete unanalyzed expressions have been written under
these expressions, and the values of compounds are written under signs for the
operators that form them. As in truth-functional logic, the order of calculation
is determined by parentheses. Notice that capital letters always have truth val-
ues under them and lower case letters always have reference values under
them.

Glen Helman 18 Jul 2012

6.4.3. Structures as counterexamples
Since structures provide the information that is now needed to determine truth
values for sentences, we will present counterexamples to derivations that fail
by describing structures. An example of a failed derivation is shown below.

│P(fa)b → Qa(fd) 3
│Qbd → Fb 5
│b = d a, b—d, fa, fd
├─
││P(fd)d ∧ a = d 2
│├─

2 Ext ││P(fd)d (3)
2 Ext ││a = d a—b—d, fa—fd
3 MPP=││Qa(fd)

││
│││¬ Fd (5)
││├─

5 MTT=│││¬ Qbd
│││○ b=d,P(fd)d,a=d,Qa(fd),¬ Fd,¬ Qbd ⊭ ⊥
││├─
│││⊥ 4
│├─

4 IP ││Fd 1
├─

1 CP │(P(fb)d ∧ a = d) → Fd

Stage 3 of the development uses the extended version of modus ponens. At this
point, we have two alias sets, one consisting of a, b, and d and the other con-
sisting of fa and fd. We do not have the antecedent of the conditional P(fa)b →
Qa(fb) among our resources but rather a sentence, P(fd)d, that, although differ-
ing from it in two places, differs only by terms that are co-aliases for fa and b.
Stage 5 uses a similarly extended modus tollens. The remaining open gap can-
not be closed because Qa(fd) and ¬ Qbd, the two resources that might be part
of a contradiction, differ in their second place by terms (fd and d) that have not
been made co-aliases.

The active resources of the dead-end gap form the consistent set:

b = d, P(fd)d, a = d, Qa(fd), ¬ Fd, ¬ Qbd

To describe a structure making the members of this set true, we must choose a
range of reference and assign an extension to each of the items of non-logical
vocabulary. The choice of the referential range and the assignment of exten-
sions to both individual terms and functors is determined by the alias sets. We
choose one reference value for each alias set and assign extensions so that the
terms in the set have that as their reference value.

For this consistent set, we will have two alias sets, one containing a, b, and d
and the other containing fa and fd, so we take the range to consist of two val-
ues, one corresponding to each alias set. We do this by numbering the alias sets
and taking these numbers to be the IDs of the values in the range.

Next we must assign values to non-logical vocabulary appearing in the
terms in such a way that each term has the reference value corresponding to
the number of its alias set. In the case of an unanalyzed term, we simply assign
it the value of its alias set. In the case of a compound term, we place the fol-
lowing constraint on the reference function used to interpret its main functor
(the one used last in forming it): the output of the reference function must be
the reference value of the compound term when the input consists of the refer-
ence values of the component terms. That is to say, we need to insure that we
will get to same output reference value from given input terms whether we
take go across the top of the following diagram and then down the right side or
go down the left side first and then across the bottom—or, as a mathematician
would say, the diagram must “commute” (i.e., the order of across and down
must be reversible):

input output

syntax term(s) → compound
term

↓ ↓

semantics reference
value(s) → reference

value

The arrow across the top is the operation of applying a given functor while the
arrows going down are settled by the numbering of the alias sets of term. Find-
ing compound terms in alias sets then tells us something about how the refer-
ence function used to interpret the functor associates output with certain input.

In the example we are looking at, the two compound terms bring with them
the same constraint of this sort since they are co-aliases and have components
which are co-aliases. The table below shows the association of ID numbers
with alias sets and the constraints on the interpretation of functors that follow
from this association:

term ID constraint
a
b
d

1 a: 1
b: 1
d: 1

fa
fd

2 f1: 2
f1: 2

To indicate constraints, we use a variation on the notation that was used to in-
dicate the extensions of functors in the diagrammatic presentation of struc-
tures. Here “f1: 2” says that interpretation of f must yield output with ID 2 for
input with ID 1.

In the case of predicates, the diagram that must commute is the following:

input output
syntax term(s) → predication

↓ ↓

semantics reference
value(s) → truth

value

Here the arrow at the top is the application of a given predicate, and the one at
the bottom corresponds to the way the predicate’s extension divides reference
values into those the predicate is true of and those it is false of. The arrow
down at the left is again given by the numbering of alias sets, and the one at
the right is given by the presence of a predication or its denial in the set of sen-
tences we are trying to make all true. What we know of the arrows going down
then places constraints on the arrow across the bottom for certain predicates.

In the example, we have three non-logical predicates to consider, the 2-place
predicates P and Q and the 1-place predicate F. Each sentence in the consistent
set that affirms or denies one of these of a series of terms provides a constraint
on the interpretation of that predicate—as is shown in the following table.

resource constraint
P(fd)d
Qa(fd)
¬ Qbd
¬ Fd

P21: T
Q12: T
Q11: F

F1: F

The sentence P(fd)d tells us that P is true of values 2 and 1 (in that order) since
these are the values of fd and d, respectively; but no other sentence says any-
thing about the extension of P. There are sentences that require that the predi-
cate Q be true of the pair 1 and 2 and false of the pair 1 and 1, but nothing is
said about other cases. The last sentence requires that F be false of 1 but re-
quires nothing beyond this.

The tables below incorporate this information about extensions. The values
in grey are not required to make the members of the consistent set true and
may be assigned arbitrarily. In the case of predicates, the value F has been as-
signed in such cases to make the extension as small as possible.

R: 1, 2 a b d
1 1 1

τ fτ
1 2
2 1

τ Fτ
1 F
2 F

P 1 2
1 F F
2 T F

Q 1 2
1 F T
2 F F

The upshot of these tables is depicted in Figure 6.3.4-1.

1
a,b,d,f2

P 2 f1

Q

F

Fig. 6.4.3-1. A counterexample lurking in the open gap of the derivation above.

Since the predicates P and Q are each true of only one pair, they are used to la-
bel arrows directly. The emptiness of F’s extension is shown by using F to la-
bel a circle that encloses nothing. This structure is small enough that the exten-
sion of the functor f is also represented in the diagram.

Much of the work here comes in assigning interpretations to individual
terms and functors on the basis of a collection of alias sets. Let us look at an-
other example of that. The example we worked out in 6.3.2 would arise if we
were to check the entailment

a = b, fb = c, fb = fc, d = gca, g(fa)b = e ⊨ a = fd

The derivation for this is not very interesting. A single use of IP would leave
us with a dead-end open gap which fails to close because

a = b, fb = c, fb = fc, d = gca, g(fa)b = e, ¬ a = fd ⊭ ⊥

The alias sets we found in 6.3.2 are shown below along with the corresponding
constraints on the interpretation of individual terms and functors:

term ID constraint
a
b

1 a: 1
b: 1

c
fa
fb
fc

2 c: 2
f1: 2
f1: 2
f2: 2

fd 3 f4: 3
d
e

gca
g(fa)b

4 d: 4
e: 4

g21: 4
g21: 4

As in the example above, an unanalyzed term is simply assigned the number of
its alias set. For a compound term, we require that the number of the alias set
be the output value corresponding to input(s) that are the numbers of the alias
sets of its immediate components. For example, the term fa appears in set 2, so

we want the table for f to lead us to calculate 2 as the reference value of fa.
The input for the calculation will be the reference value of the term a; but a ap-
pears in set 1, so we want the table for f to yield output 2 for input 1. We de-
rive exactly the same information from the appearance of the term fb; the out-
put is the same because it appears in the same alias set as fa, and the input is
the same because the term b appears in the same alias set as the term a. On the
other hand, the appearance of fc in alias set 2, tells us that the table for f should
assign output 2 also for input 2 since 2 is the alias set of the term c. We re-
spond to the remaining terms in a similar way, the only difference being the
need to note pairs of input values in the case of the 2-place functor g.

When we put constraints in tables assigning extensions to the individual
terms a, b, c, d, and e the functors f and g, we get the following:

R: 1, 2, 3, 4 a b c d e
1 1 2 4 4

τ fτ
1 2
2 2
3
4 3

g 1 2 3 4
1
2 4
3
4

Many entries are left unfilled because they did not correspond to any terms in
our alias sets. But, by the same token, we will never use these entries to calcu-
late the values of terms appearing in the open gap, so they can be filled in arbi-
trarily. The value 1 is used in the tables below but any other would do; it is the
other values that are significant.

R: 1, 2, 3, 4 a b c d e
1 1 2 4 4

τ fτ
1 2
2 2
3 1
4 3

g 1 2 3 4
1 1 1 1 1
2 4 1 1 1
3 1 1 1 1
4 1 1 1 1

Recall that, in a couple of cases, we have had a single input-output pair dic-
tated by two different terms. This raises the question whether the procedure we
are using could ever lead to impose incompatible requirements? That is, could
we end up trying to associate two different output values of a functor with the
same series of input values and thus to fill in one entry in two different ways?
For this to happen, there would have to be terms fτ …τ and fυ …υ with a
common functor f that fell into different alias sets (if we were to have two out-
put values), and the corresponding components of these compounds (τ and υ
for i from 1 to n) would have to fall in the same alias sets (if we were to have
the same input values in the two cases). But the way we have set up alias sets
insures that this cannot happen. Instruction (iv) for drawing links would have

1 n 1 n

i i

told us to put the two compounds in the same alias set once their correspond-
ing components were connected. And, indeed, in the two cases where we have
duplicate requirements, the compounds appear in the same alias set precisely
because we followed this instruction when forming the alias sets of this exam-
ple. (Although terms whose corresponding components are co-aliases are
bound to appear in the same alias set, they might do so for other reasons, too;
for example, we might have both a = b and fa = fb as resources of a dead-end
gap.)

We have now done enough to settle the truth values of all equations that ap-
pear affirmed or negated among the premises we are trying to make true. Do
these values come out as we would like? That is, do the affirmed equations
come out true and the negated ones false? Well, since the extensions given to
all terms, simple or compound, will correspond to their alias sets, we know
that any equation τ = υ that is affirmed among the premises will be true. For
such an equation will have led us to put the terms τ and υ into the same alias
set, and each term will be assigned the value corresponding to this set as its ex-
tension. And, since they have the same extension, the equation between them
will be true. How about the denial of an equation, a resource of the form
¬ τ = υ? Since the gap cannot be closed, we know that τ and υ are members of
different alias sets. And since the extensions given to these terms correspond
to their alias sets, they will have different reference values and the equation
τ = υ will be false, making the resource ¬ τ = υ true—as is the case with
¬ a = fd in the example above.

We have been focusing on functors and equations since that is all that mat-
ters for the example, but similar considerations apply to non-logical predicates
and predications of them. In the case of such predicates, it is our rules for clos-
ing gaps insure that we can assign interpretations consistently. If the gap can-
not be closed we know that it does not contain both Pτ …τ and any sentence
¬ Pυ …υ where the corresponding terms are co-aliases. And this means it
never contains both an affirmation and a denial of P of any series of terms
whose corresponding members are in the same alias sets. This means that we
will never be led to require the extension of P to yield two different outputs for
the same input. And the requirements we place on the extensions of non-logi-
cal predicates are designed to insure directly the truth of sentences affirming or
denying the predication of such a predicate, so it is enough to know that our
requirements are consistent to be sure that they will have the desired result.

The procedure we have been following enables us to find a counterexample
lurking in any dead-end open gap, and the safety of our rules tells us that the
same structure will separate the initial premises the derivation from its initial
conclusion. We will generally not go on to confirm that it does since the calcu-

1 n

1 n

lations can be tedious, so the final step in showing that an entailment fails will
be merely to present a counterexample—that is, to describe it using a diagram
or tables.

Now the existence of a structure separating the premises from the conclu-
sion is the test of formal validity of an argument. That is, if there is a structure
that separates an argument’s premises from its conclusion, then there is an in-
tensional interpretation of it producing an actual English argument and a possi-
ble world that will separate the premises from the conclusion of that argument.
This was easy to see in truth-functional logic, but more needs to be said in the
case of the more complex interpretations we are now considering.

We cannot, as in 2.3.1, simply choose the actual world as the possible world
that separates premises from conclusion because a structure, such as the one in
Figure 6.4.3-1 , may have only a limited number of reference values, while the
actual world has many things in it (infinitely many if numbers are counted).
The easiest approach in the present setting (but one that will no longer work in
the next chapter) is to note that our calculations of extensions for the terms we
are interested in remain the same in the presence of further reference values.
When we chose a referential range, we could have added reference values that
did not correspond to alias sets. Such values would not have played a role in
the constraints on the interpretation of non-logical vocabulary or in the calcu-
lations of the values of components of the premises and conclusion of the ar-
gument we are interested in. So they would have neither contributed to nor in-
terfered with the task of separating the premises from the conclusion. The pos-
sibility of adding such further reference values means that we can regard a
structure like that of Figure 6.4.3-1 as a depiction of the way things stand for
certain reference values among others. Given this understanding of a structure,
it is not too hard to concoct intensional interpretations of the non-logical vo-
cabulary that have the right extensions in the actual world. We might, for ex-
ample, choose language describing an illustration of the structure. To capture
the structure of 6.4.3.1, the interpretation of the term a could be the point la-
beled a and the interpretation of P could be [a P-arrow runs from _ to _]. If
we use this sort of interpretation, drawing the structure is a way of making the
actual world separate the argument’s premises from its conclusion.

Glen Helman 18 Jul 2012

1

2

3

6.4.s. Summary
Logical forms (without free variables) may be given semantic values by as-
signing values to the non-logical vocabulary they contain; that is, they can
be given extensions (or intensions) by an extensional (or intensional) in-
terpretation of this vocabulary. The extensions of predicates and functors
are functions that take as input reference values from a referential range R
that must be specified along with an extensional interpretation; the range
and the interpretations of non-logical vocabulary together constitute a struc-
ture for any expressions formed using only the non-logical vocabulary that
is interpreted in the structure. We assume each value of the range is labeled
by an ID.

The extensions of non-logical vocabulary can be represented using tables. In
a more graphic approach, a referential range may be depicted by points in a
plane labeled by their IDs, and further labeling and other devices can depict
extensions of non-logical vocabulary on this range. For example, one-place
predicates may label the points they are true of either individually or by la-
beling a line enclosing them. This set of points is one way of representing
the extension of the predicate. If a predicate has more than one place, its ex-
tension must be a set of ordered pairs , triples, or other n-tuples; these may
be represented by arrows (perhaps with legs) that indicate the order of val-
ues in the n-tuple. We may calculate the extensions that structures give to
expressions by using a table analogous to a truth table, with all the informa-
tion in a structure providing the basis for the calculation of a single row.

Structures are now the appropriate counterexamples to claims of validity. To
build a structure that constitutes a counterexample lurking in a dead-end
gap, we take the alias sets of the gap and choose a range that contains a
value corresponding to each alias set. Then we assign extensions to unana-
lyzed terms and functors so that the reference value each compound term
will be the value corresponding to the term’s alias set. Finally, we assign ex-
tensions to predicates by seeing what terms the resources affirm or deny
these predicates of. Our new rules for closing gaps ensure that these instruc-
tions are consistent and that a structure built in this way will lurk in the
dead-end gap. The safety of the rules for developing gaps insures that it also
lurks in the initial gap; but we will not go on to confirm this, so presenting
a counterexample by describing such a structure will be the final step in
showing that an entailment fails. Such a structure will also form at least a
part of some possible world.

Glen Helman 18 Jul 2012

6.4.x. Exercise questions
1. Each of a, b, and c gives a structure in one of the two sorts of presenta-

tion described in this section—by a diagram or by tables. Present each of
them in the other way.

 a.

⓪ ①

②

F

G

R

 b. τ Fτ
0 T
1 T
2 F

τ Gτ
0 F
1 F
2 T

R 0 1 2
0 T T T
1 F T F
2 F T T

 c. τ Fτ
0 T
1 T
2 F

τ Gτ
0 F
1 T
2 T

τ Hτ
0 T
1 F
2 T

R 0 1 2
0 F T F
1 T F F
2 F T F

2. Calculate a truth value for each of the following sentences on the struc-
ture used as the chief example in this section (see, for example, Figure
6.4.2-7):

 a. (Fa ∨ Gb) → Rab
 b. R(fca)(fac)
 c. fab = fba
3. Use derivations to check each of the claims below; if a claim of entail-

ment fails, use either tables or a diagram to present a counterexample that
lurks in an open gap.

 a. a = a → Fa ⊨ Fa
 b. ¬ (Fa ∧ Fb) ⊨ ¬ Fa → ¬ Fb
 c. a = b ∨ b = a ⊨ a = b ∧ b = a
 d. Fa → a = b, ga = b, Ra(ga) → Fa, F(ga) ⊨ Raa → R(ga)(ga)
 e. a = b → Rac, ¬ a = b → Rbc ⊨ Rbc

For more exercises, use the exercise machine .

Glen Helman 11 Jul 2012

6.4.xa. Exercise answers
1. a. τ Fτ

0 T
1 T
2 F

τ Gτ
0 F
1 T
2 T

R 0 1 2
0 F F F
1 F F T
2 T T T

 b.

⓪ ①

②

F

G

R

 c.

⓪ ①

②

F

GH

R

2. a. (F a ∨ G b) → R a b
F 3 T T 4 Ⓕ F 3 4

 b. R (f c a) (f a c)
Ⓣ 1 0 3 4 3 0

 c. f a b = f b a
0 3 4 Ⓕ 2 4 3

3. a. Without attachment rules:
│a = a → Fa 2
├─
││¬ Fa (2)
│├─

2 MTT││¬ a = a (3)
││●
│├─

3 DC ││⊥ 1
├─

1 IP │Fa

Using attachment rules:
│a = a → Fa 2
├─

1 CE │a = a X,(2)
2 MPP│Fa (3)

│●
├─

3 QED│Fa

 b. │¬ (Fa ∧ Fb) 3
├─
││¬ Fa
│├─
│││Fb (3)
││├─

3 MPT│││¬ Fa
│││○ ¬ Fa,Fb ⊭ ⊥
││├─
│││⊥ 2
│├─

2 RAA││¬ Fb 1
├─

1 CP │¬ Fa → ¬ Fb

range: 1, 2 a b
1 2

τ Fτ
1 F
2 T

①
a

②
bF

¬ (F a ∧ F b) / ¬ F a → ¬ F b
Ⓣ F 1 F T 2 T F 1 Ⓕ F T 2

 c. │a = b ∨ b = a 1
├─
││a = b a—b
│├─
│││●
││├─

3 EC │││a = b 2
││
│││●
││├─

4 EC │││b = a 2
│├─

2 Cnj││a = b ∧ b = a 1
│
││b = a a—b
│├─
│││●
││├─

6 EC │││a = b 5
││
│││●
││├─

7 EC │││b = a 5
│├─

5 Cnj││a = b ∧ b = a 1
├─

1 PC │a = b ∧ b = a

 d. │Fa → a = b 3
│ga = b a, b—ga
│Ra(ga) → Fa 5
│F(ga)
├─
││Raa (6)
│├─
│││¬ R(ga)(ga) (6)
││├─
│││││¬ Fa (5)
││││├─

5 MTT│││││¬ Ra(ga)
│││││○ b=ga,F(ga),Raa,¬ R(ga)(ga),
│││││ b=ga,F(ga),¬ Fa,¬ Ra(ga) ⊭ ⊥
││││├─
│││││⊥ 4
│││├─

4 IP ││││Fa 3
│││
││││a = b a—b—ga
│││├─
││││●
│││├─

6 Nc= ││││⊥ 3
││├─

3 RC │││⊥ 2
│├─

2 IP ││R(ga)(ga) 1
├─

1 CP │Raa → R(ga)(ga)

 range: 1, 2 a b
1 2

τ gτ
1 2
2 1

τ Fτ
1 F
2 T

R 1 2
1 T F
2 F F

① a, g2
R

② b, g1
F

F a→ a = b , g a = b , R a (g a)→ F a , F (g a) / R a a→R (g a) (g a)
F 1 Ⓣ 1 F 2 2 1 Ⓣ 2 F 1 2 1 Ⓣ F 1 Ⓣ 2 1 T 1 1 Ⓕ F 2 1 2 1

 e. │a = b → Rac 3
│¬ a = b → Rbc 2
├─
││¬ Rbc (2),(4)
│├─

2 MTT││a = b a—b, c; (3)
3 MPP││Rac (4)

││●
│├─

4 Nc= ││⊥ 1
├─

1 IP │Rbc

Glen Helman 18 Jul 2012

