
4.2. Arguing from and for alternatives
4.2.0. Overview
Because a disjunction normally says less than its components while a conjunc-
tion says more, the two connectives play very different roles in deductive in-
ference.

4.2.1. Proofs by cases
Since a disjunction says only what is said by both its disjuncts, it entails
only things that both of them entail.

4.2.2. Proving disjunctions
Since a disjunction makes a relatively weak claim, it is easy to state a sound
rule to plan for it, but a safe rule that will cover all cases where it holds is
more complex.

4.2.3. Further examples
There are now many choices to be regarding the order in which rules are ap-
plied and some differences in the length of derivations can result.

4.2.4. The duality of conjunction and disjunction
Conjunction and disjunction are, in a certain formal sense, mirror images of
one another.
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4.2.1. Proofs by cases
The validity of the argument

Sam didn’t  praise the proposal  without granting its
significance

Sam didn’t condemn the proposal without granting its
significance

Sam either praised or condemned the proposal

Sam granted the proposal’s significance.

can be accounted for by the validity of the following two arguments:
Sam didn’t praise the proposal  with-

out granting its significance
Sam  didn’t  condemn  the  proposal

without granting its significance
Sam praised the proposal
Sam  granted  the  proposal’s  signifi-

cance

 Sam didn’t praise the proposal  with-
out granting its significance

Sam  didn’t  condemn  the  proposal
without granting its significance

Sam condemned the proposal
Sam  granted  the  proposal’s  signifi-

cance

Each replaces the disjunctive third premise of the original argument by one of
its  two  components.  This  way  of  establishing  an  entailment  is  sometimes
called a proof by cases. In this example, the two cases are Sam having praised
the proposal and Sam having condemned it. Since the disjunction says all and
only what is common to these two claims, what follows from the disjunction in
isolation or in addition to other premises is what follows from each of these
claims under similar circumstances.

More formally, the idea behind proofs by cases is captured by this principle:

LAW FOR DISJUNCTION AS A PREMISE. Γ, φ ∨ ψ ⊨ χ if and only if both Γ,
φ ⊨ χ and Γ, ψ ⊨ χ (for any set Γ and sentences φ, ψ, and χ).

To see why this law is true note that to separate the members of Γ and φ ∨ ψ
on the one hand from χ on the other, a possible world must make φ ∨ ψ and all
members of Γ true while making χ false. To do this it must make at least one of
φ and ψ true, so it must provide a counterexample to at least one of the argu-
ments Γ, φ / χ and Γ, ψ / χ. So, to say that the original argument is valid is to
say that neither of these latter arguments can have its premises and conclusion
separated—that is, that both are valid.

This  idea appears  in derivations by way of  a  rule we will  call  Proof  by
Cases (PC); it is shown in Figure 4.2.1-1.
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Fig. 4.2.1-1. Developing a derivation by exploiting a disjunction at stage n.

PC divides a gap into two new gaps. Each is a case argument that retains the
original goal but adds one of the components of the disjunction as a supposi-
tion. The function of each supposition is to specify one of the two sorts of case
in which the original disjunction is true. A supposition is required because, al-
though our premises tell us that at least one of the disjuncts is true, we do not
know which that is and the one that is true will vary among the possible worlds
in which the premises are all true.

The safety and soundness (indeed, strictness) of this rule is shown by its ef-
fect on proximate arguments, which follows the pattern of law for disjunction
as a premise understood as a rule for argument trees:

That is, moving left to right, we exploit φ ∨ ψ and thus drop it from the active
resources, and we add suppositions φ and ψ. The goal of the parent gap is car-
ried over to each of its two children. The rule is safe because any counterex-
ample lurking in one of the children is bound to lurk in the parent, too. It must
make the resources of the parent true because φ ∨ ψ is implied by each of φ
and ψ, and the requirement to make χ false remains unchanged as we move be-
tween the parent and the children. Moverover, the rule is strict because any
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counterexample lurking in the parent must, in order to make φ ∨ ψ true, make
at least one of φ and ψ true also, so it will lurk in at least one of the children.

As in other cases, the use of numerical annotations in PC reflects the corre-
sponding rule for conclusion trees, which is shown here as a transition from
one stage in the construction of the tree to the next.

→

The conclusion χ is based on three premises (one that we have found among
the resources and two more we plan to reach), so in derivations the stage num-
ber appears on the right of three lines, the the disjunction that is exploited and
the goals of the two new scope lines.

Here is a derivation which uses derivation rule to provide a proof for the ex-
ample with which we began.

│¬ (P ∧ ¬ G) (4)
│¬ (C ∧ ¬ G) (7)
│P ∨ C 1
├─
││P (3)
│├─
│││¬ G (3)
││├─

3 Adj│││P ∧ ¬ G X,(4)
│││●
││├─

4 Nc │││⊥ 2
│├─

2 IP ││G 1
│
││C (6)
│├─
│││¬ G (6)
││├─

6 Adj│││C ∧ ¬ G X,(7)
│││●
││├─

7 Nc │││⊥ 5
│├─

5 IP ││G 1
├─

1 PC │G
C: Sam condemned the proposal; G: Sam granted the proposal’s signifi-

cance; P: Sam praised the proposal

In the two case arguments, we suppose first that Sam praised the proposal and

φ ∨ ψ

?

χ

φ ∨ ψ
φ ?
χ

ψ ?
χ

χ
PC



then that he condemned it and, in each case, we show that he granted the pro-
posal’s  significance (by showing that  he could not  have failed to grant  it).
Since at least one of these two cases must be true whenever the premises are
all true, we know that the conclusion must be true also.

The rule for conclusion trees displayed above shows that PC represents a
new function for suppositions. Like Lem (or the special case LFR) on the one
hand and RAA and IP on the other, we use suppositions in PC to consider the
consequences of claims without asserting them. But, while we did this in RAA
and IP in order to show the suppositions were false and in Lem and LFR in or-
der to consider the proof of a claim independently of the investigation of its
consequences, we do it here to consider separately the consequences of two al-
ternatives without deciding which of the two is true.

The rule for conclusion trees also makes it clear that, apart from the separate
consideration of φ and ψ, the form of PC is much like that of Lem. But there
is an important difference in the way these rules are employed in proofs. The
rule Lem would be used to initiate the search for a proof of its first premise.
On the other hand, while the conclusion-tree rule PC might be used in this
way, we use PC in derivations instead to derive consequences from a premise
φ ∨ ψ that has already been established, and that aspect of the derivation rule
is better reflected in the rule for argument trees shown earlier, which displays
less analogy with the argument-tree rule for Lem.
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4.2.2. Proving disjunctions
Now let us look at disjunctions as conclusions. An entailment Γ ⊨ φ ∨ ψ will
hold if and only if φ ∨ ψ is true in every possible world in which all members
of Γ are true. But this is to say that at least one of φ and ψ is true in every such
world, and that is a way of saying that Γ renders φ and ψ jointly exhaustive. So
we can state the following principle:

Γ ⊨ φ ∨ ψ if and only if Γ ⊨ φ, ψ

Since the right-hand side has two alternatives, this is not a law concerning
entailment alone, and we will not take the principle in this form as our account
of the role of disjunctions as conclusions. However, we can use the basic law
for relative exhaustiveness to restate the right-hand side as claim of entailment.
Indeed we have two ways of doing that. If φ and φ′ are contradictory, we can
say

Γ ⊨ φ ∨ ψ if and only if Γ, φ′ ⊨ ψ

and if ψ and ψ′ are contradictory, we can say

Γ ⊨ φ ∨ ψ if and only if Γ, ψ′ ⊨ φ

In short, a disjunction is a valid conclusion from premises Γ  if and only if
adding to our premises a sentence contradictory to one disjunct enables us to
validly conclude the other disjunct.

In stating a principle for disjunction we will limit ourselves to cases where a
sentence and its negation are the pair of contradictory sentences. But, when the
disjuncts are already negative, that leaves us with two choices for each of the
pairs φ and φ′ and ψ and ψ′ since each of φ′ and ψ′ might be the result of either
adding or dropping a negation. To avoid stating four principles to cover each
of these possibilities, we will introduce some notation to capture the general
idea of obtaining a contradictory sentence by either adding or dropping a nega-
tion. (We will refer to the latter as de-negation.) Let the sentence ¬  φ be the
result of negating φ with an optional added step of deleting a double negation
if φ was already negative. Then ¬  φ will stand for ¬ φ when φ is not a nega-
tion and, when φ is the negation ¬ χ, it will stand for either ¬ ¬ χ or χ. That is,
¬  φ is the result of either negating or, perhaps, de-negating φ, which means
that ¬  φ will either be the negation of φ or have φ as its negation.

This means that ¬  φ and φ form a contradictory pair consisting of a sen-
tence and its negation in one order or the other, so we need only two clauses to
formulate a principle to account for conclusions that are disjunctions:

±

±

±

±

±

LAW FOR DISJUNCTION AS A CONCLUSION. (i)  Γ  ⊨  φ  ∨  ψ  if  and only if
Γ, ¬  φ ⊨ ψ, and (ii) Γ ⊨ φ ∨ ψ if and only if Γ, ¬  ψ ⊨ φ (for any set Γ
and sentences φ, ψ, and χ).

When these are implemented as derivation rules, they give us two ways of
planning for a disjunctive goal. The two rules are shown as alternative devel-
opments in Figure 4.2.2-1. We will refer to both forms of the rule as Proof of
Exhaustion (PE) since it is a way of showing that φ and ψ, taken together, ex-
haust all possibilities left open by the premises.
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Fig. 4.2.2-1. Alternative ways of developing a derivation by planning for a dis-
junction at stage n.

In each way of developing a gap, we set one of the components of the disjunc-
tion as a new goal and add the negation or de-negation of the other component
as a supposition. In each way of developing a gap, we set one of the compo-
nents of the disjunction as a new goal.

Both forms of planning will lead to the same answer in the end, but one or
the other may be more efficient in a particular case. There is no simple way of
predicting which choice is best but the following rules of thumb may help:

(i) if only one component is a negation, choose it to form the supposition
(by dropping its negation);

(ii) if only one component is a non-negative compound choose it as the goal;
(iii) if only one component seems likely to figure in closing the gap and it is

not a negation, choose it as the goal.

In many cases none of these suggestions will apply; but, in most such cases,
neither one of the two forms of the rule is better than the other.

As an example of this rule, consider the argument below, understanding X
was out to be the denial of X was home. The validity of this argument can be
established by the English derivation whose first stage is shown at the right.

± ±

± ±

 Ann and Bill were not both home with-
out the car being in the driveway

The car was not in the driveway

Either Ann or Bill was out

 │¬ ((A ∧ B) ∧ ¬ C)
│¬ C
├─
││A
│├─
││
│├─
││¬ B 1
├─

1 PE│¬ A ∨ ¬ B

The overall form is that of a argument that we will call “hypothetical” (for rea-
sons discussed below) in which we suppose that Ann was at home (a supposi-
tion that is one of the two possibilities for ¬  ¬ A) and establish under this sup-
position that Bill was out. This shows the connection between Ann being out
and Bill being out that we claim when we state, outside the scope of the suppo-
sition, that at least one was out.

Notice that if we continue the derivation
│¬ ((A ∧ B) ∧ ¬ C)
│¬ C
├─
││A
│├─
│││B
││├─
│││
││├─
│││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B
we plan for the goal ¬ B by supposing B for reductio. And this example illus-
trates the different functions of the two sorts of supposition. We suppose that
Ann is home in order to show that ¬ B (i.e., Bill is out) is true in all possible
worlds in which ¬ A (i.e., Ann is out) is false. We go on to show that ¬ B is
true in these cases by showing that to suppose further that B would rule out all
possibilities—i.e., that this supposition would be absurd when added to our
premises and the supposition A. From one point of view, both suppositions are
merely added assumptions. But we add the first in order to show that to accept
the second would be to go too far. That is, we add the second in order to show
that we cannot accept it given the first, and we add the first to show that the
second is related to it in this way.

To complete the derivation, we might exploit the first premise by CR, and
this is the only way to proceed using basic rules. Doing this would make the
conjunction (A ∧  B) ∧  ¬ C our goal; and, since its components are all re-
sources, it is clear that the gap would close. But, seeing this, we might choose

±



instead to derive that conjunction by Adj.
│¬ ((A ∧ B) ∧ ¬ C) (5)
│¬ C (4)
├─
││A (3)
│├─
│││B (3)
││├─

3 Adj │││A ∧ B (4)
4 Adj │││(A ∧ B) ∧ ¬ C (5)

│││●
││├─

5 Nc │││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B
Either way we are completing the reductio, in one case under the guidance of
the rules and in the other under our own direction.

As noted above, the supposition in PE may be described as hypothetical, and
this indicates the role it plays, a fourth role on top of those we have seen in
Lem and LFR, in RAA and IP, and in PC. In RAA and IP, we make supposi-
tions with the aim of showing that they are false. In Lem and LFR, we make a
supposition to consider separately the consequences of a lemma and whether
the lemma itself true. In PC, we make a pair of suppositions, having already
shown that at least one is true. In PE on the other hand, a supposition is made
with no expectation of either truth or falsity. It is made instead simply to estab-
lish a connection between it and some other claim. As we argue within the
scope of the supposition, we are making a hypothetical argument, an argument
made “under a hypothesis.” The conclusion we draw when we discharge the
supposition states a connection between the hypothesis and the conclusion of
the hypothetical argument. This statement no longer falls under the supposi-
tion, and that can be indicated by saying that it is stated categorically.

The two forms of PE are shown below as patterns of argument for conclu-
sion trees.

In each case, the disjunction is concluded from one of its components, but the
component has been concluded under the supposition that the other is false.
This supposition is discharged when drawing the conclusion, and the weakness
of the conclusion relative to the premise compensates for its loss. For example,

¬  φ±

ψ

φ ∨ ψ
PE

¬  ψ±

φ

φ ∨ ψ
PE

in the second argument the premise φ has been shown to cover a range of pos-
sibilities that are limited by the supposition to ones in which ψ is false. And
the conclusion is weakened in a way that no longer requires this limitation
since, by adding to the premise the qualification or ψ, it explicitly covers cases
where ψ is true. What is a hypothetical assertion of φ in the premise becomes a
categorical assertion of ψ ∨ φ in the conclusion.

There is some danger of getting tangled in the terminology here, so let’s
pause and look at it more closely. The terms hypothetical and categorical
derive from an ancient classification of sentences into the “categorical,” the
“disjunctive,”  and  the  “hypothetical.”  Since  disjunctions  and  “hypothetical
sentences” (the conditionals to be studied in the next  chapter)  are ways of
hedging claims, the term categorical has acquired the meaning ‘unhedged’.
Now the disjunctive goal to which we applied this term above certainly hedges
each of its components, so it does not state them categorically. But, while sen-
tences in the hypothetical argument are stated only “under a hypothesis”—that
is, under the supposition of the hypothetical argument—the disjunction follow-
ing the argument is no longer hedged in this way. That means it is stated cate-
gorically with respect to that supposition (though it may still fall in the scope
of earlier ones). In short, when the scope line of a hypothetical argument ends,
we move from hedged assertion of some claim (in the English example, the as-
sertion of Bill was out under the hypothesis Ann was not out) to unhedged
assertion of a claim that incorporates a hedge (i.e., Either Ann or Bill was
out in the example).
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4.2.3. Further examples

Both disjunction rules are illustrated
by  the  derivation  at  the  right,  in
which  one  grouping  of  a  three-part
disjunction  is  shown  to  entail  the
other. Choices between the two ways
of  planning  for  a  goal  disjunction
were made at stages 2, 3, 5, 6, and 7
in  accordance  with  the  rules  of
thumb  given  above.  Each  choice
helped  to  shorten  the  derivation
—though only by a  few steps.  The
derivation  is  contrived  to  provide
several  examples  of  this  rule;  we
might  have  instead  planned  for  the
initial goal at stage 1 before exploit-
ing the premise rather than planning
for it later in each of three gaps.

 │A ∨ (B ∨ C) 1
├─
││A (4)
│├─
│││¬ C
││├─
││││¬ B
│││├─
││││●
│││├─

4 QED ││││A 3
││├─

3 PE │││A ∨ B 2
│├─

2 PE ││(A ∨ B) ∨ C 1
│
││B ∨ C 5
│├─
│││B (8)
││├─
││││¬ C
│││├─
│││││¬ A
││││├─
│││││●
││││├─

8 QED │││││B 7
│││├─

7 PE ││││A ∨ B 6
││├─

6 PE │││(A ∨ B) ∨ C 5
││
│││C (10)
││├─
││││¬ (A ∨ B)
│││├─
││││●
│││├─

10 QED││││C 9
││├─

9 PE │││(A ∨ B) ∨ C 5
│├─

5 PC ││(A ∨ B) ∨ C 1
├─

1 PC │(A ∨ B) ∨ C

The two derivations below illustrate the scale of the difference you can ex-
pect a choice between the two forms of PE to make.

│B (3)
├─
││¬ A
│├─
│││¬ C
││├─
│││●
││├─

3 QED│││B 2
│├─

2 PE ││B ∨ C 1
├─

1 PE │A ∨ (B ∨ C)

 │B (5)
├─
││¬ (B ∨ C) 3
│├─
│││¬ A
││├─
│││││¬ C
││││├─
│││││●
││││├─

5 QED│││││B 4
│││├─

4 PE ││││B ∨ C 3
││├─

3 CR │││⊥ 2
│├─

2 IP ││A 1
├─

1 PE │A ∨ (B ∨ C)

Each chooses a different way of planning for the initial goal at stage 1. Notice
that in the second, which makes the less efficient choice, we are led back to the
goal B ∨ C in a couple of stages.
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4.2.4. The duality of conjunction and disjunction
While a conjunction and a disjunction formed from the same components are
certainly  not  contradictories,  the  two  connective  are  opposites  in  another
sense, the one for which we have used the term dual.

This duality can be expressed in one way by saying that when conjunction
and disjunction are applied to pairs of sentences whose corresponding compo-
nents are contradictory, the results are contradictory. For example, let us again
take X was home and X was out to be contradictories. Then note that to get a
sentence contradictory to Ann and Bill were home, we cannot take Ann and
Bill were out since both would be false if one of Ann and Bill was home and
the other out. To get a contradictory to we need to cover both of those possibil-
ities as well, and Ann or Bill was out will do this. That is, Ann and Bill were
home is contradictory to Ann or Bill was out and, similarly, Ann or Bill was
home is contradictory to Ann and Bill were out. And this is to say that ¬ Ann
and Bill  were home  ≃  Ann or Bill  was out  and that  ¬ Ann or Bill  was
home ≃ Ann and Bill were out.

In cases of contradictoriness captured by the ¬  notation, these patterns of
equivalence are stated in the following principles:

DE MORGAN’S LAWS. The denial of a conjunction amounts to a disjunction
of denials, and the denial of a disjunction amounts to a conjunction of de-
nials. That is,

¬ (φ ∧ ψ) ≃ ¬  φ ∨ ¬  ψ
¬ (φ ∨ ψ) ≃ ¬  φ ∧ ¬  ψ

Although these laws are named after Augustus De Morgan (1806-1871), they
were known well before his time.

Another way to see the duality of conjunction and disjunction is to look at
the principles of relative exhaustiveness. The table below follows the pattern
of the one given for ⊥ and ⊤ in 1.4.8 .

as a premise as an alternative
Conjunction Γ, φ ∧ ψ ⊨ Σ iff Γ, φ, ψ ⊨ Σ Γ ⊨ φ ∧ ψ, Σ iff

both Γ ⊨ φ, Σ and Γ ⊨ ψ, Σ
Disjunction Γ, φ ∨ ψ ⊨ Σ iff

both Γ, φ ⊨ Σ and Γ, ψ ⊨ Σ
Γ ⊨ φ ∨ ψ, Σ iff Γ ⊨ φ, ψ, Σ

(Here iff is used as an abbreviation of if and only if.) Notice that the analogy
between the upper left and lower right and between the lower left and upper
right. That is, conjunction behaves as a premise much as disjunction behaves

±

± ±

± ±

as an alternative and disjunction behaves as premise much as conjunction be-
haves as an alternative.

Since ⊥ and ⊤ are paired as duals and so are conjunction and disjunction,
you might wonder about negation. In fact, it is dual to itself. If we negate each
of a pair of contradictory sentences, the results are contradictory; that is, we do
not need to apply different operations to the two contradictory sentences in or-
der for the results to be contradictory. And the behavior of a negation as a
premise is analogous to its behavior as an alternative.

Γ, ¬ φ ⊨ Σ iff Γ ⊨ φ, Σ
Γ ⊨ ¬ φ, Σ iff Γ, φ ⊨ Σ

Having a negated premise or alternative is equivalent to having the unnegated
sentence in the opposite role.

The term duality points to a certain sort of two-for-one principle. It is used
when there is some way of associating vocabulary items as pairs so that replac-
ing one member of a pair by the other throughout any truth will yield another
truth. In our case, we have the associations

premise alternative
⊥ ⊤

negation negation
conjunction disjunction

So, for example (and to deal only with informal statements of the princi-
ples), the principle

A conjunction as an assumption may be replaced by its components as
independent assumptions

(the upper left in the table of principles for conjunction and disjunction above)
turns into

A disjunction as an alternative may be replaced by its components as
independent alternatives

(the lower right in that table). And the principle

A negation as an assumption may be replaced by its immediate com-
ponent as an alternative

(the first of the principles for negation displayed above) turns into

A negation as an alternative may be replaced by its immediate com-
ponent as an assumption

(the second of those principles). We will see more examples of such transfor-

mations in the next section but we have already seen some further ones: each
of the two forms of De Morgan’s laws may be transformed into the other by
this association.

Since these transformations treat assumptions and alternatives in a parallel
way, not all will apply to entailment, which allows multiple premises but only
a single alternative. However, we have also seen that principles for relative ex-
haustiveness may be transformed still further into principles of entailment by
the law for alternatives via contradictory assumptions .
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4.2.s. Summary
A disjunction φ ∨ ψ is false only when its disjuncts are both false, and it
thus says only what both of them say. The law for disjunction as a premise
tell us that we can establish a conclusion using such a premise by showing
that it is entailed by each of the disjuncts (given our other premises). This
way of exploiting a disjunction is known as an proof by cases  and it appears
in our system of derivations as the rule Proof by Cases (PC)  that leads us to
divide a gap into two case arguments , each of which takes over the original
goal and adds one of the two disjuncts as a supposition.

To show that a disjunction is a valid conclusion, we must show that its dis-
juncts are rendered jointly exhaustive by the premises. We can do this by
showing that one of the disjuncts will follow if we add the contradictory of
the other to our premises. We use the notation ¬  φ to indicate the result of
either negating or de-negating  φ. The law for disjunction as a conclusion
then tells us that we can conclude a disjunction if we can conclude one dis-
junct provided we take the negation or de-negation of the other disjunct as a
premise. The rule implementing this idea is Proof of Exhaustion ; it enables
us to conclude a disjunction from an argument that may be called hypothet-
ical  since it bases a disjunct on an assumption (of the negation or de-nega-
tion of the other disjunct) that we may not be prepared to assert categori-
cally. It does not matter for the soundness or safety of PE which disjunct
figures as the goal of this hypothetical argument and which is negated or
de-negated in its supposition.

Derivations, especially those that have a disjuction as a goal as well as a
premise can often be developed in different ways. Some of these can be sig-
nificantly longer than others but the choice  between forms of PE will usu-
ally have only a limited impact on the length.

Conjunction and disjunction are opposite in the sense of being dual . One
manifestation of this relation is in De Morgan’s laws , which tell how to re-
state the denial of a conjunction or disjunction as an assertion of the other
form of compound. Another manifestation is a pattern in laws of relative ex-
haustiveness which allows us to interchange conjunctions and disjunctions if
at the same time we interchange ⊥ and ⊤ and also premises and alternatives.
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4.2.x. Exercises
1. Use derivations to establish each of the claims of entailment and equiva-

lence  shown  below.  (Remember  that  claims  of  equivalence  require
derivations in both directions.)
a. A ∧ B ⊨ A ∨ B
b. A ∧ B ⊨ B ∨ C
c. A ∨ B, ¬ A ⊨ B
d. A ∨ (A ∧ B) ⊨ A
e. A ∨ B, ¬ (A ∧ C), ¬ (B ∧ C) ⊨ ¬ C
f. A ∧ (B ∨ C) ⊨ (A ∧ B) ∨ C
g. A ∨ B, C ⊨ (A ∧ C) ∨ (B ∧ C)
h. A ∨ B, ¬ A ∨ C ⊨ B ∨ C
i. A ≃ (A ∧ B) ∨ (A ∧ ¬ B)

2. Use derivations to establish each of the claims of equivalence below.
a. A ∨ A ≃ A
b. A ∨ B ≃ B ∨ A
c. A ∨ (B ∨ C) ≃ (A ∨ B) ∨ C
d. A ∨ (B ∧ ¬ B) ≃ A
e. ¬ (A ∨ B) ≃ ¬ A ∧ ¬ B
f. ¬ (A ∧ B) ≃ ¬ A ∨ ¬ B

3. Use derivations to check each of the claims below; if a derivation indi-
cates that a claim fails, confirm a counterexample that lurks in an open
gap.
a. A ∨ B, A ⊨ ¬ B
b. A ∨ (B ∧ C) ≃ (A ∨ B) ∧ C
c. ¬ (A ∨ B) ≃ ¬ A ∨ ¬ B

For more exercises, use the exercise machine .
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4.2.xa. Exercise answers

1. a. │A ∧ B 1
├─

1 Ext │A
1 Ext │B (3)

│
││¬ A
│├─
││●
│├─

3 QED││B 2
├─

2 PE │A ∨ B

b. │A ∧ B 1
├─

1 Ext │A
1 Ext │B (3)

│
││¬ C
│├─
││●
│├─

3 QED││B 2
├─

2 PE │B ∨ C

c. │A ∨ B 1
│¬ A (3)
├─
││A (3)
│├─
│││¬ B
││├─
│││●
││├─

3 Nc │││⊥ 2
│├─

2 IP ││B 1
│
││B (4)
│├─
││●
│├─

4 QED││B 1
├─

1 PC │B

d. │A ∨ (A ∧ B) 1
├─
││A (2)
│├─
││●
│├─

2 QED││A 1
│
││A ∧ B 3
│├─

3 Ext ││A (4)
3 Ext ││B

││●
│├─

4 QED││A 1
├─

1 PC │A

e. │A ∨ B 2
│¬ (A ∧ C) 3
│¬ (B ∧ C) 7
├─
││C (6),(10)
│├─
│││A (5)
││├─
│││││●
││││├─

5 QED │││││A 4
││││
│││││●
││││├─

6 QED │││││C 4
│││├─

4 Cnj ││││A ∧ C 3
││├─

3 CR │││⊥ 2
││
│││B (9)
││├─
│││││●
││││├─

9 QED │││││B 8
││││
│││││●
││││├─

10 QED│││││C 8
│││├─

8 Cnj ││││B ∧ C 7
││├─

7 CR │││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA │¬ C

f. │A ∧ (B ∨ C) 1
├─

1 Ext │A (5)
1 Ext │B ∨ C 2

│
││B (6)
│├─
│││¬ C
││├─
││││●
│││├─

5 QED││││A 4
│││
││││●
│││├─

6 QED││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 PE ││(A ∧ B) ∨ C 2
│
││C (8)
│├─
│││¬ (A ∧ B)
││├─
│││●
││├─

8 QED│││C 7
│├─

7 PE ││(A ∧ B) ∨ C 2
├─

2 PC │(A ∧ B) ∨ C

g. │A ∨ B 1
│C (5),(9)
├─
││A (4)
│├─
│││¬ (B ∧ C)
││├─
││││●
│││├─

4 QED││││A 3
│││
││││●
│││├─

5 QED││││C 3
││├─

3 Cnj │││A ∧ C 2
│├─

2 PE ││(A ∧ C) ∨ (B ∧ C) 1
│
││B (8)
│├─
│││¬ (A ∧ C)
││├─
││││●
│││├─

8 QED││││B 7
│││
││││●
│││├─

9 QED││││C 7
││├─

7 Cnj │││B ∧ C 6
│├─

6 PE ││(A ∧ C) ∨ (B ∧ C) 1
├─

1 PC │(A ∧ C) ∨ (B ∧ C)

h. │A ∨ B 1
│¬ A ∨ C 2
├─
││A (5)
│├─
│││¬ A (5)
││├─
││││¬ B
│││├─
│││││¬ C
││││├─
│││││●
││││├─

5 Nc │││││⊥ 4
│││├─

4 IP ││││C 3
││├─

3 PE │││B ∨ C 2
││
│││C (7)
││├─
││││¬ B
│││├─
││││●
│││├─

7 QED││││C 6
││├─

6 PE │││B ∨ C 2
│├─

2 PC ││B ∨ C 1
│
││B (9)
│├─
│││¬ C
││├─
│││●
││├─

9 QED│││B 8
│├─

8 PE ││B ∨ C 1
├─

1 PC │B ∨ C



i. │A (3),(7)
├─
││¬ (A ∧ B) 5
│├─
│││●
││├─

3 QED│││A 2
││
││││B (8)
│││├─
││││││●
│││││├─

7 QED││││││A 6
│││││
││││││●
│││││├─

8 QED││││││B 6
││││├─

6 Cnj │││││A ∧ B 5
│││├─

5 CR ││││⊥ 4
││├─

4 RAA│││¬ B 2
│├─

2 Cnj ││A ∧ ¬ B 1
├─

1 PE │(A ∧ B) ∨ (A ∧ ¬ B)

 │(A ∧ B) ∨ (A ∧ ¬ B) 1
├─
││A ∧ B 2
│├─

2 Ext ││A (3)
2 Ext ││B

││●
│├─

3 QED││A 1
│
││A ∧ ¬ B 4
│├─

4 Ext ││A (5)
4 Ext ││¬ B

││●
│├─

5 QED││A 1
├─

1 PC │A

2. a. │A ∨ A 1
├─
││A (2)
│├─
││●
│├─

2 QED││A 1
│
││A (3)
│├─
││●
│├─

3 QED││A 1
├─

1 PC │A

 │A (2)
├─
││¬ A
│├─
││●
│├─

2 QED││A 1
├─

1 PE │A ∨ A

b. │A ∨ B 1
├─
││A (3)
│├─
│││¬ B
││├─
│││●
││├─

3 QED│││A 2
│├─

2 PE ││B ∨ A 1
│
││B
│├─
│││¬ A (5)
││├─
│││●
││├─

5 QED│││B 4
│├─

4 PE ││B ∨ A 1
├─

1 PC │B ∨ A

 │B ∨ A 2
├─
││¬ A (5)
│├─
│││B (3)
││├─
│││●
││├─

3 QED│││B 2
││
│││A (5)
││├─
││││¬ B
│││├─
││││●
│││├─

5 Nc ││││⊥ 4
││├─

4 IP │││B 2
│├─

2 PC ││B 1
├─

1 PE │A ∨ B

 c. │(A ∨ B) ∨ C 3
├─
││¬ A (6)
│├─
│││¬ B (8)
││├─
││││A ∨ B 4
│││├─
│││││A (6)
││││├─
││││││¬ C
│││││├─
││││││●
│││││├─

6 Nc ││││││⊥ 5
││││├─

5 IP │││││C 4
││││
│││││B (8)
││││├─
││││││¬ C
│││││├─
││││││●
│││││├─

8 Nc ││││││⊥ 7
││││├─

7 IP │││││C 4
│││├─

4 PC ││││C 3
│││
││││C (9)
│││├─
││││●
│││├─

9 QED││││C 3
││├─

3 PC │││C 2
│├─

2 PE ││B ∨ C 1
├─

1 PE │A ∨ (B ∨ C)

This is the second of the two derivations needed;
the first appears in 4.2.3 . In that one, disjunctive re-
sources  are  exploited before  disjunctive goals  are
planned for while the derivation at the left here il-
lustrates the opposite approach.

 d. │A ∨ (B ∧ ¬ B) 1
├─
││A (2)
│├─
││●
│├─

2 QED││A 1
│
││B ∧ ¬ B 3
│├─

3 Ext ││B (5)
3 Ext ││¬ B (5)

││
│││¬ A
││├─
│││●
││├─

5 Nc │││⊥ 4
│├─

4 IP ││A 1
├─

1 PC │A

 │A (2)
├─
││¬ (B ∧ ¬ B)
│├─
││●
│├─

2 QED││A 1
├─

1 PE │A ∨ (B ∧ ¬ B)

 e. │¬ (A ∨ B) 3,7
├─
│││A (5)
││├─
│││││¬ B
││││├─
│││││●
││││├─

5 QED│││││A 4
│││├─

4 PE ││││A ∨ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA││¬ A 1
│
│││B (9)
││├─
│││││¬ A
││││├─
│││││●
││││├─

9 QED│││││B 8
│││├─

8 PE ││││A ∨ B 7
││├─

7 CR │││⊥ 6
│├─

6 RAA││¬ B 1
├─

1 Cnj │¬ A ∧ ¬ B

 │¬ A ∧ ¬ B 1
├─

1 Ext │¬ A (4)
1 Ext │¬ B (5)

│
││A ∨ B 3
│├─
│││A (4)
││├─
│││●
││├─

4 Nc │││⊥ 3
││
│││B (5)
││├─
│││●
││├─
│││⊥ 3
│├─

3 PC ││⊥ 2
├─

2 RAA│¬ (A ∨ B)

 f. │¬ (A ∧ B) 3
├─
││A (5)
│├─
│││B (6)
││├─
│││││●
││││├─

5 QED│││││A 4
││││
│││││●
││││├─

6 QED│││││B 4
│││├─

4 Cnj ││││A ∧ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B

 │¬ A ∨ ¬ B 3
├─
││A ∧ B 2
│├─

2 Ext ││A (4)
2 Ext ││B (5)

││
│││¬ A (4)
││├─
│││●
││├─

4 Nc │││⊥ 3
││
│││¬ B (5)
││├─
│││●
││├─

5 Nc │││⊥ 3
│├─

3 PC ││⊥ 1
├─

1 RAA│¬ (A ∧ B)

3. a. │A ∨ B 2
│A
├─
││B
│├─
│││A
││├─
│││○ A, B ⊭ ⊥
││├─
│││⊥ 2
││
│││B
││├─
│││○ A, B ⊭ ⊥
││├─
│││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA│¬ B

A B A ∨ B , A / ¬ B
T T Ⓣ Ⓣ Ⓕ

 b. │A ∨ (B ∧ C) 3,8
├─
│││¬ A (5)
││├─
││││A (5)
│││├─
│││││¬ B
││││├─
│││││●
││││├─

5 Nc │││││⊥ 4
│││├─

4 IP ││││B 3
│││
││││B ∧ C
│││├─

6 Ext ││││B 7
6 Ext ││││C

││││●
│││├─

7 QED ││││B 3
││├─

3 PC │││B 2
│├─

2 PE ││A ∨ B 1
│
│││A
││├─
││││¬ C
│││├─
││││○ A, ¬ C ⊭ ⊥
│││├─
││││⊥ 9
││├─

9 IP │││C 8
││
│││B ∧ C 10
││├─

10 Ext │││B
10 Ext │││C 11

│││●
││├─

11 QED│││C 8
│├─

8 PC ││C 1
├─

1 Cnj │(A ∨ B) ∧ C

 Since  entailment  fails  in  one  direction,
equivalence must fail,  so a second deriva-
tion  for  entailment  in  the  other  direction
need  not  be  pursued;  but  that  entailment
does hold, as is shown below.

│(A ∨ B) ∧ C 1
├─

1 Ext │A ∨ B 2
1 Ext │C (8)

│
││A (4)
│├─
│││¬ (B ∧ C)
││├─
│││●
││├─

4 QED│││A 3
│├─

3 PE ││A ∨ (B ∧ C) 2
│
││B (7)
│├─
│││¬ A
││├─
││││●
│││├─

7 QED││││B 6
│││
││││●
│││├─

8 QED││││C 6
││├─

6 Cnj │││B ∧ C 5
│├─

5 PE ││A ∨ (B ∧ C) 2
├─

2 PC │A ∨ (B ∧ C)
Each of the following lurks in the one open
gap:

A B C A ∨ (B ∧ C) / (A ∨ B) ∧ C
T T F Ⓣ F T Ⓕ
T F F Ⓣ F T Ⓕ



 c. │¬ (A ∨ B) 3
├─
││A (5)
│├─
│││B
││├─
│││││¬ B
││││├─
│││││●
││││├─

5 QED│││││A 4
│││├─

4 PE ││││A ∨ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B

The following counterexamples
lurk in the first and second open
gap, respectively:
A B ¬ A ∨ ¬ B / ¬ (A ∨ B)
F T T Ⓣ F Ⓕ T
T F F Ⓣ T Ⓕ T

 │¬ A ∨ ¬ B 2
├─
││A ∨ B 3,5
│├─
│││¬ A (4)
││├─
││││A (4)
│││├─
││││●
│││├─

4 Nc ││││⊥ 3
│││
││││B
│││├─
││││○ ¬ A, B ⊭ ⊥
│││├─
││││⊥ 3
││├─

3 PC │││⊥ 2
││
│││¬ B (6)
││├─
││││A
│││├─
││││○ A, ¬ B ⊭ ⊥
│││├─
││││⊥ 5
│││
││││B (6)
│││├─
││││●
│││├─

6 Nc ││││⊥ 5
││├─

5 PC │││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA│¬ (A ∨ B)
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