
3.3. Negations as premises
3.3.0. Overview
A second group of rules for negation interchanges the roles of an affirmative
sentence and its negation.

3.3.1. Indirect proof
The basic principles for negation describe its role as a premise only in re-
ductio arguments but a reductio is always available as an argument of last
resort.

3.3.2. Using lemmas to complete reductios
The role negative resources play will be to contradict other sentences; since
what they contradict must often be introduced as a lemma, a use of lemmas
is built into the rule for exploiting negative resources.

3.3.3. More examples
These new rules permit some new approaches to entailments that could be
established using the last section’s rule; but they also support some further
entailments.
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3.3.1. Indirect proof
The last section pursued consequences of the law for negation as a conclusion.
The rules of this section will implement the other basic law for negation, the
law for it as a premise:

Γ, ¬ φ ⊨ ⊥ if and only if Γ ⊨ φ

This says that a negation is ¬ φ inconsistent with a set Γ if and only if the sen-
tence φ is entailed by that set.

There are several lessons we can learn from this law. First, the only-if-state-
ment tells us that negative conclusions are not the only ones that can be estab-
lished by way of reductio arguments, for it says that an entailment Γ ⊨ φ must
hold if the reductio Γ, ¬ φ ⊨ ⊥ holds. Further, the if-statement tells us in part
that such an approach is safe, that the reductio is valid whenever the argument
we wish to support by it is valid. But if-statement tells us more. Notice that φ
is just the sort of resource that would enable us to complete a reductio that has
¬ φ as a premise. The if-claim above tells us that, if a reductio with ¬ φ as a
premise can be completed at all, we would be able to validly conclude φ as a
lemma—and that we could do so without using ¬ φ itself as a premise. This
further lesson will provide the basis for exploiting negative resources. How-
ever, its full application depends on the broader use of reductio arguments sup-
ported by the other two lessons, and that is what we will consider first.

Here is an example of this broader use of reductios. If we take No one is
home  to  be  the  negation  ¬  someone is  home,  the  law for  negation  as  a
premise says we can rest the validity of the left-hand argument below on the
validity of the right-hand argument.

If no one was out, the car was in
the driveway

The car wasn’t in the driveway

Someone was out

 If no one was out,  the car was in
the driveway

The car wasn’t in the driveway
No one was out

⊥

The right-hand argument depends in part on the logical properties of if; but, as
far as negation is concerned, it depends on only the fact that a sentence and its
negation are mutually exclusive.

The fact that they are mutually exclusive also supports the entailment ¬ ¬ φ,
¬ φ ⊨ ⊥. If we apply the law for negation as a premise to this entailment, we
get the principle ¬ ¬ φ ⊨ φ. Moreover, the latter principle can be combined
with the law for negation as a conclusion to establish the law for negation as a
premise. So the further logical properties of negation that are captured by the

law for negation as a premise can be summarized in the principle that a double
negation entails the corresponding positive claim.

This  principle  is  one  that  was  rejected  by  Brouwer  in  his  intuitionistic
mathematics. And one of his chief reasons for rejecting it was that it would al-
low us to draw a conclusion of the form Something has the property P
when the corresponding claim Nothing has the property P was inconsistent
with our premises, and that is just the sort of thing that was done in the exam-
ple above. His concern with this is that it would enable us to conclude Some-
thing has the property P in cases where we were unable, even in principle,
to provide an actual example of a thing with that property P. Brouwer did not
object  to such an argument in ordinary reasoning about the physical  world
(like the example above); but he held that, in reasoning concerning infinite
mathematical structures, we were not reasoning about an independently exist-
ing realm of objects but instead about procedures for constructing abstract ob-
jects and that we had no business claiming the existence of such objects with-
out having procedures enabling us to construct them. Brouwer’s concerns may
not lead you to question the law for negation as a premise; but they highlight
the indirectness of supporting a positive conclusion by an argument concern-
ing its denial. This aspect of these arguments is reflected in a common term for
them, indirect proofs.

Although we will employ indirect proofs, we will need them for only a lim-
ited range of conclusions. We have other ways of planning for a goal that is a
conjunction or a negation, and we can simply close a gap whose goal is ⊤. We
will not adopt any rule to plan for the goal ⊥ of a reductio argument. At the
moment, that leaves only unanalyzed components; and, until the last chapter
(where we consider the logical properties of something), those are the only
goals for which we will use indirect proofs. We have often closed gaps whose
goals are atomic, so we know that indirect proof is not always necessary even
for such goals, but it will serve us as a last resort.

In chapter 6, we will begin to analyze sentences into components that are
not sentences, and we will still use indirect proof for goals that are analyzed in
that way. In anticipation of this, we will use the term atomic for the kind of
goals to which we will apply indirect proof; and we will refer to other sen-
tences as non-atomic. Until chapter 6, any sentence we analyze will be a com-
pound formed by applying a connective to one or more sentences, so, for the
time being, the atomic sentences will be the unanalyzed sentences. ⊤ and ⊥
count as non-atomic since identifying them as Tautology and Absurdity counts
as an analysis of their logical form. As a result, for the time being, the atomic
sentences will be simple letters, and all other sentences will be non-atomic.

In conclusion trees and argument trees, this new form of argument will look
like RAA except that the positions of φ and ¬ φ will be reversed. The same is
true of the rule implementing indirect proofs in derivations, but we will choose
a name that reflects its rather different role and call it Indirect Proof (IP). It
takes the following form:

│⋯
│
││⋯
││
││
││
││
││
││
│├─
││φ [atomic]
│⋯

→

│⋯
│
││⋯
││
│││¬ φ
││├─
│││
││├─
│││⊥ n
│├─

n IP││φ
│⋯

Fig. 3.3.1-1. Developing a derivation by planning for an atomic sentence at
stage n.

Here is an example, which is related to the argument at the beginning of 3.2.2 .
│¬ ((A ∧ B) ∧ ¬ C) (4)
│A (2)
│B (2)
├─
││¬ C (3)
│├─

2 Adj││A ∧ B X,(3)
3 Adj││(A ∧ B) ∧ ¬ C X,(4)

││●
│├─

4 Nc ││⊥ 1
├─

1 IP │C
This example adds to the premise Ann and Bill were not both home without
the car being in the driveway further premises telling us that each of Ann
and  Bill  was  home,  and  we  conclude  that  the  car  was  in  the  driveway.
Although the initial premises and conclusion differ from those of the argument
in 3.2.2, the reductio argument that is set up at stage 1 here has the same re-
sources as the reductio set up at stage 3 in the derivation for the argument of
3.2.2 that was given at the end of 3.2.3 .

The rule IP is easily seen to be strict and safe, but we need to be more care-
ful in assessing the decisiveness of a system using it. We will consider this
question most fully in 3.4.1 , but we can see the issue in outline now. Since IP
introduces a sentence with one more connective than the goal it plans for, it
does not reduce the quantity we have used to assess the progressiveness of
other rules. But IP can be seen to be progressive nonetheless if we look pro-



gressiveness in a slightly different way. We will treat both atomic sentences
and their negations as equally basic when they are resources: neither sort of re-
source will be exploited. And, as was noted above, we will treat ⊥ as the basic
form of goal,  the only one without a corresponding planning rule.  Thus IP
leaves us with a goal that requires no planning, and it introduces no resources
that need to be exploited further. This suggests a way of looking at the distance
of a proximate argument from a dead end that would allow us to say that IP re-
duces this quantity. This way of looking at distance from a dead end is a depar-
ture from counting connectives but only a small departure. We may count con-
nectives  except  for  the  case of  those sentences  that  are  never  exploited or
planned for—i.e., atomic and negated atomic sentences as resources and ⊥ as a
goal—and these sentences will  be given a lower degree than all  other sen-
tences, no matter how few connectives those sentences contain.

Although IP introduces a resource that needs no exploitation, this is not to
say that applying IP will eliminate the need for further exploitations; indeed,
since negated compounds will  be exploited only in reductio  arguments,  we
will often be in a position to exploit such resources only after we have used IP.
The rule it can put us in the position to use is the one we will consider next.
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3.3.2. Using lemmas to complete reductios
Now that we have IP, we are in a position to provide a proof for any argument
whose validity depends only on the properties of ⊤, ⊥, conjunction, and nega-
tion. However, to do this using only the rules we have so far, we would often
need to  use  LFR—or,  in  simpler  cases,  Adj—to make use  of  negative  re-
sources. This poses no problems when we construct derivations for valid argu-
ments, but it makes it difficult to show that an argument is not valid. LFR does
not itself exploit resources, so negated compounds remain as active resources
until a gap is closed. In order to count an open gap as having reached a dead
end, we would need some description of the conditions under which LFR had
been used often enough. Such a description could certainly be given; and, in
the last two chapters, we will need to take an analogous approach in the case
of one of the rules for quantifiers. But, in the case of negation, it is possible to
keep track of the use of resources by way of a genuine exploitation rule, which
will eliminate the need to use LFR and Adj.

The basis for this approach is one of the lessons drawn from the law of
negation as a premise: if a reductio that has ¬ φ as a premise is valid, then φ
must  be  a  valid  conclusion  from  the  premises  other  than  ¬  φ.  That  is,
Γ, ¬ φ ⊨ ⊥ only if Γ ⊨ φ. Now φ is just the lemma we need in order to use the
premise ¬ φ to reach the goal ⊥ and complete the reductio. The fact that our
goal is ⊥ tells us that it is safe to set φ as a goal, and the law for negation as a
premise tells us that it is safe to drop ¬ φ from the active resources of the gap
in which we establish the lemma φ. That is, we can use a negation ¬ φ to com-
plete any reductio argument, so we can exploit a negated compound whenever
our goal is ⊥.

This is illustrated by a segment of an argument tree and a schematic indica-
tion of the corresponding two steps in completing a conclusion tree.

On the left we have ¬ φ among the resources we hope to use to complete a re-
ductio by reaching the conclusion ⊥. On the right, we have decided to use ¬ φ

¬ φ

?

⊥

¬ φ
?
φ

⊥

──── ────── ────

…
¬ φ
…
⊥

…
…
φ

as one of two premises from which we conclude ⊥, and we seek a way of us-
ing other resources to conclude the second premise. The argument on the right
is really Nc but our use of that pattern here is different from its use to close a
gap when we already have not only ¬ φ but also φ among our resources.

We will  call  the rule that implements these ideas Completing a Reductio
(CR).

│⋯
│¬ φ [φ is not atomic]
│⋯
│
││⋯
││
││
││
││
││
│├─
││⊥
│⋯

→

│⋯
│¬ φ n
│⋯
│
││⋯
││
│││
│││
││├─
│││φ n
│├─

n CR││⊥
│⋯

Fig. 3.3.2-1. Developing a derivation by exploiting a negated compound at stage
n.

Notice that the use of CR is limited to cases where ¬ φ is the negation of a
non-atomic sentence. CR is sound and safe when it is applied to negations of
atomic sentences, but it would not be progressive in that case because it would
allow us to go around in circles. Both IP and CR carry us between gaps whose
proximate arguments have the forms Γ, ¬ φ / ⊥ and Γ / φ; but they carry us in
opposite directions, so, if there is any overlap in the sentences φ to which they
apply, a derivation could move back and forth between the two arguments for-
ever. We block such circles by limiting IP to cases where φ is atomic and limit-
ing CR to cases where φ is non-atomic.

One way of understanding the role of CR is to compare it with a use of
LFR, where the recourse to lemma is more explicit. Below are two derivations
for the argument that was used as an illustration in the last subsection. The one
on the left uses CR and the one on the right uses LFR:

│¬ ((A ∧ B) ∧ ¬ C) 2
│A (3)
│B (3)
├─
││¬ C (4)
│├─

3 Adj │││A ∧ B X,(4)
4 Adj │││(A ∧ B) ∧ ¬ C X,(5)

│││●
││├─

5 QED│││(A ∧ B) ∧ ¬ C 2
│├─

2 CR ││⊥ 1
├─

1 IP │C

 │¬ ((A ∧ B) ∧ ¬ C) (6)
│A (3)
│B (3)
├─
││¬ C (4)
│├─

3 Adj │││A ∧ B X,(4)
4 Adj │││(A ∧ B) ∧ ¬ C X,(5)

│││●
││├─

5 QED│││(A ∧ B) ∧ ¬ C 2
││
│││(A ∧ B) ∧ ¬ C (6)
││├─
│││●
││├─

6 Nc │││⊥ 2
│├─

2 LFR ││⊥ 1
├─

1 IP │C

Notice that the gap resulting from CR on the left is identical to, and filled in
the same way as, the first of the two gaps introduced by LFR on the right. We
know in advance that the second of these gaps will close because the denial of
its supposition is one or our active resources. Indeed the point of choosing
(A ∧  B)  ∧  ¬  C as  the  lemma in  LFA is  to  combine  it  with  the  resource
¬ ((A ∧ B) ∧ ¬ C) to reach ⊥ and complete the reductio. That is, LFA on the
right is part of a plan to use the first premise. What is new in CR is the claim
that this resource need not be used further in developing the derivation and
may be dropped from its active resources. And this makes CR clearly progres-
sive in a way that LFR is not.
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3.3.3. More examples
Here is  an English argument  whose derivation exhibits  all  of  the rules  for
negation:

Ann’s proposal wasn’t unfunded without
Bill’s and Carol’s each being funded

Bill’s proposal was not funded

Ann’s proposal was funded

And here is the derivation:
│¬ (¬ A ∧ ¬ (B ∧ C)) 2
│¬ B (7)
├─
││¬ A (4)
│├─
││││●
│││├─

4 QED││││¬ A 3
│││
│││││B ∧ C 6
││││├─

6 Ext │││││B (7)
6 Ext │││││C

│││││●
││││├─

7 Nc │││││⊥ 5
│││├─

5 RAA││││¬ (B ∧ C) 3
││├─

3 Cnj │││¬ A ∧ ¬ (B ∧ C) 2
│├─

2 CR ││⊥ 1
├─

1 IP │A
The rules of this section are used at the first two stages, and the rules of 3.2 are
in the course of reaching the goal introduced by CR. One alternative approach
would be to introduce ¬ (B ∧ C) as a lemma at the second stage using LFR.
Combined with a use of Adj to add ¬ A ∧ ¬ (B ∧ C) as a resource, it would
produce a simpler derivation but one that requires foresight to discover.

In the absence of the rules of this section, the exercise 2d of 3.2.x required
use of LFR. Here are two derivations for the argument of that exercise which
use CR instead but differ in the choice of the premise to be exploited by this
rule.

│¬ (A ∧ B) 3
│¬ (C ∧ ¬ B) (8)
├─
││A ∧ C 2
│├─

2 Ext ││A (5)
2 Ext ││C (7)

││
││││●
│││├─

5 QED││││A 4
│││
│││││¬ B (7)
││││├─

7 Adj │││││C ∧ ¬ B X,(8)
│││││●
││││├─

8 Nc │││││⊥ 6
│││├─

6 IP ││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ C)

│¬ (A ∧ B) (8)
│¬ (C ∧ ¬ B) 3
├─
││A ∧ C 2
│├─

2 Ext ││A (7)
2 Ext ││C (5)

││
││││●
│││├─

5 QED││││C 4
│││
│││││B (7)
││││├─

7 Adj │││││A ∧ B X,(8)
│││││●
││││├─

8 Nc │││││⊥ 6
│││├─

6 RAA││││¬ B 4
││├─

4 Cnj │││C ∧ ¬ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ C)

These derivations have the same number of stages as the answer in 3.2.xa  for
2d, but their scope lines are nested one deeper. Each of the arguments complet-
ing the gaps set up by LFR in the earlier derivation appears in one of these
derivations, but we arrive at these arguments in a different way.

It is possible to dispense with Adj in the derivations above and exploit both
premises by CR. This leads to a derivation with two more stages and scope
lines that are nested more deeply. What we get in return for that increased
complexity is direction in how to complete the derivation. In effect, all the
thinking required to identify appropriate lemmas is done on paper. We will
look at this third approach to the example in 3.5 , where we consider how the
rules guide the search for derivations.
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3.3.s. Summary
The law for negation as a premise tells us two things about entailment. It
tells us first that a conclusion is valid if and only if the denial of that conclu-
sion can be reduced to absurdity given the premises. This is the principle of
indirect proof ; it is closely tied to the entailment ¬ ¬ φ ⊨ φ (and is subject
to the same concerns as is that entailment). We have no need for this princi-
ple except in the case of unanalyzed components, which we will begin to
call atomic sentences . And, for reasons noted later, we need to limit the use
of the rule Indirect Proof (IP)  to such conclusions.

Another lesson we can draw from the law for negation as a premise is that a
reductio argument with a negative premise ¬ φ is valid if and only if the
sentence φ is entailed by whatever other premises there are. This tells us that
φ can be safely introduced as a lemma even if we drop ¬ φ from our active
resources. The rule implementing this idea, Completing a Reductio  (CR)
serves as our rule for exploiting negative resources. It applies only to reduc-
tio arguments but the availability of IP insures that any gap will eventually
turn into a gap in a reductio argument (unless it closes before that point).
Since CR, by dropping a resource ¬ φ and adding a goal φ has an effect op-
posite to that of IP, we must apply them to different sentences φ to avoid go-
ing in circles. So, just as IP is limited to atomic sentences, CR is limited to
negations of non-atomic sentences.

The rule CR can lead us to set as goals any lemmas we need in order to use
negations  in  completing  reductio  arguments.  It  therefore  eliminates  any
need for LFR. The rule Adj is also no longer needed (though still sometimes
useful) since the rules CR and Cnj will lead us to identify and prove any
lemma that Adj would introduce. Indeed, derivations for arguments involv-
ing conjunction can now be constructed by simply letting the rules guide us.
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3.3.x. Exercise questions
Use derivations to establish each of the claims of entailment shown below. You
can maximize your practice in the use of CR by avoiding LFR and using Adj
only in cases where the goal is a conjunction.
1. ¬ (A ∧ ¬ B), A ⊨ B
2. J ∧ ¬ (J ∧ ¬ C) ⊨ J ∧ C (see exercise 1j of 3.1.x )
3. ¬ (¬ (A ∧ B) ∧ C), ¬ A ⊨ ¬ C
4. ¬ (A ∧ ¬ (B ∧ C)) ⊨ ¬ (A ∧ ¬ B)
5. ¬ (A ∧ ¬ B), ¬ (B ∧ ¬ C) ⊨ ¬ (A ∧ ¬ C)
6. ¬ (A ∧ ¬ B), ¬ (A ∧ ¬ C) ⊨ ¬ (A ∧ ¬ (B ∧ C))

For more exercises, use the exercise machine .
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3.3.xa. Exercise answers

1. │¬ (A ∧ ¬ B) 2
│A (3)
├─
││¬ B (3)
│├─

3 Adj │││A ∧ ¬ B X,(4)
│││●
││├─

4 QED│││A ∧ ¬ B 2
│├─

2 CR ││⊥ 1
├─

1 IP │B

2. │J ∧ ¬ (J ∧ ¬ C) 1
├─

1 Ext │J (3),(6)
1 Ext │¬ (J ∧ ¬ C) 5

│
││●
│├─

3 QED││J 2
│
│││¬ C (6)
││├─

6 Adj ││││J ∧ ¬ C X,(7)
││││●
│││├─

7 QED││││J ∧ ¬ C 5
││├─

5 CR │││⊥ 4
│├─

4 IP ││C 2
├─

2 Cnj │J ∧ C

3. │¬ (¬ (A ∧ B) ∧ C) 2
│¬ A (7)
├─
││C (4)
│├─
│││││A ∧ B 6
││││├─

6 Ext │││││A (7)
6 Ext │││││B

│││││●
││││├─

7 Nc │││││⊥ 5
│││├─

5 RAA││││¬ (A ∧ B) 3
│││
││││●
│││├─

4 QED││││C 3
││├─

3 Cnj │││¬ (A ∧ B) ∧ C 2
│├─

2 CR ││⊥ 1
├─

1 RAA│¬ C

4. │¬ (A ∧ ¬ (B ∧ C)) 3
├─
││A ∧ ¬ B 2
│├─

2 Ext ││A (5)
2 Ext ││¬ B (8)

││
││││●
│││├─

5 QED││││A 4
│││
│││││B ∧ C 7
││││├─

7 Ext │││││B (8)
7 Ext │││││C

│││││●
││││├─

8 Nc │││││⊥ 6
│││├─

6 RAA││││¬ (B ∧ C) 4
││├─

4 Cnj │││A ∧ ¬ (B ∧ C) 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ ¬ B)

5. │¬ (A ∧ ¬ B) 3
│¬ (B ∧ ¬ C) 7
├─
││A ∧ ¬ C 2
│├─

2 Ext ││A (5)
2 Ext ││¬ C (8)

││
││││●
│││├─

5 QED││││A 4
│││
│││││B (8)
││││├─

8 Adj ││││││B ∧ ¬ C X,(9)
││││││●
│││││├─

9 QED││││││B ∧ ¬ C 7
││││├─

7 CR │││││⊥ 6
│││├─

6 RAA││││¬ B 4
││├─

4 Cnj │││A ∧ ¬ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ ¬ C)

6. │¬ (A ∧ ¬ B) 3
│¬ (A ∧ ¬ C) 7
├─
││A ∧ ¬ (B ∧ C) 2
│├─

2 Ext ││A (5),(9)
2 Ext ││¬ (B ∧ C) 10

││
││││●
│││├─

5 QED ││││A 4
│││
│││││B (11)
││││├─
│││││││●
││││││├─

9 QED │││││││A 8
││││││
││││││││C (11)
│││││││├─

11 Adj │││││││││B ∧ C X,(12)
│││││││││●
││││││││├─

12 QED│││││││││B ∧ C 10
│││││││├─

10 CR ││││││││⊥ 9
││││││├─

9 RAA │││││││¬ C 8
│││││├─

8 Cnj ││││││A ∧ ¬ C 7
││││├─

7 CR │││││⊥ 6
│││├─

6 RAA ││││¬ B 4
││├─

4 Cnj │││A ∧ ¬ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA │¬ (A ∧ ¬ (B ∧ C))
 Choosing ¬ (B ∧ C) as the resource to exploit by CR at stage 3 would

lead to a somewhat shorter and simpler derivation.

Glen Helman 16 Jul 2012


