
3.2. Reductio arguments: refuting suppositions
3.2.0. Overview
Since negating a sentence changes what it says into the contradictory opposite,
the role of negation in deductive reasoning is quite different from the role of
conjunction; and rules for negation will focus on the rejection of sentences
rather than the extraction and assembly of information.

3.2.1. The duality of premises and alternatives
The deductive properties of negation rest on ties between the relation be-
tween premises and alternatives on the one hand and the relation between a
sentence and its negation on the other.

3.2.2. Drawing negative conclusions
The basic form of argument for a negative conclusion establishes a relation
of exclusion, and it does so by a reduction to absurdity.

3.2.3. Some examples
An account of the role of negation as a conclusion does not capture all its
deductive properties, but many of the most typical sorts of negative argu-
mentation do follow.
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3.2.1. The duality of premises and alternatives

The law for alternatives via contradictory assumptions  tells us that, when sen-
tences φ and φ  are contradictory, having one as a premise comes to the same
thing as having the other as a conclusion—that is,

Γ ⊨ φ, Σ if and only if Γ, φ  ⊨ Σ

If we apply this to the contradictories φ and ¬ φ, we get a pair of principles

Γ ⊨ ¬ φ, Σ if and only if Γ, φ ⊨ Σ
Γ, ¬ φ ⊨ Σ if and only if Γ ⊨ φ, Σ

where we get the second by reversing the contradictory pair. The two together
tell us that having a negation as either a premise or alternative comes to the
same thing as having the unnegated sentence in the opposite role (where the
opposition in question is the duality mentioned in 1.4.8 ).

We do not study relative exhaustiveness directly, and we use of the basic
law for relative exhaustiveness mainly to exchange alternatives for premises so
that a claim of relative exhaustiveness may be converted into a claim of entail-
ment. But suppose we apply it to entailment instead; that is, suppose we begin
with only a single alternative (so the set Σ is empty). In this case, when φ and
φ  are contradictory, we can say that

Γ ⊨ φ if and only if Γ, φ  ⊨ 

where the right-hand side says that φ  is inconsistent with (or is excluded by)
Γ. When we express that inconsistency as the validity of a reductio argument,
we get the following principle:

if φ and φ  are contradictory, then Γ ⊨ φ if and only if Γ, φ  ⊨ ⊥

And this will be the basis for our account of negation.
We get our basic principles for negation by applying this principle to the

case of negation by choosing the contradictory pair as a sentence and its nega-
tion, both in that order and its reverse. Turning the second if and only if prin-
ciple around so that clause concerning negation comes first, the two principles
are these:

LAW FOR NEGATION AS A CONCLUSION. Γ ⊨ ¬ φ if and only if Γ, φ ⊨ ⊥.
LAW FOR NEGATION AS A PREMISE. Γ, ¬ φ ⊨ ⊥ if and only if Γ ⊨ φ.

Although these principles are dual in something like the way that the earlier
pair for relative exhaustiveness were, each has a rather different significance.
The first captures the core properties of negation while the second is closely
tied to the equivalence of ¬ ¬ φ with φ (which, as was noted in 3.1.3 , is about
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as controversial as anything gets in logic). Also, while the first will provide us
with  straightforward  ways  of  planning for  negative  goals  and carrying  out
these plans, the second gives an account of the role of negative premises only
in the context of reductio arguments and, for this reason, has a less straightfor-
ward implementation as a derivation rule. We will go on to explore the imple-
mentation of the first now and postpone a discussion of the second until 3.3 .
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3.2.2. Drawing negative conclusions
The law for negation as a conclusion

Γ ⊨ ¬ φ if and only if Γ, φ ⊨ ⊥

describes the conditions under which an entailment of the form Γ ⊨ ¬ φ holds.
An example may help in thinking about this law. The argument

Ann and Bill were not both home without the car be-
ing in the driveway

Ann was home but the car was not in the driveway

Bill was not home

is valid and seeing that it is valid comes to the same thing as seeing that Bill
could not have been home if the premises are true. But to see this is to see that
the claim Bill was home is excluded by the premises of the argument. So the
negative conclusion of this argument is valid because the conclusion denies
something that is excluded by the premises.

This  connection between validity  and exclusion is  just  what  the  law for
negation as a conclusion states. For a reductio entailment Γ, φ ⊨ ⊥ is the way
we capture exclusion in terms of entailment: Γ excludes φ if adding φ to Γ
would enable us to reach an absurd conclusion. And the law tells us that we
can validly conclude a negation ¬ φ when we can reduce to absurdity the result
of adding φ to the premises Γ. So we can say that the example above is valid
because due to the inconsistency of the three sentences

Ann and Bill were not both home without the car be-
ing in the driveway

Ann was home but the car was not in the driveway
Bill was home

We can reduce these claims to absurdity by noting that the second and third to-
gether imply Ann and Bill were both home without the car being in the
driveway and that this is what the first denies.

Although this reduction to absurdity shows the inconsistency of the full set
of sentences from which we draw the absurd conclusion, we focus attention on
the last one of them to draw a negative conclusion from the first two. And in
general, the entailment Γ, φ ⊨ ⊥ shows the inconsistency of the full set con-
taining the members of Γ together with φ, but we focus attention on φ when
we say it is excluded by, or is inconsistent with, Γ. We can focus attention on a
single sentence when speaking of reduction to absurdity itself by saying that
the argument Γ, φ / ⊥ reduces φ to absurdity given Γ. And this allows us to re-



state the law for negation as a conclusion in another way: we can validly con-
clude a negation ¬ φ  from premises Γ  when we can reduce φ  to absurdity
given the premises Γ. In the example above, we reduced Bill was home to ab-
surdity given the two premises of the original argument.

As a  rule  for  argument  trees,  the  principle  for  negation as  a  conclusion
would lead us to grow the tree as shown here:

There is no branching, but a premise is added and the required conclusion is
strengthened to ⊥. And if we state this rule for conclusion trees, it takes the
following form:

This shows a pattern of argument in which we conclude ¬ φ from the premise
⊥. But that description would apply also to the rule EFQ, so it clearly does not
capture all that is going on here. The conclusion ¬ φ is, in general, weaker than
⊥. The premise ⊥ falls within the scope of a supposition of φ. After that sup-
position is discharged, our conclusion must be weaker than ⊥. The conclusion
¬ φ is in general weaker than ⊥, and it is weaker in a way that licenses us to
drop φ from our assumptions: since ¬ φ rules out no case where φ is false, it
need no longer depend on an assumption φ that rules out such cases.

This illustrates a use of suppositions that is different from that in the rules
Lem  and LFR  of 2.4. In those rules, the supposition represents a lemma that
we have on loan, a loan that is paid if we are also able to conclude the lemma
without supposing it. When we suppose φ in order to prove ¬ φ, we make a
different use of the supposition: we suppose it in order to refute it by reducing
it to absurdity. That is, we make the supposition in order to describe a sort of
possibility, and we go on to rule out this sort of possibility on the basis of other
assumptions. We will encounter still other uses of suppositions in later chap-
ters.

The rule that implements these ideas in derivations will be called Reductio
Ad Absurdum or RAA. It is shown in Figure 3.2.2-1.
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Fig. 3.2.2-1. Developing a derivation by planning for a negation at stage n.

It leads us to develop a gap by adding a supposition and, at the same time,
changing our  goal  to  ⊥.  The part  of  the derivation these changes affect  is
marked by a scope line, and the added resource is marked off at the top by a
horizontal line.

As with other rules, the form of RAA in conclusion trees explains the nu-
merical annotations for it in derivations. A stage number is placed to the right
of ⊥, since it is the premise from which ¬ φ is concluded. The supposition φ is
not a premise of the rule but plays a different role so no stage number is added
to its right (though one might appear later if it is exploited inside the gap as it
develops further). The fact that the supposition is discharged when we draw a
conclusion from ⊥ is shown in the derivation simply by the fact that its scope
line ends with ⊥.

Once we have begun a reductio argument, we have ⊥ as our goal and we
must look for ways of reaching it. The only way we have in our rules so far is
QED, but that requires that we have ⊥ among our resources. While it is, of
course, possible that our new supposition is ⊥ or that ⊥ was already among our
resources, we would not expect this to happen in general.  Usually, we will
need to make use of both the supposition and the pre-existing resources and
make use of some negative claims among them. Our full discussion of the use
of negative resources will come only in 3.3 , but the core principle for using
such resources is one we can consider now.

One of the traditional laws of logic is the law of non-contradiction. This is
sometimes referred to also as the “law of contradiction” when the focus is sim-
ply on the fact that it is a law for concluding something from a contradictory
pair rather than the fact that what we conclude is that they cannot be both true.
We know it as the principle that ¬ φ and φ are mutually exclusive—or, in the
form most relevant at the moment, that ¬ φ, φ ⊨ ⊥.

This idea lies behind a pattern of argument that we will call Non-contradic‐
tion or Nc:

 

This pattern of argument will appear in derivations as a way of completing a
reductio argument:
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Fig. 3.2.2-2. Closing the gap of a reductio argument one of whose resources
negates another.

Notice that, as with other rules that close gaps, the resources required to apply
this need only be available and they are marked with parenthesized stage num-
bers. The latter point is moot, as it was with QED and EFQ, since the gap
closes. And, in a way, the possibility of using available but inactive resources
is moot also. Once we have the further rules of 3.3 , we will need this rule only
when φ is an unanalyzed component (though it will be usable and useful in
other cases, too). And we will never have rules for exploiting unanalyzed com-
ponents or their negations, so such resources will be active whenever they are
available.
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⊥
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3.2.3. Some examples
Here is a derivation that uses the rules RAA and Nc:

│A ∧ ¬ C 1
├─

1 Ext │A
1 Ext │¬ C (5)

│
││B ∧ (C ∧ ¬ D) 3
│├─

3 Ext ││B
3 Ext ││C ∧ ¬ D 4
4 Ext ││C (5)
4 Ext ││¬ D

││●
│├─

5 Nc ││⊥ 2
├─

2 RAA│¬ (B ∧ (C ∧ ¬ D))
One feature of this derivation will now be typical: it is not possible to have all
uses of Ext at the beginning of the derivation since this rule may be used to ex-
ploit suppositions.

Of course, we might have used RAA at the first stage before applying Ext.
But the following derivation shows that even this degree of grouping of uses of
Ext will not always be possible.

│A ∧ ¬ B 1
├─

1 Ext │A (3)
1 Ext │¬ B (6)

│
││●
│├─

3 QED││A 2
│
│││B ∧ C 5
││├─

5 Ext │││B (6)
5 Ext │││C

│││●
││├─

6 Nc │││⊥ 4
│├─

4 RAA││¬ (B ∧ C) 2
├─

2 Cnj │A ∧ ¬ (B ∧ C)
We might have waited until after the supposition B ∧ C was made before ap-
plying Ext to the initial premise; but, by then, there would be two gaps and the
first premise would have to be exploited in each in order for them to close. In
general, it is wise (though not necessary) to apply Ext to a conjunction as soon
as it  appears as a resource, but conjunctions may continue to appear as re-



sources from time to time as a derivation develops.
Now let’s look at the sort of derivation we might give for the argument that

began 3.2.2 . We can analyze the first premise of that argument as follows:

Ann and Bill were not both home without the car being in the
driveway

¬ Ann and Bill were both home without the car being in the drive-
way

¬ (Ann and Bill were both home ∧ ¬ the car was in the driveway)
¬ ((Ann was home ∧ Bill was home) ∧ ¬ the car was in the driveway)

¬ ((A ∧ B) ∧ ¬ C)
not both both A and B and not C

A: Ann was home; B: Bill was home; C: the car was in the driveway

So the full argument takes the form:

¬ ((A ∧ B) ∧ ¬ C)
A ∧ ¬ C

¬ B

The negative first premise is crucial for the argument, but we have no way of
using it at the moment without having the compound it negates as a resource.
To get that compound—i.e., (A ∧ B) ∧ ¬ C—as a resource, we need to use Ad-
junction to build its first conjunct and then the full compound.

│¬ ((A ∧ B) ∧ ¬ C) (6)
│A ∧ ¬ C 2
├─

2 Ext │A (4)
2 Ext │¬ C (5)│

││B (4)
│├─

4 Adj ││A ∧ B X,(5)
5 Adj ││(A ∧ B) ∧ ¬ C X,(6)

││●
│├─

6 Nc ││⊥ 3
├─

3 RAA│¬ B
The need to use Adjunction in cases like this will end when we get the further
rules of the next section, but it will sometimes still be a natural approach to es-
tablishing an entailment.

Now let’s see what the derivation looks like if we replace the symbolic sen-
tences by the actual English sentences they analyze:

│Ann and Bill were not both home without the car (6)
│   being in the driveway
│Ann was home but the car was not in the driveway 2
├─

2 Ext │Ann was home (4)
2 Ext │the car was not in the driveway (5)│

││Bill was home (4)
│├─

4 Adj ││Ann and Bill were both home X,(5)
5 Adj ││Ann and Bill were both home without the car being X,(6)

││  in the driveway
││●
│├─

6 Nc ││⊥ 3
├─

3 RAA│Bill was not home

In a stretch of explicit deductive argumentation in English, various sorts of
connecting language would be used to get the effect of the lines and annota-
tions that structure this derivation. Although this is not the sort of entailment
where such an explicit argument would ordinarily be given, if one were of-
fered, it might run something like this:

We assume that Ann and Bill were not both home without the car being in
the driveway and also that Ann was home but the car was not in the drive-
way. So we know that Ann was home. And we also know that the car was not
in the driveway.

Now suppose (for the sake of reductio) that Bill was home. It would follow
that Ann and Bill were both home. And then we would know that Ann and Bill
were both home without the car being in the driveway. But that contradicts
one of our initial assumptions.

So we can conclude that Bill was not home.

The modal verb would has been used here in the reductio argument of the sec-
ond paragraph to emphasize that the situation being described need not be a
real one. It is possible to go further in that direction by phrasing the supposi-
tion itself as Suppose that Bill were home; but it is also possible to let the
verb suppose suffice to show that what follows is not a consequence of the
initial premises.
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3.2.s. Summary
The basic law for exhaustiveness says that having one of a pair of contradic-
tory sentences as a premises comes to the same thing as having the other as
an alternative. This does not apply to entailment directly, but we can con-
sider a special case which says that one of a pair of contradictory sentences
is entailed by a set if and only if the other is inconsistent with that set. Since
a sentence and its negation are contradictories, this gives us a pair of princi-
ples, laws for negation as a premise  and as a conclusion .

Inconsistency is established by a reductio argument. In a derivation, this will
be associated with a gap that has ⊥ as its goal. In order to show a sentence
inconsistent with our premises, we add it as a further assumption in the re-
ductio argument. This further assumption may be referred to as a supposi-
tion  of this argument to distinguish it  from the premises with which we
hope to show it inconsistent. The rule implementing this idea is Reductio ad
Absurdum (RAA). To actually reach the goal of ⊥, we add a rule allowing
us to close a gap when a sentence and its negation are among the resources.
This rule is Non-contradiction (Nc)  and is named after the traditional law
of non-contradiction .

The use of suppositions means that we will  no longer always be able to
group all uses of Ext at the beginning of a derivation. A more temporary
complication is the need to use Adj to form a sentence contradictory to a
negated conjunction, something that will be handled by a rule introduced in
the next section.
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3.2.x. Exercise questions
1. Use derivations to establish each of the claims of entailment shown be-

low. Notice that c is a claim of tautologousness; it requires a derivation
without initial assumptions. All the resources used in a such a derivation
will come from suppositions.
a. ¬ A ⊨ ¬ (A ∧ B)
b. ¬ B ⊨ ¬ (A ∧ B) ∧ ¬ (B ∧ C)
c.  ⊨ ¬ (A ∧ ¬ A)
d. J ∧ C ⊨ J ∧ ¬ (J ∧ ¬ C) (see exercise 1j of 3.1.x )

2. Use derivations to establish each of the claims of entailment shown be-
low. You will need to introduce lemmas to exploit the negated compounds
that appear as premises. For most, Adj is enough; but, for the last, you
will need to use the rule LFR introduced in 2.4.
a. ¬ (A ∧ B), A ⊨ ¬ B
b. ¬ (A ∧ ¬ B), ¬ B ⊨ ¬ A
c. A, ¬ (A ∧ B), ¬ (A ∧ C) ⊨ ¬ B ∧ ¬ C
d. ¬ (A ∧ B), ¬ (C ∧ ¬ B) ⊨ ¬ (A ∧ C)

We have too limited a group of rules at this point for the exercise machine to
be useful.
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3.2.xa. Exercise answers

1. a. │¬ A (3)
├─
││A ∧ B 2
│├─

2 Ext ││A (3)
2 Ext ││B

││●
│├─

3 Nc ││⊥ 1
├─

1 RAA│¬ (A ∧ B)

b. │¬ B (4),(7)
├─
│││A ∧ B 3
││├─

3 Ext │││A
3 Ext │││B (4)

│││●
││├─

4 Nc │││⊥ 2
│├─

2 RAA││¬ (A ∧ B) 1
│
│││B ∧ C 6
││├─

6 Ext │││B (7)
6 Ext │││C

│││●
││├─

7 Nc │││⊥ 5
│├─

5 RAA││¬ (B ∧ C) 1
├─

1 Cnj │¬ (A ∧ B) ∧ ¬ (B ∧ C)

c. ││A ∧ ¬ A 2
│├─

2 Ext ││A (3)
2 Ext ││¬ A (3)

││●
│├─

3 Nc ││⊥ 1
├─

1 RAA│¬ (A ∧ ¬ A)

d. │J ∧ C 1
├─

1 Ext │J (3)
1 Ext │C (6)

│
││●
│├─

3 QED││J 2
│
│││J ∧ ¬ C 5
││├─

5 Ext │││J
5 Ext │││¬ C (6)

│││●
││├─

6 Nc │││⊥ 4
│├─

4 RAA││¬ (J ∧ ¬ C) 2
├─

2 Cnj │J ∧ ¬ (J ∧ ¬ C)

2. a. │¬ (A ∧ B) (3)
│A (2)
├─
││B (2)
│├─  

2 Adj ││A ∧ B X,(3)
││●
│├─

3 Nc ││⊥ 1
├─

1 RAA│¬ B

b.  │¬ (A ∧ ¬ B) (3)
 │¬ B (2)
 ├─
 ││A (2)
 │├─  
2 Adj ││A ∧ ¬ B X,(3)

││●
│├─

3 Nc ││⊥ 1
├─

1 RAA│¬ A

c. │A (3),(6)
│¬ (A ∧ B) (4)
│¬ (A ∧ C) (7)
├─
│││B (3)
││├─

3 Adj │││A ∧ B X,(4)
│││●
││├─

4 Nc │││⊥ 2
│├─

2 RAA││¬ B 1
│
│││C (6)
││├─

6 Adj │││A ∧ C X,(7)
│││●
││├─

7 Nc │││⊥ 5
│├─

5 RAA││¬ C 1
├─

1 Cnj │¬ B ∧ ¬ C

 d. │¬ (A ∧ B) (6)
│¬ (C ∧ ¬ B) (8)
├─
││A ∧ C 2
│├─

2 Ext ││A (5)
2 Ext ││C (7)

││
││││B (5)
│││├─

5 Adj ││││A ∧ B X,(6)
││││●
│││├─

6 Nc ││││⊥ 4
││├─

4 RAA│││¬ B 3
││
│││¬ B (7)
││├─

7 Adj │││C ∧ ¬ B X,(8)
│││●
││├─

8 Nc │││⊥ 3
│├─

3 LFR ││⊥ 1
├─

1 RAA│¬ (A ∧ C)
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