Appendices

Appendix A. Reference

A.0. Overview

A.1. Basic concepts

Definitions of entailment and related ideas

A.2. Logical forms

Forms expressed using one or more logical constants together with symbolic and English notation or readings

A.3. Truth tables

Tables that stipulate the meaning of the constants of truth-functional logic

A.4. Derivation rules

A guide to the use of derivation rules with links to the rules themselves

A.1. Basic concepts

Concept	Negative definition Positive definition	
φ is <i>entailed</i> by Γ:	There is no logically possi-	ϕ is true in every logically
$\Gamma \vDash \varphi$	ble world in which ϕ is	possible world in which
	false while all members	all members of Γ are true.
	of Γ are true.	
φ and ψ are <i>(logi-</i>	There is no logically possi-	ϕ and ψ have the same truth
cally) equivalent :	ble world in which ϕ and	value as each other in ev-
$\phi \simeq \psi$	ψ have different truth val-	ery logically possible
-	ues.	world.
φ is a <i>tautology</i> :	There is no logically possi-	ϕ is true in every logically
⊨ φ	ble world in which ϕ is	possible world.
$(or \top \vDash \varphi)$	false.	
φ is <i>inconsistent</i>	There is no logically possi-	$\boldsymbol{\phi}$ is false in every logically
with Γ :	ble world in which ϕ is	possible world in which
Γ, φ ⊨	true while all members of	all members of Γ are true.
$(or \Gamma, \varphi \vDash \bot)$	Γ are true.	
Γ is inconsistent:	There is no logically possi-	In every logically possible
$\Gamma \vDash$	ble world in which all	world, at least one mem-
$(or \Gamma \vDash \bot)$	members of Γ are true.	ber of Γ is false.
φ is <i>absurd</i> :	There is no logically possi-	φ is false in every logically
φ ⊨	ble world in which ϕ is	possible world.
$(or \varphi \vDash \bot)$	true.	
Σ is rendered ex-	There is no logically possi-	At least one member of Σ is
<i>haustive</i> by Γ :	ble world in which all	true in each logically pos-
$\Gamma \vDash \Sigma$	members of Σ are false	sible world in which all
	while all members of Γ	members of Γ are true
-	are true.	

A.2. Logical forms

Forms for which there is symbolic notation

	Symbolic notation	English notation or English reading		
Negation	¬ φ	not φ		
Conjunction	φΛΨ	both φ and ψ	$(\phi \text{ and } \psi)$	
Disjunction	$\phi \lor \psi$	either φ or ψ	$(\phi \text{ or } \psi)$	
The conditional	$\phi \to \psi$	if φ then ψ	(φ implies ψ)	
	$\psi \leftarrow \phi$	yes ψ if φ	(ψ <mark>if</mark> φ)	
Identity	$\tau = \upsilon$	τ is υ		
Predication	$\theta \tau_1 \tau_n$	θ fits $\tau_1,, \tau_n$	A series of terms $\tau_1,, \tau_n$ can be read (series) $\tau_1,, \theta$ n	
Compound term	$\gamma \tau_1 \dots \tau_n$	$ \begin{array}{c} \gamma \text{ of } \tau_1, , \tau_n \\ \gamma \text{ applied to } \tau_1, , \tau_n \end{array} $	τ_n (using the expression on to distinguish this use of and from its use in conjunction and adding series when necessary to avoid ambiguity)	
Predicate abstract	$[\varphi]_{x, x}$	what φ says of x_1x_n		
Functor abstract	[τ] _x , "	τ for	X_1X_n	
Universal	$\forall x \theta x''$	forall x θx		
quantification		everything, x, is such that θx		
Restricted	$(\forall x: \rho x) \theta x$	forall x st $\rho x \theta x$		
universal		everything, x , such that ρx is such that θx		
Existential	$\exists x \ \theta x$	for some $x \theta x$		
quantification		something, x , is such that θx		
Restricted	$(\exists x: \rho x) \theta x$	for some x st $\rho x \theta x$		
existential		something, x, such that ρx is such that θx		
Definite	lx ρx	the x st ρx		
description		the thing, x, such that ρx		

Some paraphrases of other forms

Truth-functional compounds				
neither φ nor ψ	$\neg (\phi \lor \psi)$			
	$\neg \phi \land \neg \psi$			
ψ only if φ	$\neg \psi \leftarrow \neg \phi$			
ψ unless φ	$\psi \leftarrow \neg \phi$			
	Generalizations			
All Cs are such	(∀x: x is a C) x			
that (they)				
No Cs are such	$(\forall x: x \text{ is a } C) \neg \dots x \dots$			
that (they)				
Only Cs are such	$(\forall x: \neg x \text{ is a } C) \neg \dots x \dots$			
that (they)				
with: among Bs	add to the restriction: x is a B			
except Es	¬ x is an E			
other than τ	$\neg x = \tau$			
Numerical quantifier phrases				
At least 1 C is such	(∃x: x is a C) x			
At least 2 Cs are such	$(\exists x: x \text{ is a } C) (\exists y: y \text{ is a } C \land \neg y = x) (\dots x \dots \land \dots y \dots)$			
that (they)				
Exactly 1 C is such	$(\exists x: x \text{ is a } C) (\dots x \dots \land (\forall y: y \text{ is a } C \land \neg y = x) \neg \dots y \dots)$			
that (it)	or			
	$(\exists x: x \text{ is a } C) (\dots x \dots \wedge (\forall y: y \text{ is a } C \wedge \dots y \dots) x = y)$			
Definite descriptions (on Russell's analysis)				
The C is such	$(\exists x: x \text{ is a } C \land (\forall y: \neg y = x) \neg y \text{ is a } C) \dots x \dots$			
that (it)	or			
	$(\exists x: x \text{ is a } C \land (\forall y: y \text{ is a } C) x = y) \dots x \dots$			

A.3. Truth tables

Таи	tology	Absurdity		Ne	gation
	Т		1		¬ φ
•	T		F		F
				F	T
Conj	unction	Disj	unction	Con	ditional
φψ	φΛψ	φψ	φνψ	φψ	$\phi \rightarrow \psi$
φ ψ Τ Τ	φ Λ ψ Τ	φ ψ Τ Τ	φ ∨ ψ Τ	φ ψ Τ Τ	$\phi \rightarrow \psi$ T
<u>T T</u>		φ ψ Τ Τ Τ F		φ ψ Τ Τ Τ F	$ \begin{array}{c} \phi \to \psi \\ \hline T \\ F \end{array} $
TT	T	TT	Т	TT	Т

A.4. Derivation rules

Basic system

Rules for	developing ga	aps
$logical\ form$	as a	as a
	resource	goal
atomic		IP
sentence		
negation	CR	RAA
¬ φ	(if φ not atomic	
	& goal is ⊥)	
conjunction	Ext	Cnj
φΛψ		-
disjunction	PC	PE
φνψ		
conditional	RC	CP
$\phi \to \psi$	(if goal is \perp)	
universal	UI	UG
$\forall x \ \theta x$		
existential	PCh	NcP
$\exists x \ \theta x$		
ion if the condi	tions for annivin	o a rule:

In addition, if the conditions for applying a rule are met except for differences between co-aliases, then the rule can be applied and is notated by adding "="; QED= and Nc= are examples of this.

	Rules	s for closing	gaps	
	when	to close		rule
co-c	aliases	resources	goal	
		φ	φ	QED
		φ and $\neg \varphi$	1	Nc
		φ απα - φ		INC
			Т	ENV
		Τ.		EFQ
	<u>:</u> —υ		$\tau = v$	EC
ι	—0		$\iota - 0$	EC
τ	:—υ	$\neg \tau = \upsilon$	Τ	DC
τ_1 — υ_1 ,	\dots , τ_n — υ_n	$P\tau_1\tau_n$	Pv_1v_n	QED=
τ_1 — υ_1 ,	\dots , τ_n — υ_n	$P\tau_1\tau_n$	Т	Nc=
		$\neg Pv_1v_n$		
	D (1	, 1 /	. 1\	
		nent rules (c	• /	
		ed resources		
	main	auxiliar		
	$\phi \rightarrow \psi$	φ	MPP	_
		$\neg^{\pm} \psi$	MTT	
	$\phi \lor \psi$	¬± φ or ¬±	ψ MTP)
	$\neg (\phi \land \psi)$		MPT	

Additional rules (not guaranteed to be progressive)

Attachment rules			
added resource	rule		
φΛΨ	Adj		
$\phi \rightarrow \psi$	Wk		
φ∨ψ	Wk		
$\neg (\phi \land \psi)$	Wk		
$\tau = \upsilon$	CE		
$\theta v_1 \dots v_n$	Cng		
∃х θх	EG		

Rule for lemmas prerequisite rule the goal is \bot LFR

Diagrams

Rules from chapter 2

Conjunction (Cnj)

Quod Erat Demonstrandum (QED)

Ex Nihilo Verum (ENV)

Ex Falso Quodlibet (EFQ)

Adjunction (Adj)

Lemma for Reductio (LFR)

Rules from chapter 3

Completing the Reductio (CR)

Reductio ad Absurdum (RAA)

Non-contradiction (Nc)

Rules from chapter 4

Proof by Cases (PC)

Modus Tollendo Ponens (MTP)

Modus Ponendo Tollens (MPT)

Rules from chapter 5

Rejecting a Conditional (RC)

Conditional Proof (CP)

Modus Ponendo Ponens (MPP)

Modus Tollendo Tollens (MTT)

Rules from chapter 6

Distinguished Co-aliases (DC)

QED given equations (QED=)

Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Non-contradiction given equations (Nc=)

Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Co-alias Equation (CE)

Congruence (Cng)

Note: θ can be an abstract, so $\theta \tau_1 ... \tau_n$ and $\theta \upsilon_1 ... \upsilon_n$ are any formulas that differ only in the occurrence of terms and in which the corresponding terms are co-aliases.

Rules from chapter 7

Universal Instantiation (UI)

Universal Generalization (UG)

Non-constructive Proof (NcP)

Existential Generalization (EG)

Glen Helman 05 Nov 2011