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A.1. Basic concepts

Concept

Negative definition

Positive definition

¢ is entailed by T':

o

There is no logically possi-
ble world in which ¢ is
false while all members
of I are true.

¢ is true in every logically
possible world in which
all members of I are true.

¢ and vy are (logi-
cally) equivalent :
o=y

There is no logically possi-
ble world in which ¢ and

y have different truth val-

ues.

¢ and y have the same truth
value as each other in ev-
ery logically possible
world.

¢ is a tautology:

There is no logically possi-

¢ is true in every logically

Eo ble world in which ¢ is possible world.
(or TE o) false.
¢ is inconsistent  There is no logically possi- @ is false in every logically
withT: ble world in which ¢ is possible world in which
Lok true while all members of  all members of I are true.
(orT, @ E 1) I' are true.
' is inconsistent.  There is no logically possi- In every logically possible
TE ble world in which all world, at least one mem-
(orTE 1) members of I are true. ber of T is false.
¢ is absurd: There is no logically possi- ¢ is false in every logically
0E ble world in which ¢ is possible world.
(or oF 1) true.
Y is rendered ex-  There is no logically possi- At least one member of X is
haustive by T': ble world in which all true in each logically pos-
TeEX members of X are false sible world in which all

while all members of "
are true.

members of I are true

Glen Helman 05 Nov 2011



A.2. Logical forms
Forms for which there is symbolic notation

Symbolic notation or English reading

Some paraphrases of other forms

Truth-functional compounds

neither ¢ nor y (e VYY)
“QATY
yonly if @ -y ——Q
y unless ¢ Al
Generalizations

All Cs are such

that (... they...)

(Vx:xisaC)...x...

No Cs are such

that (... they...)

(VxixisaC)—...x...

Only Cs are such

(Vx:—xisaC)—...x ...

that (... they...)

add to the restriction:

with: __among Bs

except Es
other thant

xisaB

—X=T

—xisanE

Numerical quantifier phrases

At least 1 C is such

(Ax:xisaC)...x...

Negation —Q [0)
Conjunction OAVY [0) \; (©) V)
Disjunction oVVy @ ory (¢ or y)
The conditional o=y 0] " (9 y)
Ve o vite Wit
Identity T=" TisV
Predication erl...tn 0 T o T, A series of terms 1), ..., T,
can be read ( ) Tps oo
Compound term 1., VO T Ty s v of and
Y T4 -+ T, from its use in conjunction
and adding when nec-
essary to avoid ambiguity)
Predicate abstract [e]l, 0] X;...X,
Functor abstract [‘t:],(l Y" Tforx,..x,
Universal Vx 0x x 0x
quantification everything, x, is such that 6x
Restricted (¥x: px) Ox x st px 0x
universal everything, x, such that px is such that 6x
Existential 3Ix Ox X 0x
quantification something, x, is such that 6x
Restricted (3x: px) Ox x st px 0x
existential something, x, such that px is such that 6x
Definite Ix px X st px
description the thing, x, such that px

that (...it...)

At least 2 Cs are such

that (... they ...)

(Ax:xisaC)@y:yisaCA~y=x)(...X... A ...

.

)

Exactly 1 Cis such
that (...it...)

or

Ax:xisaC)(...x... A(Vy:yisaCA...y...)x=Yy)

(Ax:xisaC)(...x...A(Vy:yisaCA~y=x)" ...y...

)

Definite descriptions (on Russell’s analysis)

The C is such
that (...it...)

(AxixisaCA(VMy:~y=x)"yisaC)...x ...

or

(Ix:xisaCAVy:yisaC)x=y)...X...
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A.4. Derivation rules

Basic system

Rules for developing gaps

logical form asa asa
resource  goal
atomic 1P
sentence
negation CR RAA
— @ (if ¢ not atomic
& goal is 1)
conjunction Ext Cnj
oAy
disjunction PC PE
ovVy
conditional RC CP
@ —y (ifgoalis 1)
universal Ul UG
Vx 0x
existential PCh NcP
Ix Ox

In addition, if the conditions for applying a rule are met
except for differences between co-aliases, then the rule
can be applied and is notated by adding "="; QED= and
Nc= are examples of this.

Rules for closing gaps
when to close rule
co-aliases  resources  goal
® 9 QED
pand—¢p L Nc
ENV
L EFQ
—v T=0 EC
v —“T=0 1 DC
TV ooy T,—0, PT],..‘En PDI"'Un QED=
TV s T,—0,  PrT, 1 Nc=
~Pv...v,

Detachment rules (optional)
required resources  rule
main auxiliary

0 MPP

eV T T MTT

oVy —Fgor—y MTP

~“(pAy) gory  MPT

Additional rules (not guaranteed to be progressive)

Attachment rules
added resource rule
PAY Adj
Q— VY Wk
oV Yy Wk
—(pAy) Wk
T=V CE
6v,...v, Cng
Ix 0x EG

Rule for lemmas
prerequisite rule
the goal is L LFR

Diagrams
Rules from chapter 2
Extraction (Ext)
PAY PAY n

n Ext
n Ext

€5 :

Conjunction (Cnj)

PAY

n

nCnj| oAy

Quod Erat Demonstrandum (QED)

@ [available]

0} nQED| | ¢




Ex Nihilo Verum (ENV)

—> o
T nENV|[|T

Ex Falso Quodlibet (EFQ)

L L
}; n EFQ
Adjunction (Adj)
(.4‘)'[avai1able] (p (n)
1|1 [available] 1|1 (n)

nAdj| oAy X

Rules from chapter 3

5|_|

@ [atomic] nlP| [o

- @ [ is not atomic]

Lemma for Reductio (LFR)

l
B

|

:|_|
|

nLFR| [ L1

Indirect Proof (IP)

Completing the Reductio (CR)

n CR

e

n

n



Reductio ad Absurdum (RAA)

¢
—>
)
P nRAA| |- ¢
Non-contradiction (Nc)
- ¢ [available] e (n)
¢ [available] P
—
1 n Nc
Rules from chapter 4
Proof by Cases (PC)
VY ovVy n
A
} X n
i
X n
X nPC| |x

VY

n PE

=% @ [available]

VY

=% s [available]

PVy

+

-1 (p

W n

VY

—

n MTP

—

n MTP

Proof of Exhaustion (PE)

OR

H+

—*

@ n

nPE| |eVy

Modus Tollendo Ponens (MTP)

¢ (0
VY n
Y




Modus Ponendo Tollens (MPT)

@ [available] —
(@AW
n MPT
0
v [available] —
(@A)
n MPT
0
Weakening (Wk)
@ [available]
n Wk
0
Y [available]
n Wk
0

® (n)
(@AY n
Sy

0

W (n)
(@AY n
=%

0

() (n)
;;;.v y X

0

Y (n)
;WVX

Weakening (Wk)

-* ¢ [available]
n Wk
0
—* \ [available]
n Wk

Rules from chapter 5

(S

K ()

“@Aw) X
19
G

S@Aw) X

Rejecting a Conditional (RC)

-y o>y n
—> @ n
v
. 1 n
1 nRC||L



Conditional Proof (CP)
—>

¢ -y nCP| [¢—w

Modus Ponendo Ponens (MPP)

@ [available] — () (n)
i -y n
nMPP | |y
0
Modus Tollendo Tollens (MTT)
=%y [available] —> -*y ()
¢y P>y n
nMTT | | -* ¢
0 0

Weakening (Wk)
y [available] —> y (n)

nWkl|lo—=y X

Weakening (Wk)
—* ¢ [available] — -+ @ (n)

nWk| |-y X

Rules from chapter 6
Equated Co-aliases (EC)

[t and v are co-aliases] [t and v are co-aliases]

T=0 n EC

Distinguished Co-aliases (DC)

[tandv [tandv
are co-aliases] are co-aliases]
T=0 aT=0 (n)

1 n DC



QED given equations (QED=)

[11 T, and
0;...0, are
co-alias series]

Prl...'cn

Pol...on

n QED=

[ty...7T, and
0.0, are
co-alias series]

Pr...7, (n)
o
Pnl. v,

Note: Two series of terms are co-alias series when their corresponding members

are co-aliases.

Non-contradiction given equations (Nc=)

[ty...7, and Vy...0,
are co-alias series]
- P'cl...'rn
Pul...on
1

n Nc=

[rl...'cn anc.l ;...
are co-alias series]

- Pr...T, (n)

Po,...0 (n)

Note: Two series of terms are co-alias series when their corresponding members

are co-aliases.

Co-alias Equation (CE)

[tandvo
are co-aliases]

n CE

[tandvo
are co-aliases]

[rl...rn anc.l ;...
are co-alias series]

91‘1...1:n

¢

Congruence (Cng)

n Cng

[ty...7, anc.l 0.0,
are co-alias series]

0t,...1, (n)
901 0, X

Note: 6 can be an abstract, so 0t...7, and v, ...v, are any formulas that differ
only in the occurrence of terms and in which the corresponding terms are

co-aliases.

Rules from chapter 7

Universal Instantiation (UI)

VX ...X...

n Ul

VX ..X... Tn

Universal Generalization (UG)

VX ... X...

n UG




Rules from chapter 8

Ix Ox

Proof by Choice (PCh)
Elx 0x Elx 0x
Ba
—>
%
¢ ¢
nPChl .-
Non-constructive Proof (NcP)
vx -#
—>
L
3Ix Ox
nNcP | .-

Existential Generalization (EG)

ot

ot
—> EG||3x0x
®

¢
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