|
Ix Wx: 2
| │∃x (Ax ∧ Wx) | 1 |
| │¬ ∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) | (16) |
| ├─ | |
| │ⓐ | |
| ││Aa ∧ Wa | 2 |
| │├─ | |
2 Ext | ││Aa | (6) |
2 Ext | ││Wa | (5), (8), (12) |
| ││ | |
| ││ⓑ | |
| │││Wb | |
| │││∀y (Wy → b = y) | a:4 |
| │││Ix Wx = b | a, b—IxWx, ∗ |
| ││├─ | |
4 UI | │││Wa → b = a | 5 |
5 MPP | │││b = a | a—b—IxWx, ∗ |
| │││● | |
| ││├─ | |
6 QED= | │││A(Ix Wx) | 3 |
| ││ | |
| │││∀x (Wx → ∃y (Wy ∧ ¬ x = y)) | a:7 |
| │││Ix Wx = ∗ | a, c, IxWx—∗ |
| ││├─ | |
7 UI | │││Wa → ∃y (Wy ∧ ¬ a = y) | 8 |
8 MPP | │││∃y (Wy ∧ ¬ a = y) | 9 |
| │││ | |
| │││ⓒ | |
| ││││Wc ∧ ¬ a = c | 10 |
| │││├─ | |
10 Ext | ││││Wc | (12) |
10 Ext | ││││¬ a = c | (13) |
| ││││ | |
| │││││¬ A(Ix Wx) | |
| ││││├─ | |
12 Adj | │││││Wc ∧ Wa | X, (13) |
13 Adj | │││││¬ a = c ∧ (Wc ∧ Wa) | X, (14) |
14 EG | │││││∃y (¬ y = c ∧ (Wc ∧ Wy)) | X, (15) |
15 EG | │││││∃x ∃y (¬ y = x ∧ (Wx ∧ Wy)) | X, (16) |
| │││││● | |
| ││││├─ | |
16 Nc | │││││⊥ | 11 |
| │││├─ | |
11 IP | ││││A(Ix Wx) | 9 |
| ││├─ | |
9 PCh | │││A(Ix Wx) | 3 |
| │├─ | |
3 SD | ││A(Ix Wx) | 1 |
| ├─ | |
1 PCh | │A(Ix Wx) | |
|