
7.5. General arguments
7.5.0. Overview
We  have  answered  questions  about  entailment  concerning  truth-functional
compounds by turning them into questions about their immediate components
(or sentences contradictory to those components).  In the case of  quantified
sentences,  the components are usually not sentences,  so we instead look at
predications of the predicate that has been quantified.

7.5.1. Conjunction and universal quantification
An unrestricted universal sentence behaves like a conjunction of sentences
saying of each particular thing what the universal says of everything.

7.5.2. Instantiation
The laws of entailment for unrestricted universals treat them as conjunctions
of their instances for particular things. However, a universal behaves like a
conjunction with indefinitely many conjuncts: it entails each of its instances
but cannot be replaced by them.

7.5.3. Generalization
The instances of a universal are all predications of the same abstract, and
this makes it possible to establish a universal by way of a single “typical”
instance.

7.5.4. Adding instances
Because a universal  has indefinitely many instances,  we cannot consider
each in a derivation. Instead, we exploit a generalization only partially to
extract those instances that are relevant to the argument we are considering.

7.5.5. General arguments in derivations
To insure that we establish an instance of a universal in a way that admits
generalization, we construct it for a new term, and we allow this term to
have only a limited scope in the generalization.

7.5.6. Syllogisms
The rules for the unrestricted universal enable us to establish, among other
things, the validity of arguments from a special class traditionally labeled
“syllogisms” (in a narrow sense of the term).
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7.5.1. Conjunction and universal quantification
The truth conditions of generalizations are analogous to those of conjunctions.
So,  before  looking at  laws and rules  for  the  universal  quantifiers,  we will
spend some time comparing these operations to conjunction.

Consider the pair of sentences analyzed below.

Every permanent member of the Security Council supported the resolution
(∀x: Mxs) Sxl

Britain, China, France, Russia, and the U. S. supported the resolution
Sbl ∧ Scl ∧ Sfl ∧ Srl ∧ Sul

M: [ _ is a member of _ ]; S: [ _ supported _ ]; b: Britain; c: China; f: France; l: the
resolution; r: Russia; s: the Security Council; u: the U. S.

These two sentences have the same truth value, but they are not equivalent be-
cause in a different possible world the membership of the Security Council
could be different.

However, consider the sentence

Each of Britain, China, France, Russia, and the U. S. supported the resolution

This could be analyzed in the same way as the second sentence above, but it
could be analyzed also as a restricted universal whose restricting predicate is [
_ is Britain, China, France, Russia, or the U. S.]—switching to or here for
the same reasons that lead to us switch in handling all boys and girls (see
7.3.2). A full analysis would give us the following:

(∀x: x=b ∨ x=c ∨ x=f ∨ x=r ∨ x=u) Sxl

And this universal is equivalent to the conjunction because either way we say
that the predicate [ _ supported l] is true of the reference values of b, c, f, r,
and u.

Each of the universals (∀x: ρx) θx and ∀x θx says that the predicate θ is true
of each value in the domain over which it generalizes. Only in special cases
(like the example just above) will either be equivalent to a conjunction

θτ  ∧ θτ  ∧ … ∧ θτ

that predicates θ of each of a series of terms. But it can still be enlightening to
compare universals to such conjunctions, so we will develop some vocabulary
for doing so. We will do this only for unrestricted universals since it is those
that we will focus on in derivations.

Let us say that an instance for a term τ of a universal ∀x θx is a sentence θτ
that applies the quantified predicate θ to τ—that is, an instance of a universal
∀x … x … has the form … τ …, the result of putting τ in place of the occur-
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rences of that variable x that are bound to the quantifier ∀x. An instance asserts
of a single reference value what the universal asserts of everything in its do-
main.

If every reference value is the extension of some term, an unrestricted uni-
versal ∀x θx will be true if and only if each of its instances θτ is true. This
means that it will behave like a conjunction of these instances. But this is not
to say that we could work with such a conjunction in place of the universal be-
cause, given just one unanalyzed term and one functor, there will be infinitely
many compound terms and infinitely many instances of any universal whose
quantifier actually binds a variable. For example, given an unanalyzed term a
and functor f, the language will contain the terms

a, fa, f(fa), f(f(fa)), …

and a universal ∀x Px will have the instances

Pa, P(fa), P(f(fa)), P(f(f(fa))), …

Although it is possible to make sense of infinite conjunctions if there is no ex-
pectation that it be possible to write them down, our references to conjunctions
of all instances will be only a figure of speech used to motivate and guide our
treatment.

For an unrestricted universal to behave like a conjunction of its instances,
every reference value must be the value of some term. So let us develop the
figure of speech further by imagining that the ID of each reference value in a
range R is added as a further term of our language. We will speak of this oper-
ation as expansion by R. If we expand the language by the range R of a struc-
ture, an unrestricted universal ∀x θx will be true in that structure if and only if
all its instances are true.

Glen Helman 01 Aug 2011



7.5.2. Instantiation
The special features of the laws of entailment we will state for the universals
can be traced to two sources. One is the analogy with conjunction we have just
explored. The other is a pair of differences between what we have said about
universals and what we may say about ordinary conjunctions.

The first of these differences lies in the fact that the principles of entailment
for universals must hold for all structures and thus cannot depend on special
assumptions about the range R of reference values. This means, in particular,
that the set of “components” of a universal (i.e., its instances in an expansion
by R) must be left indefinite while an ordinary conjunction has a definite and,
indeed, finite set of components.

This would make universals difficult to deal with were it not for their sec-
ond difference from conjunctions. The components of an ordinary conjunction
can be any pair of sentences so they need have nothing in common, and we
must consider them individually; but the instances of a universal all follow the
same pattern, differing only in occurrences of a single term, so we can speak
of them all together by speaking of this pattern. We will look at the effects of
this second difference more closely in the next subsection when we consider
the role of universals as conclusions.

For the moment, we will concentrate on the role of universals as premises.
We can get laws for universals, either as premises or as conclusions, by taking
certain laws for conjunctions as our model and modifying them to take account
of the differences just outlined. In the case of universals as premises, the laws
for conjunction we will work from are the following:

φ ∧ ψ ⊨ φ
φ ∧ ψ ⊨ ψ

These  are  principles  that  were  labeled  left  and  right  extraction  in  2.2.1 .
Although they led us to the rule of Extraction, they are less far reaching than
the law for conjunction as a premise that lies behind the use of that rule. The
fact that we focus on them rather than that stronger principle is due to the first
difference between universals and conjunction: the law for conjunction as a
premise says we can replace a conjunction by its components, but there is no
hope of doing anything like this for a universal since it has no one definite set
of instances.

When taken together, the laws above say that a conjunction implies each of
its components. The analogous claim about an unrestricted universal is that it
implies each of its instances. This is a principle known as universal instantia‐
tion:



∀x θx ⊨ θτ for each term τ

Or, using an alternative notation, ∀x … x … ⊨ … τ … . For example, the sen-
tence Everything is fine and dandy implies the claim The weather is fine
and dandy as well as other sentences of the form τ is fine and dandy.

The principle of universal instantiation is not quite what we will take as our
account of the unrestricted universal as a premise. We combine it with the law
of lemmas to get a principle that allows us develop a derivation by adding any
instance of a universal premise as a further resource.

LAW FOR THE UNRESTRICTED UNIVERSAL AS A PREMISE. Γ, ∀x θx ⊨ φ if and
only if Γ, ∀x θx, θτ ⊨ φ (for any set Γ, sentence φ, predicate θ, and term τ)

Since the only if part of this claim follows from the monotonicity of entail-
ment, the key property of the universal lies in the if part: an argument with a
universal as a premise is valid if the result of adding an instance as a further
premise is valid. That is, when establishing the validity of an argument with
universal premise, we are free to add any instance as a further premise. Note
that the instance is added as a further premise. This is required for the only if
part to be true. We cannot drop the universal because we cannot expect its con-
tent to be exhausted by a single instance: Everything is fine and dandy has
implications for things other than the weather. As you might expect, our inabil-
ity to drop the universal from the premises will force some complications in
the way we speak about the exploitation of resources in a derivation. We will
consider these when we state the actual derivation rule in 7.5.4 .

Although we will not be considering derivations for restricted quantifiers in
their own right, arguments involving them can be captured by way of their re-
statements using unrestricted quantifiers, and the principles governing these
quantifiers can be derived directly from those governing the unrestricted quan-
tifiers and the conditional. In the case of the restricted universal as a premise,
we have the following

Γ, (∀x: ρx) θx ⊨ ⊥ if and only if both Γ, (∀x: ρx) θx ⊨ ρτ
and Γ, (∀x: ρx) θx, θτ ⊨ ⊥

Γ, (∀x: ρx) θx, ρτ ⊨ φ if and only if Γ, (∀x: ρx) θx, ρτ, θτ ⊨ φ
Γ, (∀x: ρx) θx, ¬  θτ ⊨ φ if and only if Γ, (∀x: ρx) θx, ¬  ρτ, ¬  θτ ⊨ φ

The first is the key principle. It reflects aspects of the laws for unrestricted uni-
versals and for conditionals as premises. It is from the latter that it derives its
restriction to reductio arguments. Notice that the two entailments on the right
combine to show that the term τ refers to a counterexample to the universal,
with the first showing that reference value of τ is in the domain and the second
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reducing to absurdity the claim that this reference value has the attribute. The
other two principles reflect aspects of the modus ponens and modus tollens: if
we know that τ refers to something in the domain of a generalizaiton whose
truth we are assuming, we can add the assumption that this thing has the at-
tribute. On the other hand, if we know that this reference value does not have
the attribute, we can add the assumption that it is not in the domain. In short,
there are three key ways to use a restricted universal assumption: to reduce to
absurdity any assumptions entailing that some term refers to a counterexample,
to show that something has its attribute (when it is assumed to be in the do-
main), and to show that something is not in the domain (when it is assumed
not to have the attribute).
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7.5.3. Generalization
Next let us look at the role of an unrestricted universal as a conclusion. Here
we have the law for conjunction as a conclusion to use as a model.

Γ ⊨ φ ∧ ψ if and only if Γ ⊨ φ and Γ ⊨ ψ.

We have to expect changes, though, because that law gives separate considera-
tion to each of the two components of the conjunction and we cannot expect to
do this for the instances of a universal. Still, the law for conjunction points us
in the right direction: we should look for some way of connecting the validity
of a universal conclusion with the validity of arguments having its instances as
conclusions.

A connection like this is used in geometric proofs when we begin by saying,
for example, “Let ABC be a triangle,” and then go on to use our conclusions
concerning ABC to justify general conclusions about all triangles. That is, we
sometimes establish universal claims by generalizing from particular instances
of them.

Clearly not every generalization from a particular instance will  be legiti-
mate. Certain premises may entail The Empire State Building is tall without
entailing Every building is tall. In a geometric argument concerning a trian-
gle ABC, we limit the information that we may use about the instance that we
are considering to what we may establish concerning any triangle. For exam-
ple, we ignore the fact we are using a diagram that shows ABC as acute or ob-
tuse, and we probably avoid drawing it as a right triangle or an isosceles trian-
gle to begin with.

These restrictions are sometimes expressed by saying that we are arguing
about an arbitrary or an arbitrarily chosen triangle. The idea is that what you
say about the triangle ABC should hold for a triangle chosen at random or even
one chosen by your worst enemy. Let us call an argument like this a general
argument since it argues for an instance in a way that will hold generally for
values in the domain of a universal. The law we are looking for should say that
an unrestricted universal is a valid conclusion from given premises if we can
establish an instance of it by a general argument. But we need to make this
more precise. In particular, we need to say how we can recognize a general ar-
gument just by looking at the logical forms of the sentences it involves.

If we were to give instructions for making a general argument about a trian-
gle ABC, one thing we might say is that we should not use any special assump-
tions about ABC. If we are going to generalize about triangles, we may assume
that ABC is a triangle but we should not assume that it is acute or obtuse. This
is just another way of saying that we should not use special information about



this triangle, but it suggests an idea we can apply to arguments when we know
only their logical forms: we may can ask that the term on which we generalize
not appear in special assumptions.

Since we are considering arguments for unrestricted universals, we must be
able to generalize not just  about triangles,  or some other limited class,  but
about everything; and that means we should use no assumptions at all involv-
ing the term from which we wish to generalize. That is, we will allow general-
ization from an instance θτ to a universal ∀x θx only when τ does not appear in
our assumptions. For reasons we will consider more fully below, we will re-
quire also that τ not appear in the predicate θ and, moreover, that it not only
not appear in the assumptions or θ but in fact share no vocabulary with them.
These restrictions are designed to insure that the term τ have no special tie to
either the conclusion ∀x θx or the assumptions on which we base this conclu-
sion; for any such tie would prevent an argument stated for τ from being truly
general.

Even setting aside these further requirements, you may have noticed a cou-
ple of jumps here.  Saying we have an assumption containing τ  is  different
from saying we have used that assumption, and saying that τ appears in an as-
sumption is different from saying that the assumption provides special infor-
mation about τ. For example, The weather is fine and dandy and so is ev-
erything else mentions the weather without constituting a special assumption
about it (since the same assumption is made about everything). Still, the re-
quirement that the term from which we generalize not appear in the assump-
tions is easy to check, and using it will not limit the entailments we can estab-
lish, only the terms we can use to establish them.

Our law stating the conditions under which a universal can be validly con-
cluded incorporates all the requirements we have been considering:

LAW FOR THE UNRESTRICTED UNIVERSAL AS A CONCLUSION. Γ ⊨ ∀x θx if
and only if Γ ⊨ θα (for any set Γ and predicate θ and any unanalyzed term
α that appears in neither Γ nor θ)

Let us say that an unanalyzed term appearing in neither the premises or con-
clusion of an argument is independent with respect to that argument. In this
vocabulary, the law says that an argument with an unrestricted universal con-
clusion is valid if and only if the premises entail an instance of the universal
for an independent term. When arguments are stated in English, phrases like
let α be arbitrary or let us choose α arbitrarily function as commitments
to use the term α as an independent term.

The crucial part of this law is the if claim since the only-if part says only



that a universal cannot be a valid conclusion unless any instance for an inde-
pendent term is also valid, something that follows from the principle of univer-
sal instantiation. The key idea behind the truth of the if part is that, because
the independent term α is unanalyzed and does not appear in either Γ or θ, it
could be made to refer to anything without affecting the premises Γ  or the
predicate θ. And this means that, if the premises suffice to entail θα, they suf-
fice to show that θ is true of everything—i.e., that the universal ∀x θx is true.
Indeed, given a proof of θα from the premises Γ, we could construct a proof of
θτ for any term τ simply by replacing every occurrence of α by τ, our restric-
tions on α insuring that the premises Γ and θ remain unchanged and that α had
no ties to them that are not shared by τ.

This  argument  recalls  the  comparison  of  the  universal  with  conjunction.
Since a conjunction can have any components, we must argue for each compo-
nent individually and, since a conjunction has only two components, there is
nothing to keep us from doing this. On the other hand, there would be no hope
of providing a separate argument for each instance of a universal since, in gen-
eral, there is no way of setting a limit on the number of instances it has. How-
ever, there is no need to consider each of these instances individually since
they all have the same form, so an argument establishing an instance for one
independent term can set the pattern for all of the rest.

A principle for the restricted universal as a conclusion follows from this law
and the law for the conditional as a conclusion:

Γ ⊨ (∀x: ρx) θx if and only if Γ, ρα ⊨ θα
(where α is unanalyzed and does not appear in Γ, ρ, or θ)

That is, we can establish a restricted generalization by showing that an arbi-
trarily chosen object has the attribute when we assume that it is in the domain.

Glen Helman 01 Aug 2011



7.5.4. Adding instances
The implementation of the laws for universal quantifiers is fairly straightfor-
ward if we use derivations only in a positive way—i.e., use them only to show
that entailments hold. Discussion of their use to show that entailments fail will
be postponed until 7.7. Also, as already noted, we will consider only the unre-
stricted universal. Rules for restricted universals present no special difficulties,
and, like the principles for the restricted universal discussed above, they can be
seen as simply abbreviations for combinations of rules for the unrestricted uni-
versal and the conditional.

The exploitation rule for universals, which we will call Universal Instantia‐
tion (UI), is shown in Figure 7.5.4-2. It can be used to add any instance of the
universal as a further resource, annotating the universal to indicate the term for
which an instance was added.

│⋯
│∀x … x …
│⋯
││⋯
││
││
│├─
││φ
│⋯

→

│⋯
│∀x … x … τ:n
│⋯
││⋯

n UI││… τ …
││
│├─
││φ
│⋯

Fig. 7.5.4-2. Developing a derivation at stage n by exploiting an unre‐
stricted universal for a term τ.

Although we record the use of this rule alongside the universal, the universal
resource is not rendered completely inactive. The rule provides only a partial
exploitation, extracting the content of the universal only for the single term τ.
Since a universal does not bring with it any definite set of instances, it will
never be rendered completely inactive, no matter how often this rule is used.
Still,  each use of  the rule does exploit  the universal  for  one term, and we
record this by noting both the stage number and the term for which the univer-
sal has been exploited.

This information is used (much in the way we have used marking by stage
numbers) to judge when a universal is active for a given term. To be active for
a given term in a gap, a universal must be available in the gap and must not
have been exploited for the term in the course of narrowing the gap. Specifi-
cally, an available universal is inactive for τ in a gap if it is marked by a pair τ:n
and all scope lines to the left of some resource or goal entered at stage n con-
tinue unbroken to the left of the gap. Although an available universal is always
active, it may not be active for all terms, and a term for which we apply the ex-



ploitation rule above should be one for which the universal is still active.
As we will see in 7.7.4 , it is legitimate to limit the use of this rule to terms

appearing in the available resources and goals of the gap. These are the same
terms from which we form alias sets and it will be enough to exploit a univer-
sal for at least one term from each alias set.

Occasionally, no terms will appear in the initial premises and conclusion
and none will be introduced by other rules. When this is so, the exploitation
rule above may be used to introduce a new unanalyzed term into the deriva-
tion.  For example,  the premises and conclusion of the following derivation
above contain no terms at all, so there would be no way of beginning it if we
did not instantiate one of them for a new term.

│∀x Fx a:1
│∀x ¬ Fx a:2
├─

1 UI│Fa (3)
2 UI│¬ Fa (3)

│●
├─

3 Nc│⊥
This is the only sort of case in which instances need be added for terms new to
the gap being developed.

That we ever instantiate for terms new to the gap reflects the assumption
built into our system that there is at least one reference value. The derivation
above shows one consequence of this assumption—namely, that Everything
is finished and Everything is unfinished are inconsistent. Clearly, if there is
anything at all,  then these two sentences cannot both be true. On the other
hand, if we were to drop the assumption that there is something, both sen-
tences could be true. For generalizations are false only when they have coun-
terexamples; and, in a world in which there was nothing, there would be noth-
ing to serve as a counterexample to either Everything is finished or Every-
thing is unfinished. The assumption that there is something is perhaps the
only assumption typically regarded as part of deductive logic that might also
be regarded as factual.

At the other extreme, use of UI even to instantiate for terms already in the
gap can introduce new terms when we instantiate generalizations containing
functors. For example, instantiating ∀x P(fx) for the term a will give us P(fa),
which contains the term fa. This new term may be used also to instantiate the
generalization, giving us P(f(fa)), which contains the term f(fa)—and so on. As
we will see in 7.7, this is one aspect of a general feature of the deductive logic
for generalizations that will sometimes keep a derivation from ever reaching
an end. That is not our concern now, but the possibility of going on forever in



the application of rules shows that we can no longer wait to apply rules fully
before checking to see if a gap closes. And, because a large number of applica-
tions of instantiation may be possible,  it  is  wise to select,  from among the
terms with which we might instantiate a generalization, those that seem most
likely to help us close a gap.

The following derivation keeps universal  instantiation to  a  minimum re-
quired to close its gap. Only the main quantifier is removed with each use of
UI, so three uses are required to reach the bare predication Rabc. Only two
more are needed to reach Racc but three would have been required to reach a
second predication, such as Rccc, that had a different term in the first place af-
ter R.

│∀x ∀y ∀z Rxyz a:1
├─

1 UI │∀y ∀z Rayz b:2, c:4
2 UI │∀z Rabz c:3
3 UI │Rabc (6)
4 UI │∀z Racz c:5
5 UI │Racc (6)
6 Adj │Rabc ∧ Racc (7)

│●
├─

7 QED│Rabc ∧ Racc
On the other hand, a full use of instantiation for the terms appearing in the
conclusion would have lead to 3 + 3×3 + 3×3×3 = 39 uses of UI (i.e., three to
exploit the premise for a, b, and c, three more exploitations for each of the
three resources that result, and finally three more for each of the nine resources
added in that way). A derivation is not damaged by extra uses of UI any more
than it is damaged by using Ext to add conjuncts that are not needed later. But,
while adding all conjuncts as resources whenever a conjunction was exploited
presented no practical problem, using UI in all ways possible can lead to un-
manageably large derivations even for premises that are fairly simple.
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7.5.5. General arguments in derivations
In order to manage general arguments in our system of derivations, we need a
further sort of scope line. The portion of a derivation that constitutes a general
argument will be marked by a scope line that is flagged by the independent
term on which we generalize (as shown in Figure 7.5.5-1).

│⋯
│ⓐ
││
││⋯
││
│⋯

Fig. 7.5.5-1. A veil of ignorance flagged by the independent term a.

This flagging declares that the term is independent. Indeed, we will require
that a term flagging a scope line appear only to its right, so the scope line will
mark the scope of the term’s use. In either form, the requirement is designed to
insure that the independent term maintains no ties to the outside of the general
argument so that, within the argument, it might refer to anything at all. For this
reason, we will speak of a scope line flagged by a term as a veil of ignorance.

The limitation of the appearance of the independent term to the portion of
the derivation marked by its scope line is more than is necessary to stay in ac-
cord with the laws for universals as conclusions. They require only that the
term not appear in either the goal or the active resources of the gap that the
vertical line spans, but we will never run short of terms and the stronger re-
quirement is far easier to check.

Now, let us look at the planning rule for universal goals.  It  is known as
Universal Generalization (UG) and is shown in 7.5.5-2.

│⋯
││⋯
││
││
││
││
│├─
││∀x … x …
│⋯

→

│⋯
││⋯
││ⓐ
│││
││├─
│││… a … n
│├─

n UG││∀x … x …
│⋯

Fig. 7.5.5-2. Developing a derivation at stage n by planning for an unre‐
stricted universal; the independent term a may be any unanalyzed term

that is new to the derivation.

We try to reach our goal by a general argument, so we choose as our indepen-
dent term an unanalyzed term a that is new to the derivation. An instance of ∀x



…x… for the term a is the goal of the general argument, and further develop-
ment of the gap lies on the other side of a veil of ignorance concerning that in-
dependent term.

The short derivation shown below illustrates this rule. It shows that, if a re-
lation R is universal in the sense of holding of any pair of things, then it is re-
flexive.

│∀x ∀y Rxy a:2
├─
│ⓐ

2 UI ││∀y Ray a:3
3 UI ││Raa (4)

││●
│├─

4 QED││Raa 1
├─

1 UG │∀x Rxx
At the initial stage here, there is no vocabulary from which a term may be
formed—and UI should be used to  introduce new terms only as  a  last  re-
sort—so we apply the planning rule to the universal conclusion. After applying
it, we have vocabulary for use with the exploitation rule, and we apply that
rule twice for the term a. It would have been legitimate to exploit either uni-
versal resource for any other term τ as well, but that would not have contrib-
uted to closing the gap.

The following derivation illustrates the limitations on the scope of a term.
│∀x Rax c:2
│∀x ∀y (Rxy → ∀z Ryz) a:3
├─
│ⓒ

2 UI ││Rac (5)
3 UI ││∀y (Ray → ∀z Ryz) c:4
4 UI ││Rac → ∀z Rcz 5
5 MPP││∀z Rcz b:6
6 UI ││Rcb (7)

││●
│├─

7 QED││Rcb 1
├─

1 UG │∀x Rxb
The independent term used here could not have been either a or b since both
appear beyond the scope line of the general argument, one in a premise and the
other in the conclusion.

The  derivation  shown  here  minimizes  the  use  of  UI,  and  the  particular
choice of instances needed to do this might not be obvious.  Once the first
premise is instantiated for c, the next two instantiations are designed to set up
the use of MPP at stage 5, but it is probably less obvious that c is the best
choice for the initial instantiation. It is fine to experiment, and there is no need



to back up if you do not make the best choice. A derivation is never damaged
by extra uses of UI; and, when we go on to use derivations to show the failure
of entailments involving generalizations in 7.7 , we will require that, before a
derivation can reach a dead end, any universal resource must be exploited for
at least term from each alias set.
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7.5.6. Syllogisms
We can now establish the validity of the forms of argument that are syllogisms
in the narrower of the traditional senses of the term. Syllogisms in this sense
are two-premised arguments whose component sentences are analyzed as re-
stricted generalizations or their denials with quantified and restricting predi-
cates that are unanalyzed. A syllogism must contain exactly three such predi-
cates, and each of these predicates must appear in exactly two of the compo-
nent sentences. The generalizations that are asserted or denied in the premises
and conclusion can be affirmative or negative but all must be direct.

The constraints on predicates leave four possible figures  distinguished by
whether each of restricting or quanitified predicates of the conclusion appears
in the same or different role in the premise in which it also appears. For each
choice of figure, there are 4 × 4 × 4 = 64 moods reflecting the choice of a form
of sentence (an assertion or denial of an affirmative or negative generaliza-
tion). There are thus 256 syllogisms; and, of these, 15 are valid. This number
is small enough that they could all be named, and mnemonic names were in-
troduced for them in the middle ages. These names were constructed to display
the mood of the syllogism in their choice of vowels and, in some of their con-
sonants, ways of establishing the validity of some syllogisms on the basis of
others.

Below is a derivation for the best known of these patterns. The name of this
syllogism, Barbara, is one of the few that does not sound like the artificial con-
struction it is.

│∀x (Mx → Qx) a:5
│∀x (Rx → Mx) a:3
├─
│ⓐ
│││Ra (4)
││├─

3 UI │││Ra → Ma 4
4 MPP│││Ma (6)
5 UI │││Ma → Qa 6
6 MPP│││Qa (7)

│││●
││├─

7 QED│││Qa 2
│├─

2 CP ││Ra → Qa 1
├─

1 UG │∀x (Rx → Qx)
The letters chosen for predicates in the analysis are designed to highlight the
figure. Notice that the restricting and quantified predicates of the conclusion
(R and Q) play the same roles when they appear in the premises. The third



predicate (M) is traditionally known as the middle term. An example is All hu-
mans are mortal,  All  philosophers are human  ⊨  All  philosophers are
mortal.

Middle terms do not always stand between the other two in the range of
their application (as does human between philosopher and mortal); but, in all
valid syllogisms, the middle term nevertheless provides the basis for the rela-
tion that the conclusion asserts between the other two predicates. It can thus be
understood to connect these predicates and stand between them in this sense.

This derivation also provides an example of the form that will be taken by
arguments involving restricted universals  when they are reformulated using
unrestricted quantifiers. Were we to have special rules for restricted universals,
one kind of exploitation rule would have the effect of the sort of combination
of UI and MPP seen in stages 3 and 4 and again in stages 5 and 6 above. The
planning role for a restricted universal goal would have the effect of the sort of
combination of UG and CP in stages 1 and 2; in short, it would introduce a
general argument with a supposition that predicated the restricting predicate of
the generalization to the independent term and a goal that predicated the quan-
tified predicate to the same term.

Glen Helman 01 Aug 2011
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7.5.s. Summary
The universal quantifiers and conjunction may both be used to say that each
of a group of claims is true. This overlap in function indicates an analogy
between these logical constants that can be seen also in the laws of entail-
ment for them. The analogue to a component of a conjunction is an instance
of a universal, a sentence in which the universal’s quantified predicate is
predicated a term. A universal is rarely equivalent to an actual conjunction
of its instances, but for a given referential range R, it behaves like a possibly
infinite conjunction of instances in a language enriched by adding the IDs of
all values in R—i.e., it behaves like the conjunction of its instances in an
expansion  of the language by R. When we do not fix the range R, a univer-
sal ∀x θx is not associated with any definite set of instances, but we still
know that its instances θτ are all predications of θ; and these two features
are reflected in the laws of entailment for universals.

In the case of an unrestricted universal, we can state a principle of universal
instantiation , which says that the universal implies each of its instances; and
we may use this with the law for lemmas to get a law for this sort of univer-
sal as a premise .

We can describe the role of an unrestricted universal as a conclusion by us-
ing the idea of a general argument , in which an instance of a generalization
is established in such a way that we may generalize  from it to a universal
claim. It is sufficient for an argument to be a general one that the term for
which  the  instance  is  given  not  be  compound,  that  it  not  appear  in  the
premises, and that it not appear in the generalization we wish to conclude.
Such a term is an independent term  with respect to the argument. The law
for the unrestricted conditional as a conclusion  then tells us that we can
conclude a universal  from given premises when we can conclude an in-
stance of it for an independent term.

The  rule  for  exploiting  universal  resources—Universal  Instantiation
(UI)—should be used only for terms already appearing in the gap—pro-
vided there is  at  least  one such term. The exploitation of  universals  can
never be considered complete, and an available universal resource is always
an active resource; but exploitation rules do render universals inactive for
particular terms and should be applied only to terms for which the universal
remains active.

In implementing the laws for universals as conclusions, we flag  scope lines
by terms that are being used as independent terms; such terms can appear



6

only to the right of their scope lines. We plan for an unrestricted universal
goal by planning to use the rule Universal Generalization (UG) . It directs us
to set up a flagged scope line with an instance for the independent term as a
new goal.

In its narrowest use, the term syllogism  refers to one of a group of 256 logi-
cal forms of two-premised arguments involving generalizations and their de-
nials.  Syllogisms are traditionally classified according to the roles in the
premises of restricting and quantified predicates of the conclusion (the fig-
ure  of the syllogism) and the logical form of each of the premises and con-
clusion (the mood  of the syllogism). A syllogism contains one further predi-
cate, the middle term, that, in a valid syllogism, provides the link between
the predicates in the conclusion. The best known syllogism, named Bar-
bara , is the only valid syllogism whose premises each assert an affirmative
generalization.

Glen Helman 01 Aug 2011



7.5.x. Exercise questions
1. Give the instances of each of the following for the terms a, b, and c (re-

membering that you will drop the main quantifier, and only the main one,
when giving an instance):

 a. ∀x Fx
 b. ∀y Fy
 c. ∀x Rxa
 d. ∀x Saxb
 e. ∀x ∀y Rxy
 f. ∀x (Fx → Gx)
 g. ∀x (Fx → Gd)
 h. ∀x (Fx → ∀y Rxy)
 i. ∀x (Fx → ∀x Rxx)
2. Use the system of derivations to establish each of the following. You may

use detachment and attachment rules.
 a. ∀x Fx, ∀x (Fx → Gx) ⊨ Ga
 b. ∀x (Fx ∧ Gx) ⊨ Fa ∧ Gb
 c. ∀x Rxa, ∀x (Rbx → Gx) ⊨ Ga
 d. ∀x ∀y Rxy, ∀x (Rxx → Gx) ⊨ Ga
 e. ∀x ∀y Rxy ⊨ (Rab ∧ Rbb) ∧ Rca
 f. ∀x Fx, ∀x (Fx → Gx) ⊨ ∀x Gx
 g. ∀x (Fx ∧ Gx) ≃ ∀x Fx ∧ ∀x Gx
 h. Fa ≃ ∀x (x = a → Fx)
 i. ∀x ∀y Rxy ⊨ ∀y Rya
 j. ∀x ∀y (Rxy → ¬ Ryx) ⊨ ∀x ¬ Rxx
 k. ∀x ∀y (gx = y → Fy) ⊨ ∀x F(g(hx))
3. In the following, certain alternative expressions are enclosed in brackets

and separated by vertical  bars.  Choose one of  each alternative pair  of
premises and one of each alternative pair of words or phrases in the con-
clusion so as to make a valid argument; then analyze the premises and
conclusion and construct a derivation to show that the argument is valid.
You may use detachment and attachment rules.

 a. Every road sign was colored
[Every stop sign was a road sign | Every road sign was a traffic

marker]
[If anything was red, it was colored | If anything was colored,

it was painted]

Every [stop sign | traffic marker] was [red | painted]



 b. No road sign was colored
[Every stop sign was a road sign | Every road sign was a traffic

marker]
[If anything was red, it was colored | If anything was colored,

it was painted]

No [stop sign | traffic marker] was [red | painted]
 c. Only road signs were colored

[Every stop sign was a road sign | Every road sign was a traffic
marker]

[If anything was red, it was colored | If anything was colored,
it was painted]

Only [stop signs | traffic markers] were [red | painted]
 d. Among road signs all except colored ones were replaced

[Every stop sign was a road sign | Every road sign was a traffic
marker]

[If anything was red, it was colored | If anything was colored,
it was painted]

Among [stop signs | traffic markers] all except [red | painted]
ones were replaced

For more exercises, use the exercise machine .

Glen Helman 01 Aug 2011



7.5.xa. Exercise answers

1.    instance for a instance for b instance for c
a. ∀x Fx  Fa  Fb  Fc
b. ∀y Fy  Fa  Fb  Fc
c. ∀x Rxa  Raa  Rba  Rca
d. ∀x Saxb  Saab  Sabb  Sacb
e. ∀x ∀y Rxy  ∀y Ray  ∀y Rby  ∀y Rcy
f. ∀x (Fx → Gx)  Fa → Ga  Fb → Gb  Fc → Gc
g. ∀x (Fx → Gd)  Fa → Gd  Fb → Gd  Fc → Gd
h. ∀x (Fx → ∀y Rxy) Fa → ∀y Ray Fb → ∀y Rby Fc → ∀y Rcy
i. ∀x (Fx → ∀x Rxx) Fa → ∀x Rxx Fb → ∀x Rxx Fc → ∀x Rxx

2. a. │∀x Fx a:1
│∀x (Fx → Gx) a:2
├─

1 UI │Fa (3)
2 UI │Fa → Ga 3
3 MPP│Ga (4)

│●
├─

4 QED│Ga

 b. │∀x (Fx ∧ Gx) a:1, b:3
├─

1 UI │Fa ∧ Ga 2
2 Ext │Fa (5)
2 Ext │Ga
3 UI │Fb ∧ Gb 4
4 Ext │Fb
4 Ext │Gb (5)
5 Adj │Fa ∧ Gb (6)

│●
├─

6 QED│Fa ∧ Gb

 c. │∀x Rxa b:1
│∀x (Rbx → Gx) a:2
├─

1 UI │Rba (3)
2 UI │Rba → Ga 3
3 MPP│Ga (4)

│●
├─

4 QED│Ga



 d. │∀x ∀y Rxy a:1
│∀x (Rxx → Gx) a:3
├─

1 UI │∀y Ray a:2
2 UI │Raa (4)
3 UI │Raa → Ga 4
4 MPP│Ga (5)

│●
├─

5 QED│Ga

 e. │∀x ∀y Rxy a:1, b:3
├─

1 UI │∀y Ray b:2
2 UI │Rab (5)
3 UI │∀y Rby b:4, a:6
4 UI │Rbb (5)
5 Adj │Rab ∧ Rbb X, (7)
6 UI │Rba (7)
7 Adj │(Rab ∧ Rbb) ∧ Rba X, (8)

│●
├─

8 QED│(Rab ∧ Rbb) ∧ Rba

 f. │∀x Fx a:2
│∀x (Fx → Gx) a:3
├─
│ⓐ

2 UI ││Fa (4)
3 UI ││Fa → Ga 4
4 MPP││Ga (5)

││●
│├─

5 QED││Ga 1
├─

1 UG │∀x Gx
 g. │∀x (Fx ∧ Gx) a:3,b:7

├─
││ⓐ

3 UI │││Fa ∧ Ga 4
4 Ext │││Fa
4 Ext │││Ga (5)

│││●
││├─

5 QED│││Fa 2
│├─

2 UG ││∀x Fx 1
│
││ⓑ

7 UI │││Fb ∧ Gb 8
8 Ext │││Fb
8 Ext │││Gb (9)

│││●
││├─

9 QED│││Gb 6
│├─

6 UG ││∀x Gx 1
├─

1 Cnj │∀x Fx ∧ ∀x Gx

 │∀x Fx ∧ ∀x Gx 1
├─

1 Ext │∀x Fx a:3
1 Ext │∀x Gx a:4

│ⓐ
3 UI ││Fa (5)
4 UI ││Ga (5)
5 Adj ││Fa ∧ Ga X, (6)

││●
│├─

6 QED││Fa ∧ Ga 2
├─

2 UG │∀x (Fx ∧ Gx)



  Reusing the term a as the independent term of the second general argument
of the derivation on the left would have caused no logical problems since the
two gaps are separate arguments boxed off from on another; however, we
will hold to the simplest interpretation of the scope line and not allow terms
flagging scope line to appear anywhere outside their indicated scope.

 h. │Fa (3)
├─
│ⓑ
│││b = a a—b
││├─
│││●
││├─

3 QED=│││Fb 2
│├─

2 CP ││b = a → Fb 1
├─

1 UG │∀x (x = a → Fx)

 │∀x (x = a → Fx) a:2
├─
││¬ Fa (3)
│├─

2 UI ││a = a → Fa 3
3 MTT││¬ a = a (4)

││●
│├─

4 DC ││⊥ 1
├─

1 IP │Fa

 i. │∀x ∀y Rxy b:2
├─
│ⓑ

2 UI ││∀y Rby a:3
3 UI ││Rba (4)

││●
│├─

4 QED││Rba 1
├─

1 UG │∀y Rya
Here the term a cannot be used as the independent term of the general argu-
ment because it already appears in the conclusion.

 j. │∀x ∀y (Rxy → ¬ Ryx) a:3
├─
│ⓐ
│││Raa (5), (6)
││├─

3 UI │││∀y (Ray → ¬ Rya) a:4
4 UI │││Raa → ¬ Raa 5
5 MPP│││¬ Raa (6)

│││●
││├─

6 Nc │││⊥ 2
│├─

2 RAA││¬ Raa 1
├─

1 UG │∀x ¬ Rxx



 k. │∀x ∀y (gx = y → Fy) ha:2
├─
│ⓐ

2 UI ││∀y (g(ha) = y → Fy) g(ha):3
3 UI ││g(ha) = g(ha) → F(g(ha)) 5
4 EC ││g(ha) = g(ha) X, (5)
5 MPP││F(g(ha)) (6)

││●
│├─

6 QED││F(g(ha)) 1
├─

1 UG │∀x F(g(hx))
3. a. Every road sign was colored

Every stop sign was a road sign
If anything was colored, it was painted

Every stop sign was painted
  │∀x (Dx → Cx) a:5

│∀x (Sx → Dx) a:3
│∀x (Cx → Px) a:7
├─
│ⓐ
│││Sa (4)
││├─

3 UI │││Sa → Da 4
4 MPP│││Da (6)
5 UI │││Da → Ca 6
6 MPP│││Ca (8)
7 UI │││Ca → Pa 8
8 MPP│││Pa (9)

│││●
││├─

9 QED│││Pa 2
│├─

2 CP ││Sa → Pa 1
├─

1 UG │∀x (Sx → Px)



 b. No road sign was colored
Every stop sign was a road sign
If anything was red, it was colored

No stop sign was red
  │∀x (Dx → ¬ Cx) a:5

│∀x (Sx → Dx) a:3
│∀x (Rx → Cx) a:7
├─
│ⓐ
│││Sa (4)
││├─

3 UI │││Sa → Da 4
4 MPP│││Da (6)
5 UI │││Da → ¬ Ca 6
6 MPP│││¬ Ca (8)
7 UI │││Ra → Ca 8
8 MTT│││¬ Ra (9)

│││●
││├─

9 QED│││¬ Ra 2
│├─

2 CP ││Sa → ¬ Ra 1
├─

1 UG │∀x (Sx → ¬ Rx)
 

 c. Only road signs were colored
Every road sign was a traffic marker
If anything was red, it was colored

Only traffic markers were red
  │∀x (¬ Dx → ¬ Cx) a:5

│∀x (Dx → Mx) a:3
│∀x (Rx → Cx) a:7
├─
│ⓐ
│││¬ Ma (4)
││├─

3 UI │││Da → Ma 4
4 MTT│││¬ Da (6)
5 UI │││¬ Da → ¬ Ca 6
6 MPP│││¬ Ca (8)
7 UI │││Ra → Ca 8
8 MTT│││¬ Ra (9)

│││●
││├─

9 QED│││¬ Ra 2
│├─

2 CP ││¬ Ma → ¬ Ra 1
├─

1 UG │∀x (¬ Mx → ¬ Rx)
 



 d. Among road signs, all except colored ones were replaced
Every stop sign was a road sign
If anything was colored, it was painted

Among stop signs, all except painted ones were replaced
  │∀x ((Dx ∧ ¬ Cx) → Lx) a:8

│∀x (Sx → Dx) a:4
│∀x (Cx → Px) a:6
├─
│ⓐ
│││Sa ∧ ¬ Pa 3
││├─

3 Ext │││Sa (5)
3 Ext │││¬ Pa (7)
4 UI │││Sa → Da 5
5 MPP │││Da (9)
6 UI │││Ca → Pa 7
7 MTT │││¬ Ca (9)
8 UI │││(Da ∧ ¬ Ca) → La 10
9 Adj │││Da ∧ ¬ Ca X, (10)
10 MPP│││La (11)

│││●
││├─

11 QED│││La 2
│├─

2 CP ││(Sa ∧ ¬ Pa) → La 1
├─

1 UG │∀x ((Sx ∧ ¬ Px) → Lx)

Glen Helman 01 Aug 2011
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