
6.3. Arguments involving equations
6.3.0. Overview
The basic principles of entailment for identity are among the most familiar of
logical principles; but, because equations do not have sentential components,
they will play a role in derivations that is quite different from other logical
forms we study.

6.3.1. Logical properties of identity
For our purposes, identity amounts to sameness in all respects, a sameness
that implies interchangeability as input for any predicate or functor.

6.3.2. A law for aliases
Many of the valid conclusions from a group of equations can be captured by
rules telling when terms count as “co-aliases”—i.e.,  aliases for the same
thing.

6.3.3. Derivations for identity
The key rules for identity are rules for closing gaps, but all rules can be ex-
tended to reflect the interchangeability of co-aliases.
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6.3.1. Logical properties of identity
The logical properties of identity come from two sources. One is the kind of
extension we have stipulated for this relation, the pairs of reference values we
say it is true of. The other is the requirement that predicates and functors be
extensional, that the compounds they form be transparent to the reference val-
ues of their component terms. Properties deriving from this second source are
equally properties of the operations of predication and functional application;
but since they are not properties of any particular predicate or functor, it is eas-
iest to ascribe them, along with properties of the first sort, to the logical con-
stant =. We will turn first to the properties of identity alone.

What do we know when we know that an equation τ = υ is true? Well, we
know that the terms τ and υ have the same reference value; loosely speaking,
we know that they name the same thing. (This is loose speech, first, because
the terms may not be names but rather definite descriptions and, second, be-
cause the reference value of the terms may be nil, in which case neither names
anything.) So we might say that τ and υ are each “aliases” of their common
reference value in the sense that each is another name for it. It will be conve-
nient to have a way of speaking of such terms in relation to each other rather
than in relation to their value, so let us say that they are aliases in relation to
each other—or, more briefly, that they are co-aliases.

This leads us immediately to a property of identity. For the relation of hav-
ing the same reference value, of being co-aliases, is symmetric. It does not or-
der the two terms in any way; if we can assert it of them taken in one order, we
can equally we assert it of them the other way around. This gives us our first
principle for =:

LAW OF SYMMETRY FOR IDENTITY. τ = υ ⊨ υ = τ (for any terms τ and υ).

This principle is stated as an entailment, but it implies that the two equations
are equivalent since it licenses reversals of equations and we can undo a rever-
sal by reversing again.

Now suppose that we know not only that a term σ is a co-alias of a term τ
but also that τ is a co-alias of a term υ. All three terms must then have the same
reference value, so we could say that υ is an alias for σ. Putting this more for-
mally, we have a second principle:

LAW OF TRANSITIVITY FOR IDENTITY. σ = τ, τ = υ ⊨ σ = υ (for any terms σ,
τ, and υ).

Again,  there  is  a  more  symmetric  principle  lurking  in  the  background
—namely, that any two of these three equations entails the third. But this prin-



ciple is harder to state compactly, and a fuller investigation of it would show
that it also relies on the law of symmetry.

The two laws we have stated tell us that certain equations are true if others
are, but they do not commit us categorically to the truth of any equations at all.
How do we know there are any true equations? Well, what would it take for
there to be none. Perhaps this would be so if were no aliases in the ordinary
sense and every reference value was the extension of at most one term. We do
not want to rule this out, for our laws are supposed to be very general and
should not make any assumptions about the richness of our non-logical vocab-
ulary. But even in a case like this, if there is any term at all in our language, we
can form an equation with this term taken twice and the equation will be true.
And that is one way of stating a third principle for identity:

LAW OF REFLEXIVITY FOR IDENTITY. ⊨ τ = τ (for any term τ).

So there will be true equations if there are any equations at all.
We have found three properties of identity that derive from the kind of ex-

tension we have stipulated for =. Collecting them, we have:

REFLEXIVITY. ⊨ τ = τ.
SYMMETRY. τ = υ ⊨ υ = τ.
TRANSITIVITY. σ = τ, τ = υ ⊨ σ = υ.

Identity is not the only predicate that has these properties. For example, the
predicate [ _ has the same shape as _ ] obeys analogous laws; and that ex-
ample should suggest many others. As was noted in 1.2.3 , a relation for which
laws of reflexivity, symmetry, and transitivity hold is said to be an equivalence
relation.

An extreme example of an equivalence relation is the relation that holds be-
tween any pair of reference values (including any reference value and itself).
Since this relation never fails to hold there is no way for it to violate any of the
three laws, and it must be an equivalence relation. The extension of the iden-
tity predicate is at the other extreme of equivalence relations. If we represent
the two in tabular form as truth-valued functions of reference values, we have
something like this.

0 1 2 3 ⋯
0 T T T T ⋯
1 T T T T ⋯
2 T T T T ⋯
3 T T T T ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

= 0 1 2 3 ⋯
0 T F F F ⋯
1 F T F F ⋯
2 F F T F ⋯
3 F F F T
⋮ ⋮ ⋮ ⋮ ⋱

The first relation has T everywhere while the extension of = has T only along
the diagonal from the upper left to the lower right. Identity holds in the fewest
cases possible for an equivalence relation because, if any of the pairs along the
diagonal were dropped, the law of reflexivity would not hold. Since identity
thus expresses the narrowest equivalence relation, we might think of it as ex-
pressing sameness in all respects.

Although the status of identity as the narrowest equivalence relation derives
from the extension we have stipulated for =, this does not provide a property
that we can express in laws for = alone. Our ability to express the idea of
sameness in all respects depends on the predicates and functors we have avail-
able to express a variety of “respects.” What we can say is that identity implies
sameness with regard to each predicate and functor, and we can find further
properties of identity by exploiting the consequences of this idea. First con-
sider a one-place predicate—say [ _ is red]. Two things are the same with re-
spect to redness if both are red or neither is. Hence, to say that identity implies
sameness with respect to this predicate is say that an equation τ = υ implies
that τ is red and υ is red have the same truth value. Although we cannot ex-
press this sort of relation among three sentences directly, the symmetry of =
means that it is enough to say that τ = υ and τ is red together entail υ is red.
Generalizing this to any one-place predicate F leads us to assert the law

τ = υ, Fτ ⊨ Fυ.

This is as at least part of what is involved in saying that identity implies same-
ness in all respects. In fact, if we put θ in place of F and thus allow the predi-
cate to be an abstract, this law says it all. But, for the moment, we will con-
sider only predicates that are not abstracts and say that an equivalence relation
that supports a law of this form for a given predicate F is a congruence for F.
An equivalence relation that implies sameness with respect to redness (e.g., the
extension of [ _ has the same color as _ ]) is thus a congruence for [ _ is
red]. (The source of the term congruence is the geometrical relation of con-
gruence, which implies sameness with respect to size and shape though not
with respect to location.)

The form of this law ought to suggest something that is familiar from ele-
mentary algebra, the use of an equation to replace one expression by another.
Now, in algebra, we can equally well use more than one equation to make sev-
eral replacements simultaneously, and congruence principles can take a similar
form. Consider sameness with respect to the relation expressed by a 2-place
predicate such as [ _ is younger than _ ]. Things that are the same in this re-
spect  should  be  younger  than  the  same  things  and  have  the  same  things



younger than them. We can express this idea compactly by the following:

τ  = υ , τ  = υ , τ  is younger than τ  ⊨ υ  is younger than υ

And we can claim this holds for 2-place predicates generally by stating the law

τ  = υ , τ  = υ , Rτ τ  ⊨ Rυ υ .

In these statements, we have economized by speaking of both places of the
predicate in a single law. Since τ  and υ  could be the same term and so could
τ  and υ , the law covers also cases where a change is made in only one of the
two places of R. An equivalence relation that supports a law like this one for
identity is said to be a congruence for the predicate R. The relation of having
the same age will be a congruence in this sense for the relation expressed by
[ _ is younger than _ ].

Now it should be clear that we might state a law like these two that applies
to identity and a predicate P with any number of places:

CONGRUENCE FOR P. τ  = υ , …, τ  = υ , Pτ …τ  ⊨ Pυ …υ  (for any terms
τ , …, τ , υ , …, υ  and any predicate P with n places).

A large part of what we mean by saying that identity implies sameness in all
respects can be captured by saying that it is a congruence for all predicates.

A large part, but not all. We have not yet said anything about functors. Here
we can make the story short because the law we want is more familiar. It is
this:

CONGRUENCE FOR f. τ  = υ , …, τ  = υ  ⊨ fτ …τ  = fυ …υ  (for any terms
τ , …, τ , υ , …, υ  and any functor f with n places).

This says that an equation between compound terms fτ …τ  and fυ …υ  fol-
lows from equations between their corresponding components. We can have
laws like this for equivalence relations besides identity; and, when we have
such a law for an equivalence relation, the relation is said to be a congruence
for the functor f. The relation that holds between numbers when they have the
same absolute value (i.e., of being equal or differing only in sign) is a congru-
ence for a functor expressing the squaring function (or the cosine function). In
the case of identity, we can claim congruence for all functors.

Have we now captured the properties of identity by saying that it is a con-
gruence for all predicates and all functors? The laws we have stated suffice to
capture all  true general principles of entailment involving identity,  and that
was our aim. We might still ask whether a relation could obey these laws with-
out being a relation of sameness in all respects. The question comes to some-
thing like this: are the features of a thing that are expressible by predicates and
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functors  sufficient  to  pin  down its  identity,  to  distinguish it  from all  other
things? This is a puzzling question. While any given collection of predicates
and functors can certainly fail to express differences among things, it is hard to
pin down the claim that there could be such differences that are expressible by
no predicates or functors whatsoever, for any attempt to say what such differ-
ences might be would begin to undercut the claim that they are inexpressible.
In any case, asserting the laws above for all predicates and functors suffices to
establish all general principles of entailment concerning identity that we can
express using our analysis of logical form.

In saying that identity is a congruence for predicates and functors, we say
that predicates and functors are extensional operations and, in particular, that
they form referentially transparent compounds.  For example,  if  we were to
count the sentence-with-a-gap For the past two centuries, ___ has been
over 35 as a predicate, we could not say that identity is a congruence for all
predicates because to assert congruence for this incomplete expression would
be to assert the validity of the argument

For the past two centuries, the U. S. president has been over 35
The U. S. president = Barack Obama

For the past two centuries, Barack Obama has been over 35

and, as was noted in 6.1.3 , this is naturally understood to have true premises
and a false conclusion.

This raises a wider philosophical and logical issue. Could we at least say
that  this  sentence-with-a-blank has an extension that  is  a  function? Such a
function would have to yield truth values as output based on something be-
yond the reference values of the terms to which it was applied, and we might
speak of it as an intensional property (as distinct from as a property in inten‐
sion, which is merely the way the extensional property expressed by an ordi-
nary predicate varies from world to world). So one part of the question we
have just asked is whether there are intensional properties.

The other part is whether there is anything for an intensional property to be
a property of. It cannot be a property of an object thought of as a reference
value because it depends on distinctions that are ignored when we say what
reference value a term has. One way of putting this side of the issue is to ask
whether there is any sense of thing in which the terms the U. S. president
and Barack Obama could be said to signify different things. Perhaps we could
say that one signifies a public official and the other signifies a person and say
that one and the same public official could be identical with different people at
different times. The oddity of this talk suggests that nasty problems might lurk



here, so we will not open this door any wider. Suffice it to say that logicians
and philosophers have adopted a full range of positions on this issue. Some
happily accept intensional entities (such as public officials as distinct from the
people who happen to hold offices) while others reject all talk of intensions,
not only of intensional entities and intensional properties but even of the inten-
sions of ordinary extensional predicates.
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6.3.2. A law for aliases
We have seen that identity satisfies laws of reflexivity, symmetry, and transi-
tivity and that it is a congruence for all predicates and functors. It is also possi-
ble to describe the logical properties of identity using a smaller set of funda-
mental laws. For example, if we include identity itself among the predicates
and functors for which identity obeys laws of congruence, the reflexivity of
identity will insure that it is an equivalence relation—that is, any reflexive re-
lation that  is  a  congruence for  itself  will  be symmetric and transitive also.
Moreover, if identity is a reflexive relation and a congruence for all one-place
predicates, simple and complex (i.e., including abstracts), it is a congruence
for all predicates and functors whatsoever. These simpler ways of describing
the logical properties of identity are often used; but, when identifying law to
implement in derivation rules, it will be most convenient to group those prop-
erties together in yet a different way.

We will have two principles, one of which will be the law asserting that
identity is a congruence for all simple predicates of any number of places. The
other will be a single law that groups reflexivity, symmetry, and transitivity to-
gether with the law of congruence for functors.

We arrived at the laws of symmetry and transitivity by understanding an
equation τ = υ to say that the two terms τ and υ are co-aliases, and we might
have arrived at the law of reflexivity in the same way since in the usage of
alias we have adopted here each term is a co-alias of itself. We can extend
these  same  ideas  more  generally  by  speaking  of  terms  τ  and  υ  as  being
co-aliases given a set Δ of equations or as being made co-aliases by Δ. Our in-
tention is that this relation capture the conditions under which equations are
entailed by other equations.

Clearly a set Δ of equations will imply that an equation τ = υ is true if either
an equation between τ and υ (in either order) appears in Δ or one term can be
reached from the other via a series of terms, each of which is linked to the next
(in either order) by an equation in Δ. For example, if the equations shown in
Figure 6.3.2-1 are in a set Δ, the terms a and e are co-aliases given Δ, as are
any other pair of terms appearing in the list.

a = b

b = c

d = c

d = e

Fig. 6.3.2-1. A chain of equations making terms a and e co-aliases.



We may also count each term as an alias for itself given any set of equa-
tions. Then, although we have not yet stipulated all the conditions under which
we will count terms as co-aliases, we have said enough to summarize the laws
of reflexivity, symmetry, and transitivity—and more besides—by stating the
following general principle:

LAW FOR ALIASES: Γ ⊨ τ = υ if τ and υ are co-aliases given the set of equa-
tions in Γ (for any set Γ and terms τ and υ).

Like the law for a premise as a conclusion and a number of other principles we
have used, the law for aliases gives sufficient but not necessary conditions for
an entailment to hold, so it is stated with if rather than if and only if. To see
why an equation can be a valid conclusion without its component terms being
made co-aliases by the premises, note that, while an equation will be entailed
by a set of equations only if it equates terms made co-aliases by that set, an
equation can be entailed by a set of sentences without being entailed by the
equations in the set. (For example, t = u is entailed by the premises A → t = u
and A, and that set of premises contains no equations at all, only a conditional
and an unanalyzed sentence.)

Linking a pair of terms by a chain of equations is not the only way a set
might imply that they have the same extension. Recall the law of congruence
for an n-place functor f

τ  = υ , …, τ  = υ  ⊨ fτ …τ  = fυ …υ

This tells us that the terms fτ …τ  and fυ …υ  must have the same extension
whenever this is true of their corresponding components (i.e., τ  and υ , τ  and
υ , and so on). To incorporate this principle into the law for aliases, we will
want to say that two applications of a given functor are made co-aliases when-
ever their corresponding components are made co-aliases, and we will want to
allow this sort of connection between terms to figure as a link in a chain by
which further terms are made co-aliases.

Putting  all  this  together,  we  can  give  a  fuller  definition  of  the  idea  of
co-aliases in the following way.

The co-aliases given a set Δ of equations include pairs of terms of all of the
following kinds:

(i) a term paired with itself;
(ii) a pair of terms equated (in either order) by a member of Δ;

(iii) a pair of terms connected by a chain of terms linked as co-aliases given
Δ;

(iv) a pair of applications of the same functor whose corresponding compo-
nents are co-aliases given Δ.
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Notice that the third and fourth classes are described in terms of the relation
we are defining. A definition like this can be thought as a series of instructions
for building the extension of the relation it defines. We first put in all the pairs
covered by instructions (i) and (ii). Then we gradually add more pairs as we
are directed to by instructions (iii) and (iv), replacing the phrase “co-aliases
given Δ” by “pairs already in the extension.” A pair of terms then count as
co-aliases given Δ if and only if they are added at some stage in this process.
And, since this process of building an extension for a two-place predicate can
be described without using the term co-alias,  we really have explained the
meaning of that term.

In the simple examples we will usually consider, it will be easy to see which
terms are co-aliases given a set of equations. But it may help in understanding
the idea to think of the sort of “calculation” we might perform to apply the def-
inition in a more complex example. When checking to see whether a pair of
terms τ and υ are co-aliases given a set Δ of equations, let us collect all terms
appearing as components in τ, υ, and Δ. Figure 6.3-2 shows these terms for a
case where the set Δ consists of the equations a = b, fb = c, fb = fc, d = gca,
and g(fa)b = e and we are checking to see whether the terms a and fd are
co-aliases.

fa

fb

fc

fd

a

b

c

d

e

gca

g(fa)b

Fig. 6.3.2-2. A work space for finding co-aliases.

Notice that we include fa because it is a component of g(fa)b; however, there
is no need to include fe or other more complex terms that could be formed
from this vocabulary. (The arrangement of the terms is not significant; the one
used here is designed simply to make later steps easier to depict.)

Now let us accumulate links between co-aliases. We will represent them as
lines between terms. At the initial stage (which we will label 0), we put in
links corresponding to equations in the set Δ. We can follow instruction (iii)
after this and after each succeeding stage by considering terms to be co-aliases
when they are linked either directly or by a chain, so there is no need to draw
additional lines. At each of the stages from 1 on, we will consider all functors
appearing among the terms and add any links we are directed to by instruction



(iv); this will usually require new lines. We may need to do this several times
over, but if we add no new links at any stage we can stop because there will be
nothing to add thereafter. And, with a finite number of terms, this must happen
at some point because there are only a finite number of links we might add.

Figure 6.3.2-3 shows such a process for the example of Figure 6.3.2-2, using
labels on links to record the order in which they are entered. The new links at
each stage are emphasized along with any older links that lead to the new en-
try. At stage 1, we check the applications of the functors f and g to see whether
we can add any links by instruction (iv). Since a and b were already linked at
stage 0, we add a link between fa and fb. We add no other links between the
applications of f because d is not linked to a, b, or c. One pair of corresponding
component terms from gca and g(fa)b (viz., a and b) were connected at stage 0
but the other pair (i.e., c and fa) were not, so the link between the two applica-
tions of g is entered only at stage 2 after c and fa have also been connected (by
the link between fa and fb we enter at stage 1). Even at stage 2 the group in-
cluding d is not linked to either the groups in which a, b, and c appear, so there
are no further links between applications of f and the process is complete. The
terms a and fd we were checking do not prove to be co-aliases at the end, but
many other pairs of terms were shown to be co-aliases.

fa

fb
0

fc

fd

a
0

b
0

c

d
0

e
0

gca

g(fa)b

Stage 0

fa
1
fb

0

fc

fd

a
0

b
0

c

d
0

e
0

gca

g(fa)b

Stage 1

fa
1
fb

0

fc

fd

a
0

b
0

c

d
0

e
0

gca
2

g(fa)b

Stage 2

Fig. 6.3.2-3. Terms classified as co-aliases in a series of stages.

The links connect the terms in groups shown in Figure 6.3.2-4. The members
of any group are co-aliases of one another but not of any other terms.

fa

fb

fc

fd

a

b

c

d

e

gca

g(fa)b

Fig. 6.3.2-4. Linked terms grouped in alias sets.

Some terms, like fd in the diagram, may be groups unto themselves; but, be-
cause they are co-aliases of themselves, we can still say that any pair made
from such a group is a pair of co-aliases. If the terms had been written down
more randomly, the links between them might have crossed and the groups of
connected terms would no longer stand out; but they would still be there, and
any diagram can be disentangled so that they appear. (This is a distinguishing
feature of equivalence relations; any such relation divides a range of values
into non-overlapping equivalence classes.) We will refer to each such group of
connected terms as an alias set.

Now we are ready to justify our law of aliases, which claims that Γ ⊨ τ = υ
whenever τ and υ are co-aliases given the equations in Γ. We can do this by
showing how this law summarizes earlier ones. Each of the instructions (i)-(iv)
for building connections between terms implements one or more of laws of en-
tailment:

 instruction law(s)
(i) enter all terms appearing as com-

ponents in τ, υ, and the set Δ of
equations appearing in Γ

law  of  reflexivity  (since  entering
the term establishes a link with
itself)

(ii) link each pair of terms equated (in
either order) by a member of Δ

law for a premise as a conclusion
and the law of symmetry (since
a link amounts to an equation in
both directions)

(iii) count as linked any pair of terms
connected by a chain of links

law of transitivity

(iv) link any pair of applications of the
same functor whose correspond-
ing components are linked

law of congruence for functors

We combine several laws in (ii) and combine more by carrying out the instruc-
tions in a series of stages. This combination of laws can be justified by the law
for lemmas because we can think of the process of adding links as a process of
adding further equations as lemmas.
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6.3.3. Derivations for identity
We are now in a position to state the derivation rules for identity that will be
part of our basic system. We will have four rules for closing gaps. Each of
them extends one of the rules QED and Nc, with each of those rules being ex-
tended in two ways. One sort of extension is based on the law for co-aliases
alone and the other also rests on the law of congruence for predicates.

The first pair of extensions of QED and Nc—Equated Co-aliases (EC) and
Distinguished Co-aliases (DC)—are shown in Figures 6.3.3-1 and 6.3.3-2.

│⋯
│[τ and υ
│     are co-aliases]
│⋯
││⋯
││
│├─
││τ = υ
│⋯

→

│⋯
│[τ and υ
│     are co-aliases]
│⋯
││⋯
││●
│├─

n EC││τ = υ
│⋯

Fig. 6.3.3-1. Closing a gap whose goal is an equation between terms that
are co-aliases with respect to the available resources.

│⋯
│[τ and υ
│     are co-aliases]
│⋯
│¬ τ = υ
│⋯
││⋯
││
│├─
││⊥
│⋯

→

│⋯
│[τ and υ
│     are co-aliases]
│⋯
│¬ τ = υ (n)
│⋯
││⋯
││●
│├─

n DC││⊥
│⋯

Fig. 6.3.3-2. Closing a gap of a reductio argument one of whose re‐
sources negates an equation between terms that are co-aliases with re‐

spect to the available resources.

The bracketed remark concerning τ and υ stipulates that there be enough equa-
tions among the available resources to make the terms τ and υ co-aliases. The
law for aliases then tells us that the resources entail the equation τ = υ. So, if
this equation is our goal, we may count the gap closed; and, if its denial is
among our resources, we have the inconsistency required to close the gap of a
reductio argument. An important special case of these rules is one where τ and
υ are the same term. In this case, τ = υ is τ = τ (which is also υ = υ) and, since
a term is a co-alias of itself with respect to any set—even with respect to a set
in which it does not appear—any gap with a self-equation as its goal may be

closed, as may the gap of a reductio argument with a negated self-equation
among its resources. Notice that the general form of these rules differs from
the  special  case  for  self-equations  only  by  exchanging  terms  that  are
co-aliases.

Some abbreviated terminology will help in stating the second pair of rules
for identity. Let us say that two series of terms τ …τ  and υ …υ  are co-alias
series when they have the same length and their corresponding members are
co-aliases—that is, when τ  and υ  are co-aliases for each i from 1 to n, where n
is the length of the two series. Then the second pair of rules for identity are
shown in Figures 6.3.3-3 and 6.3.3-4. These are Quod Erat Demonstrandum
Given Equations (QED=) and Non-contradiction Given Equations (Nc=).

│⋯
│[τ …τ  and υ …υ
│     are co-alias series]
│⋯
│Pτ …τ
│⋯
││⋯
││
│├─
││Pυ …υ
│⋯

→

│⋯
│[τ …τ  and υ …υ
│     are co-alias series]
│⋯
│Pτ …τ (n)
│⋯
││⋯
││●
│├─

n QED=││Pυ …υ
│⋯

Fig. 6.3.3-3. Closing a gap one of whose resources differs from its goal
only by terms that are co-aliases.

│⋯
│[τ …τ  and υ …υ
│     are co-alias series]
│⋯
│¬ Pτ …τ
│⋯
│Pυ …υ
│⋯
││⋯
││
│├─
││⊥
│⋯

→

│⋯
│[τ …τ  and υ …υ
│     are co-alias series]
│⋯
│¬ Pτ …τ (n)
│⋯
│Pυ …υ (n)
│⋯
││⋯
││●
│├─

n Nc=││⊥
│⋯

Fig. 6.3.3-4. Closing a gap of a reductio argument one of whose re‐
sources differs from the negation of another only by terms that are

co-aliases.

Here a bracketed remark stipulates that the available resources contain enough
equations to make corresponding component terms of Pτ …τ  and Pυ …υ
co-aliases and thus to entail identities between these terms. The law of congru-
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ence for P then tells us that Pυ …υ  is entailed by available resources. If it is
our goal, we may close the gap, and we may do so also if the gap is in a reduc-
tio argument and our resources contain its denial ¬ Pυ …υ .

The sentences Pτ …τ  and Pυ …υ  that figure in the last two rules have
been  described  as  applications  of  the  same predicate  whose  corresponding
component terms are co-aliases. A little thought will show that we can describe
such expressions equally well as atomic sentences that differ only by compo-
nents that are co-aliases. This makes the similarity of this rule to QED and Nc
a little more apparent. Instead of saying that we can close a gap when our goal
is among our resources and when one resource negates another (as we do in
QED and Nc), we say here that we can close a gap if a resource differs from
the goal or from the negation of another resource only by co-aliases. This way
of describing these rules leads to the question whether we really need to limit
them to predications. The answer is that we do not although that is the only
case where we really need to use the rule.

Other rules can be extended in the way QED and Nc are extended in QED=
and Nc=: if the illustration of the rule displays two occurrences of a sentence,
these may be sentences that are different but that differ only by terms that are
co-aliases given the available resources. (As was noted above, even our first
two rules for identity could be seen as the result of extending in this way rules
that say that we can close a gap whose goal is a self-equation and a reductio
gap whose resources contain the denial of a self-equation.) When a rule is ex-
tended in this way, its label should be followed by the equals sign, as in the la-
bels for QED= and Nc=. We will call the result an extension of the rule for
equations; and, as with QED= and Nc=, the equals sign added to the name
may be read “given equations.”

Below are two derivations that illustrate these ideas and also show how we
will  keep  track  of  co-aliases.  The  first  derivation  uses  the  rule  of  Figure
6.3.3-3 to close the gap after stage 2. The second uses an extended version of
modus ponens; the resource Rc(fa) and the antecedent of Rcc → Gc differ only
by terms (fa and c) that are co-aliases given the equations fa = b and b = c. (If
the extended form of modus ponens was not used in the second derivation, we
would need to set up an indirect proof to reach the goal Qc and exploit Rcc →
Qc using the rule RC for exploiting conditionals in reductio arguments. Both
gaps of the derivation would then close using the identity rules for closing
gaps.)

1 n

1 n

1 n 1 n

│Fb ∧ a = b 1
├─

1 Ext │Fb (3)
1 Ext │a = b a—b, d

│
││a = d a—b—d
│├─
││●
│├─

3 QED=││Fd 2
├─

2 CP │a = d → Fd

│Rc(fa) ∧ fa = b 1
│Rcc → Qc 3
├─

1 Ext │Rc(fa) (3)
1 Ext │fa = b a, fa—b, c

│
││b = c a, fa—b—c
│├─

3 MPP=││Qc (4)
││●
│├─

4 QED ││Qc 2
├─

2 CP │b = c → Qc

At each stage when an equation is added to the resources, the resulting alias
sets are indicated at the right. This is done by listing the members of each alias
set  with  dashes  between,  separating the members  of  different  alias  sets  by
commas. This may be written to the right of the last equation added at a given
stage. There is no need record the alias sets until the first stage when an equa-
tion appears as a resource since up to that point each term is in an alias set by
itself.

The point  of listing alias sets  to the right of equations is  to sum up the
co-aliases at at each stage when they change. Although it is usually by adding
equations that  the alias sets will  change,  this  is  not the only possible way.
When a term is added, either in a new resource or in a new goal, it must be ac-
commodated in the co-alias sets. Although new terms will be introduced regu-
larly in later chapters, they could be introduced now only if attachment rules or
the rule LFR were used to introduce sentences that are not already components
of sentences in the derivation. Since that is not a use of such rules that we have
been considering, we will not consider examples, but a general guideline for
listing alias sets can be stated that will include such cases: at the initial stage of
a derivation if it has equations as resources and at any stage thereafter at which
the alias sets of a gap have changed, list the alias sets at the right near the top
of the gap. When several resources are added, the alias sets can be added after
the last new resource that figures in the change. If no new resources are added
(and the alias sets change only because of vocabulary added in a new goal), the
alias sets may be listed at the right of the top of the scope line of the gap.

It is sometimes useful to be able to enter an equation between co-aliases as a
further resource. Since this does not change the alias sets, it does bring a gap
near an end and it is not automatically progressive. Therefore, we will count it
as an attachment rule. We will call this rule Co-alias equation (CE):



│⋯
│[τ and υ
│     are co-aliases]
│⋯
││⋯
││
││
│├─
││φ
│⋯

→

│⋯
│[τ and υ
│     are co-aliases]
│⋯
││⋯

n CE││τ = υ X
││
│├─
││φ
│⋯

Fig. 6.3.3-5. At stage n, adding an equation between terms that are
co-aliases with respect to the available resources.

Equations are never exploited, so the X at the right does not mark the added
equation as already exploited; instead it indicates that the equation leads to no
change in the alias sets since its component terms are already co-aliases. Since
any use of such an equation to close a gap is already covered by other rules,
this  rule will  serve primarily to provide auxiliary resources for detachment
rules (and available resources for use in other attachment rules). Here is a sim-
ple example.

│a = b
│b = c a—b—c, fa—fc, d
│(fa = fc ∧ d = d) → Ga 4
├─

1 CE │fa = fc X,(3)
2 CE │d = d X,(3)
3 Adj │fa = fc ∧ d = d X,(4)
4 MPP│Ga (5)

│●
├─

5 QED│Ga
In order to construct a derivation using only basic rules, we would need to re-
sort to a reductio argument and the rule RC.

The rule  CE is  really  only  needed when no co-alias  of  the  terms being
equated appears as a term of an equation. The rule would not have been neces-
sary in the example above if the conditional’s antecedent had been something
like a = c ∧ b = b because this sentence could be added by the extended attach-
ment rule Adj= since it differs from a conjunction of the first two premises
only by co-aliases. In general, if our resources contain any equation between
co-aliases of the terms that we want to join in the new equation, we have an
equation differing from the one we want only by co-aliases and we can use the
extended form of whatever rule we might apply to the new equation.

Finally, we will add an attachment rule that allows a resource to be added
when it differs from an available resource only by co-aliases. Such resources
can  be  represented  as  θτ …τ  and  θυ …υ  where  τ …τ  and  υ …υ  are1 n 1 n 1 n 1 n

co-alias series. That is, it is understood that the differences between the re-
sources are limited to the displayed series of terms so the resources amount to
predications to the two series τ …τ  and υ …υ  of an abstract θ that takes the
form [… x  … x  …] , where x …x  is a series of distinct variables with
the same length as τ …τ  and υ …υ . The name of the rule is Congruence
(Cng).

│⋯
│[τ …τ  and υ …υ
│     are co-alias series]
│⋯
│θτ …τ
│⋯
││⋯
││
││
│├─
││φ
│⋯

→

│⋯
│[τ …τ  and υ …υ
│     are co-alias series]
│⋯
│θτ …τ (n)
│⋯
││⋯

n Cng││θυ …υ X
││
│├─
││φ
│⋯

Fig. 6.3.3-6. At stage n, that differs from an available resource only by
the occurrence of terms that are co-aliases.

The resource that is added by this rule is marked as exploited because any ex-
ploitation of the earlier resource will be enough to take account of it. The rule
Cng offers the following alternative to an earlier derivation.

│Rc(fa) ∧ fa = b 1
│Rcc → Qc 4
├─

1 Ext │Rc(fa) (3)
1 Ext │fa = b a, fa—b, c

│
││b = c a, fa—b—c
│├─

3 Cng ││Rcc X,(4)
4 MPP││Qc (5)

││●
│├─

5 QED││Qc 2
├─

2 CP │b = c → Qc
Notice that the ordinary form of MPP is used here rather than the extended
form MPP= used earlier,  and Cng can always be avoided by using the ex-
tended forms of other rules. The point of using Cng is only to add a step to a
derivation that may make it easier to follow.
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6.3.s. Summary
The logical properties of identity have two sources, the extension stipulated
for = and the requirement that all predicates and functors be extensional. We
will approach these properties by speaking of the terms equated by a true
equation as co-aliases . Some thought about this idea shows us that identity
obeys laws of reflexivity, symmetry, and transitivity, so it is an equiva-
lence relation. Identity is distinguished as holding in the fewest cases of any
equivalence relation;  it  implies  sameness in respect  to all  predicates and
functors. That is, identity is a congruence for each predicate  and functor.
To say that identity is a congruence for a predicate or functor is to say that it
is an extensional operation. A predicate that did not satisfy this requirement
would be an intensional property  (as distinct from a property in intension ,
which is the meaning of an ordinary extensional predicate) and the things of
which it was true or false would be intensional entities . Whether these ideas
are needed to account for aspects of deductive reasoning (or are even coher-
ent) has been a matter of controversy, but we will consider only extensional
operations.

A different  way  of  organizing  the  laws  for  identity  is  useful  in  stating
derivation rules. We say that terms are co-aliases given  a set Δ of equations
if an equation between the terms follows from Δ. A set Δ of equations serves
to divide a collection of terms into alias sets , groups of terms whose mem-
bers are mutual co-aliases; these are examples of the equivalence classes  as-
sociated with any equivalence relation. The alias sets determined by a given
set of equations can be found by a process of making links between terms ,
following rules that implement the laws for identity. As a result,  identity
obeys a law for aliases  that says that an equation τ = υ is entailed by a set of
premises if the terms τ and υ are co-aliases given the equations among those
premises.

The law for aliases and the law of congruence for predicates provide us with
the basic derivation rules for =, each of which is a rule for closing gaps. The
rules employ the idea of terms being co-aliases given the equations among
the resources of a gap. One rule, Equated Co-aliases (EC) , says a gap may
be closed if its goal is an equation between co-aliases, and another, Distin-
guished Co-aliases (DC) , says a reductio gap may be closed if its resources
include a denial of such an equation. A second pair concern predications of
the same predicate  to  series  of  terms whose corresponding members  are
co-aliases. One of these, QED Given Equations (QED=)  says that a gap
may be closed if its goal is a predication that differs from another predica-

tion among the resources only by co-aliases and another, Nc Given Equa-
tions (Nc=)  says that a reductio gap may be closed if one of its resources
differs from what another denies only by co-aliases. The statements of these
rules use the idea of co-alias series  of terms, two series of the same length
whose corresponding terms are co-aliases. The idea behind this second pair
of rules can be carried further and we may extend  any rule by counting as
identical,  for the purposes of applying the rule,  any sentences that differ
only by terms that are co-aliases. There are two attachment rules for identity
that may be convenient. One, Co-alias Equation (CE) , allows us to add to
the resources any equation between co-aliases and the other, Congruence
(Cng) , allows us to add a predication that differs only by co-aliases from
one already among the available resources.

Glen Helman 01 Aug 2011



6.3.x. Exercise questions
Use the system of derivations to establish each of the following:
1. Fa → Ga, Fa, a = b ⊨ Gb
2. Fa → Ga, Fb, a = b ⊨ Ga
3. Fa ∧ a = gb ⊨ ¬ F(gc) → ¬ b = c
4. Fa → G(fa), G(fb) → Hb, a = b ⊨ Fb → Ha
5. fa = b, fc = d ⊨ (a = c ∨ b = d) → fa = d
6. The vice president is Joe Biden

Barack Obama is the president
The vice president is not from Illinois

If Barack Obama is from Illinois, then Joe Biden is not the presi-
dent

For more exercises, use the exercise machine .

Glen Helman 01 Aug 2011

6.3.xa. Exercise answers
Some of the derivations below are given twice, once using only the basic iden-
tity rules EC, DC, QED=, and Nc= and a second time using MPP= and similar
extensions for equations of other rules (see 6.3.3 ); either approach is entirely
acceptable.
1. │Fa → Ga 1

│Fa (1)
│a = b a—b
├─

1 MPP │Ga (2)
│●
├─

2 QED=│Gb

2. │Fa → Ga 2
│Fb (3)
│a = b a—b
├─
││¬ Ga (2)
│├─

2 MTT││¬ Fa (3)
││●
│├─

3 Nc= ││⊥ 1
├─

1 IP │Ga

 │Fa → Ga 1
│Fb (1)
│a = b a—b
├─

1 MPP=│Ga (2)
│●
├─

2 QED │Ga

3. │Fa ∧ a = gb 1
├─

1 Ext │Fa (4)
1 Ext │a = gb a—gb, b, c, gc

│
││¬ F(gc) (4)
│├─
│││b = c a—gb—gc, b—c
││├─
│││●
││├─

4 Nc= │││⊥ 3
│├─

3 RAA││¬ b = c 2
├─

2 CP │¬ F(gc) → ¬ b = c



4. │Fa → G(fa) 3
│G(fb) → Hb 5
│a = b a—b, fa—fb
├─
││Fb (4)
│├─
│││¬ Ha (7)
││├─
││││●
│││├─

4 QED=││││Fa 3
│││
││││G(fa) 6
│││├─
│││││●
││││├─

6 QED=│││││G(fb) 5
││││
│││││Hb (7)
││││├─
│││││●
││││├─

7 Nc= │││││⊥ 5
│││├─

5 RC ││││⊥ 3
││├─

3 RC │││⊥ 2
│├─

2 IP ││Ha 1
├─

1 CP │Fb → Ha

 │Fa → G(fa) 2
│G(fb) → Hb 3
│a = b a—b, fa—fb
├─
││Fb (2)
│├─

2 MPP=││G(fa) (3)
3 MPP=││Hb (4)

││●
│├─

4 QED=││Ha 1
├─

1 CP │Fb → Ha

5. │fa = b
│fc = d a, b—fa, c, d—fc
├─
││a = c ∨ b = d 2
│├─
│││a = c a—c, b—fa—fc—d
││├─
│││●
││├─

3 EC│││fa = d 2
││
│││b = d a, fa—b—d—fc, c
││├─
│││●
││├─

4 EC│││fa = d 2
│├─

2 CP││fa = d 1
├─

1 CP│(a = c ∨ b = d) → fa = d

6. │v = b
│o = p o—p, b—v
│¬ Fvi (3)
├─
││Foi (3)
│├─
│││b = p o—p—b—v
││├─
│││●
││├─

3 Nc= │││⊥ 2
│├─

2 RAA││¬ b = p 1
├─

1 CP │Foi → ¬ b = p
F: [ _ is from _ ]; v: the vice president; b: Barack Obama; c: Joe Bi-
den; p: the president; t: Illinois
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