5.4.xa. Exercise answers

1. a.
│A → B 2
├─
││A (2)
│├─
2 MPP ││B (3)
││●
│├─
3 QED ││B 1
├─
1 PE │¬ A ∨ B
 
│¬ A ∨ B 2
├─
││A (2)
│├─
2 MTP ││B (3)
││●
│├─
3 QED ││B 1
├─
1 CP │A → B
  b.
│(A ∧ B) → C 3
├─
││A (4)
│├─
│││¬ C (3)
││├─
3 MTT │││¬ (A ∧ B) 4
4 MPT │││¬ B
│││○ A, ¬ C, ¬ B ⊭ ⊥
││├─
│││⊥ 2
│├─
2 IP ││C 1
├─
1 CP │A → C
│A → C 3
├─
││A ∧ B 2
│├─
2 Ext ││A (3)
2 Ext ││B
3 MPP ││C (4)
││●
│├─
4 QED ││C 1
├─
1 CP │(A ∧ B) → C
ABC(AB)C/AC
TFFF
  c.
│A → C 3,7
├─
│││A (3)
││├─
3 MPP │││C
│││
││││¬ B
│││├─
││││○ A, C, ¬ B ⊭ ⊥
│││├─
││││⊥ 4
││├─
4 IP │││B 2
│├─
2 CP ││A → B 1
│││B
││├─
││││¬ C (7)
│││├─
7 MTT ││││¬ A
││││○ B, ¬ C, ¬ A ⊭ ⊥
│││├─
││││⊥ 6
││├─
6 IP │││C 5
│├─
5 CP ││B → C 1
├─
1 Cnj │(A → B) ∧ (B → C)
│(A → B) ∧ (B → C) 1
├─
1 Ext │A → B 3
1 Ext │B → C 4
││A (3)
│├─
3 MPP ││B (4)
4 MPP ││C (5)
││●
│├─
5 QED ││C 2
├─
2 CP │A → C


ABCAC/(AB)(BC)
TFTFT
FTFTF

The two rows divide the first and second gap, respectively.

  d.

The following are two approaches to this derivation, one without use of attachment rules and the other using one of the forms of Wk for the conditional.

 
││(A → B) → A 3
│├─
│││¬ A (3),(7)
││├─
3 MTT │││¬ (A → B)
│││
│││││A (7)
││││├─
││││││¬ B
│││││├─
││││││●
│││││├─
7 Nc ││││││⊥ 6
││││├─
6 IP │││││B 5
│││├─
5 CP ││││A → B 4
││├─
4 CR │││⊥ 2
│├─
2 IP ││A 1
├─
1 CP │((A → B) → A) → A
││(A → B) → A 4
│├─
│││¬ A (3),(5)
││├─
3 Wk │││A → B X,(4)
4 MPP │││A (5)
│││●
││├─
5 Nc │││⊥ 2
│├─
2 IP ││A 1
├─
1 CP │((A → B) → A) → A
2. a.
│(A ∧ B) → C 2
│(C ∨ D) → E 4
│A (1)
│B (1)
├─
1 Adj │A ∧ B X,(2)
2 MPP │C (3)
3 Wk │C ∨ D X,(4)
4 MPP │E (5)
│●
├─
5 QED │E
  b.
│(A ∨ ¬ B) → C 2
├─
││¬ C (2)
│├─
2 MTT ││¬ (A ∨ ¬ B) (5)
││
│││¬ B (4)
││├─
4 Wk │││A ∨ ¬ B X,(5)
│││●
││├─
5 Nc │││⊥ 3
│├─
3 IP ││B 1
├─
1 CP │¬ C → B
  c.
│¬ (A ∧ B) 2
│B ∨ C 3
│D → ¬ C
├─
││A (2)
│├─
2 MPT ││¬ B (3)
3 MTP ││C (4)
4 MTT ││¬ D (5)
││●
│├─
5 QED ││¬ D 1
├─
1 CP │A → ¬ D
  d.
│C → ¬ (A ∨ B) 3
│E ∨ ¬ (D ∧ ¬ C) 5
│D (4)
├─
││A (2)
│├─
2 Wk ││A ∨ B X,(3)
3 MTT ││¬ C (4)
4 Adj ││D ∧ ¬ C X,(5)
5 MTP ││E (6)
││●
│├─
6 QED ││E 1
├─
1 CP │A → E
  e.
Tom will go through Chicago and visit Sue 1
Tom won’t go through both Chicago and Indianapolis 2
Tom won’t visit Ursula without going through Indianapolis 3
├─
1 Ext Tom will go through Chicago (2)
1 Ext Tom will visit Sue (4)
2 MPT Tom won’t go through Indianapolis (3)
3 MPT Tom won’t visit Ursula (4)
4 Adj Tom will visit Sue but not Ursula X,(5)
│●
├─
5 QED Tom will visit Sue but not Ursula
  f.
Either we spend a bundle on television 1
     or we won’t have wide public exposure
If we spend a bundle on television, we’ll go into debt 2
Either we have wide public exposure 4
     or our contributions will dry up
We’ll go into debt if our contributions dry up 6
     and we don’t have large reserves
We won’t have large reserves (5)
├─
││We’ll spend a bundle on television (2)
│├─
2 MPP ││We’ll go into debt (3)
││●
│├─
3 QED ││We’ll go into debt 1
││We won’t have wide public exposure (4)
│├─
4 MTP ││Our contributions will dry up (5)
5 Adj ││Our contributions dry up X,(6)
││     and we won’t have large reserves
6 MPP ││We’ll go into debt (7)
││●
│├─
7 QED ││We’ll go into debt 1
├─
1 PC We’ll go into debt
  g.
If Adams supports the plan, 3
     it will go though provided Brown doesn’t oppose it
Brown won’t oppose the plan 5
     if either Collins or Davis supports it
├─
││Both Adams and Davis will support the plan 2
│├─
2 Ext ││Adams will support the plan (3)
2 Ext ││Davis will support the plan (4)
3 MPP ││The plan will go though provided Brown doesn’t oppose it 6
4 Wk ││Either Collins or Davis will support the plan X,(5)
5 MPP ││Brown won’t oppose the plan (6)
6 MPP ││The plan will go through (7)
││●
│├─
7 QED ││The plan will go through 1
├─
1 CP The plan will go through
     if both Adams and Davis support it
Glen Helman 12 Oct 2011