
1. Introduction
1.1. Formal deductive logic
1.1.0. Overview
In this course we will study reasoning, but we will study only certain aspects
of reasoning and study them only from one perspective. The special character
of our study is indicated by the label formal deductive logic, and we will be-
gin our study by seeing what this label means. Each of the terms formal and
logic  indicates something about the way in which we will  study reasoning
while the term deductive indicates the sort of reasoning we will study. In the
subsections listed below, we will look at each of these three terms in a little
more detail.

1.1.1. Logic
Logic  is  concerned with features that make reasoning good in certain re-
spects.

1.1.2. Inference and arguments
The key form of reasoning that we will consider is inference; the premises
and conclusion of an inference make up an argument.

1.1.3. Notation for arguments
We will often use some compact ways of stating generalizations about argu-
ments and their components.

1.1.4. Deductive vs. non-deductive inference
An inference is deductive when its conclusion extracts information already
present in its premises, and such an inference is risk free.

1.1.5. Deductive bounds on inference
The  sentences  that  constitute  risk-free  conclusions  from  given  premises
form a lower bound on what can be reasonably concluded, and sentences
that are absolutely incompatible with those premises form an upper bound.

1.1.6. Entailment, exclusion, and inconsistency
Entailment is the relation between the premises and conclusion of a deduc-
tive inference, and the terms exclusion and inconsistency are tied to the
idea of absolute incompatibility.

1.1.7. Formal logic
Many cases of entailment can be captured by generalizations concerning
certain linguistic forms, and we will use a quasi-mathematical notation to



express these forms.

Several topographical features of the page you are looking at will be reflected
throughout the text. A special font (this one) is used to mark language that is
being displayed rather than used; the text will frequently use this sort of alter-
native to quotation marks. Another font (this one) is used for special terminol-
ogy that is being introduced; the index to the text lists these terms and provides
links to the points where they are explained. In the list of subsections that ap-
pears above, headings have a special formatting ( like this ) that will be used
for links. The links above are links to the subsections themselves, and cross-
references in the text with similar formatting will also function as links to por-
tions of the text.
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1.1.1. Logic
Logic is  a study of reasoning.  However,  it  does not  concern the ways and
means by which people actually reason—as psychology does—but rather the
sorts of reasoning that count as good. So, while a psychologist is interested as
much in cases where people get things wrong as in cases where they get them
right, a logician is interested instead in drawing the line between good and bad
reasoning without attempting to explain how cases of either sort come about.

Another way of making this distinction between logic and psychology is to
say that, in logic, the point of view on reasoning is internal: it is a study “from
the inside” in a certain sense. As we study reasoning in this way, we will be in-
terested in the norms of reasoning—the rules that reasoners feel bound by, the
ideals they strive to reach—rather than the mixed success we observe when we
look from outside on their efforts to put norms of reasoning into practice.

This makes logic much like the study of grammar. A linguist studying the
grammar of a language will be interested in the sort of things people actually
say, but chiefly as evidence of the ways they think words ought to be put to-
gether. So, although linguists do not attempt to lay down the rules of grammar
for others and see their task as one of description rather than prescription, what
they attempt to describe are the (largely unconscious) rules on the basis of
which the speakers of a language judge whether utterances are grammatical.

One way of understanding logical norms suggests that there is more than an
analogy between logic and the study of language. However ineffable language
itself may sometimes seem, it is vastly more concrete than thought, and it has
always served logicians as a tool in their study of reasoning. In the 20  cen-
tury it acquired an even greater significance because the traditional view of the
relation between thought and language (according to which thought is inde-
pendent of language and language acquires its significance as the expression of
thought) came to be reversed, and thought was seen to derive its significance
from the possibility of linguistic expression. As a result, the norms of thought
were seen to derive from the norms of language, specifically from rules gov-
erning certain aspects of meaning. This view is not uncontroversial, but we
will see in 1.2  that there is a way of describing the norms of reasoning that
makes it quite natural to see them as resting on norms of language.
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1.1.2. Inference and arguments
The norms studied in logic can concern many different features of reasoning,
and we will consider several of these. The most important one and the one that
will receive most of our attention is inference, the action of drawing a conclu‐
sion from certain premises or assumptions.

premises or assumptions

conclusion

inference
blah blah blah 

blah blah blah 

blah blah blah 
blah blah blah 

blah blah blah 

blah blah blah 

Fig. 1.1.2-1. The action of inference.

This conclusion could be one of the premises, but it is more often formed by
drawing on multiple premises.

Inferences are to be found in science when generalizations are based on data
or when a hypothesis is offered to explain some phenomenon. They are also to
be found when theorems are proved in mathematics. But the most common
case of inference calls less attention to itself. Much of the process of under-
standing what we hear or read can be seen to involve inference because, when
we interpret spoken or written language, our interpretation can usually be for-
mulated as a statement, and we base this statement on statements in the text we
interpret.

The terminology we will use to speak of inference deserves some comment.
The terms premise and assumption both to refer to the starting points of in-
ference—whether  these  be  observational  data,  mathematical  axioms,  or  the
statements making up something heard or read. The term premise is most ap-
propriate when we draw a conclusion from a claim or claims that we accept.
The term assumption need not carry the suggestion of acceptance (or even ac-
ceptability), and we may speak of something being “assumed merely for the
sake of argument.” In general, we will be far more interested in judging the
quality of the transition from the starting point of an inference to its conclusion
than in judging the soundness of its starting point, so the distinction between
premises and assumptions will not have a crucial role for us. The two terms
will serve mainly as alternative expressions for the same idea.

(If it should seem strange to consider conclusions inferred from claims that
are not accepted, imagine going over a body of data to check for inconsisten-



cies either within the data or with information from other sources. In this sort
of case, you may well draw conclusions from data that you do not accept and,
indeed, do this as a way of showing that the data is unacceptable—by showing,
for example, that it leads to draw contradictory conclusions.)

It  is  convenient  to have a term for a conclusion taken together with the
premises or assumptions on which it is based. We will follow tradition and la-
bel such a combination of premises and conclusion an argument. A particularly
graphic way of writing an argument is to list the premises (in any order) with
the conclusion following and separated off by a horizontal line (as shown in
Figure 1.1.2-1). The sample argument shown here is a version of a widely used
traditional example and has often served as a paradigm of the sort of reasoning
studied by deductive logic.

premises All humans are mortal
Socrates is human

conclusion Socrates is mortal

Fig. 1.1.2-2. The components of an argument.

When we need to represent an argument horizontally, we will use / (virgule or
slash)  to  divide  the  premises  from the  conclusion,  so  the  argument  above
might  also  be  written  as  All  humans  are  mortal,  Socrates  is  human  /
Socrates is mortal.

Notice that the information expressed in the conclusion of this argument is
the result of an interaction between the two premises. In its broadest sense, the
traditional term syllogism (whose etymology might be rendered as ‘reckoning
together’) applies in the first instance to inference that is based on such inter-
action,  and  the  argument  above  is  a  traditional  example  of  a  syllogism.
Another traditional term, immediate inference, applied to arguments with a sin-
gle premise. The term immediate is not used here in a temporal sense but in-
stead to capture the idea of a conclusion that is inferred from a premise di-
rectly and thus without the “mediation” of any further premises.
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1.1.3. Notation for arguments
It is useful to have some abstract notation so that we can state generalizations
about reasoning without pointing to specific examples. We will use the lower
case Greek letters φ, ψ, and χ to stand for the individual sentences that may ap-
pear as the premises or conclusion of an argument. And we will use upper case
Greek Γ, Σ, and Δ to stand for sets of sentences, such as the set of premises of
an argument. The general form of an argument can then be expressed horizon-
tally as Γ / φ, where Γ is the set of premises and φ is the conclusion.

Although we speak of the premises of an argument as forming a set, in prac-
tice what appears above a vertical line or to the left of the sign / will often be a
list of sentences, and a symbol like Γ may often be thought of as standing for
such a list. The reason for basing the idea of an argument on that of a set is that
we will have no interest in the order of the premises or the number of times a
premise appear if the premises of an argument are listed. We ignore just such
features of a list when we move from the list to the set whose members it
lists—as we do when we use the notation {a , a , …, a } for a set with mem-
bers a , a , …, a . So, although premises will always be listed in concrete ex-
amples,  we will  regard two arguments that  share a conclusion as the same
when their premises constitute the same set.

There are other features of sets, however, which are of little use to us. In
particular, we have no need to distinguish between a sentence φ and the set
{φ} that has φ as its only member, and we will not attempt to preserve the dis-
tinction between the two in our notation for arguments. If the capital Greek let-
ters were understood to stand for lists (rather than sets) of sentences, it would
make sense to write Γ, φ / ψ to speak of an argument whose premises consisted
of the members of Γ together with φ. The set of premises of this argument is
the union Γ ∪ {φ} of the sets Γ and {φ}—i.e., it is the set whose members are
the members of Γ and {φ} taken together. Since this idea does not exclude the
possibility that φ is already a member of Γ, it provides convenient way to refer
to any argument whose premises include the sentence φ. We will understand
the notation “Γ, φ” in the same way. That is, imagine the members of Γ are
listed, followed by φ. The premises of the argument Γ, φ / ψ are the sentences
that appear anywhere in this list. The sentence φ definitely appears, so Γ, φ / ψ
is an argument whose premises include φ and whose conclusion is ψ. Since Γ
could be any set, this argument may or may not have premises in addition to φ.

We will use an analogous convention in the vertcial notation for arguments.
So, if Γ is the set {φ, ψ, χ} (i.e., the set whose members are φ, ψ, and χ) and Σ
is the set {ψ, χ}, then all of the following refer to the same argument:

1 2 n

1 2 n



horizontal: Γ / θ φ, ψ, χ / θ ψ, φ, χ, φ / θ Σ, φ / θ Γ, φ / θ φ, Γ / θ

vertical: 

Γ φ

ψ

χ

ψ

φ

χ

φ

Σ

φ

Γ

φ

φ

Γ

 θ θ θ θ θ θ

Γ = {φ, ψ, χ}

Σ = {ψ, χ}

Fig. 1.1.3-1. Alternative expressions for the same argument (where Γ is
the set whose members are φ, ψ, and χ and Σ is the set whose members

are ψ and χ).

The equivalence of these ways of referring to an argument can be traced to the
equivalence among the following ways of referring to the set whose members
are φ, ψ, and χ:

{φ, ψ, χ} = {ψ, φ, χ, φ} = {ψ, χ} ∪ {φ}
= {φ, ψ, χ} ∪ {φ} = {φ} ∪ {ψ, χ}
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1.1.4. Deductive vs. non-deductive reasoning
Although all good reasoning is of interest to logic, we will focus on reason-
ing—and, more specifically, on inference—that is good in a special way. To
see what this way is, let us begin with a rough distinction between two kinds
of reasoning a scientist will typically employ when attempting to account for a
body of experimental data.

An example of the first kind of inference is the extraction of information
from the data. For instance, the scientist may notice that no one who has had
disease A has also had disease B. Even though this conclusion is more than a
simple restatement of the data and could well be an important observation, it is
closely related to what is already given by the data. It may require perceptive-
ness to see it, but what is seen does not go beyond the information the data
provides.  This  sort  of  close  tie  between a  conclusion and the  premises  on
which it is based is characteristic of deductive reasoning.

This sort of reasoning appears also in mathematical proof and in some of the
inferences we draw in the course of interpreting oral or written language. It is
found whenever we draw conclusions that do not go beyond the content of the
premises on which they are based and thus introduce no new risk of error. It is
this kind of reasoning that  we will  study, and the traditional name for this
study is deductive logic.

Science is not limited to the extraction information from data. There usually
is some attempt to go beyond data either to make a generalization that applies
to other cases or to offer an explanation of the case at hand. A conclusion of ei-
ther sort brings us closer to the goals of science than does the mere extraction
of information, so it is natural to give more attention to an inference that gen-
eralizes or explains the data than one that merely extracts information from it.
But generalizations and explanations call attention to themselves also because
they are risky, and this riskiness distinguishes them from the extraction of in-
formation.

There is no very good term—other than non-deductive—for the sort of rea-
soning involved in inferences where we generalize or offer explanations. The
term inductive inference has been used for some kinds of non-deductive rea-
soning. But it has often been limited to cases of generalization, and the conclu-
sions of many non-deductive inferences are not naturally stated as generaliza-
tions.  Although scientific  explanations  typically  employ  general  laws,  they
usually employ other sorts of information, too, so they are not just generaliza-
tions. And other examples of inferences whose conclusions are the best expla-
nations of some data—for example, the sort of inferences a detective draws



from the evidence at a crime scene or that a doctor draws from a patient’s
symptoms—will often focus on conclusions about particular people, things, or
events and are not best thought of as generalizations at all.
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1.1.5. Deductive bounds on reasoning
Let us now look at the relations between deductive and non-deductive reason-
ing a little more closely with the aim of distinguishing the role of deductive in-
ference and other aspects of deductive logic.

First notice that there is a close tie between the riskiness of an inference and
the question whether it merely extracts information or does something more.
The information extracted from data may be no more reliable than the data it is
extracted from, but it certainly will be no less reliable. On the other hand, even
the generalization or explanatory hypothesis that is most strongly supported by
a body of data must go beyond the data if it is to generalize or explain it. And,
if this hypothesis goes beyond what the data says, there is a possibility it is
wrong even when the data is entirely accurate.

The extraction of information can be a first step towards a making a general-
ization or inferring an explanation. We have also seen that extracting informa-
tion does not merely prepare us to go further: it maps out the territory that we
can reach without risking the leap to a generalization or explanatory hypothe-
sis. That is, deductive logic serves to distinguish safe from risky inferences.
And this sets a lower bound for inference by marking the range of conclusions
that come for free, without risk.

But deductive logic sets bounds for inference in another respect, too. One
aspect of reasoning is the recognition of tension or incompatibility within col-
lections of sentences, and this, too, has a deductive side. When a incompatibil-
ity among sentences is a direct conflict among the claims they make, there is
no chance that they could be all be accurate. This sets a sort of upper bound for
inference by marking the range of conclusions that could not be supported by
any amount of further research. For example, we know that a generalization
can never be supported if our data already provides counterexamples to it.

These two bounds are depicted in the following diagram.



risk-free
conclusions 

more or less
well-supported

conclusions 
conclusions

absolutely
incompatible
with the data 

Fig. 1.1.5-1. Deductive bounds on inference.

Sentences in the small circle are the conclusions that are the result of deductive
reasoning.  They  merely  extract  information  and  are  risk-free  and  always
well-supported.  Beyond  this  circle  is  a  somewhat  larger  circle  with  fuzzy
boundaries that adds to risk-free conclusions other conclusions that are well
supported by the data but go beyond it and are at least somewhat risky. There
is  large  range  in  the  middle  of  diagram that  represents  conclusions  about
which our data tells us nothing. Beyond this, the circle at the right marks the
beginning of a region in which we find sentences deductively incompatible
with the data. These are claims that are ruled out by the data, that cannot be ac-
curate if the data is accurate. The sentences near this circle but not beyond it
are not absolutely incompatible with the data but are in real conflict with it.

The task of deductive logic is to map the sentences within the narrow circle
of risk-free conclusions and also to map those that are ruled by our premises. It
will turn out that these are not two separate activities: doing one for any sub-
stantial range of sentences will involve doing the other.
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1.1.6. Entailment, exclusion, and inconsistency
When the conclusion of an argument merely states information extracted from
the premises and is therefore risk free, we will say that the conclusion is en‐
tailed by the premises. Using this vocabulary, cases of extraction of informa-
tion may characterized by a relation of entailment between the initial data and
the information extracted from it. If we speak in terms of arguments, entail-
ment is a relation that may or may not hold between given premises and a con-
clusion, and we will say that an argument is valid if its premises do entail its
conclusion. We will say also that the conclusion of an argument with this prop-
erty is a valid conclusion from its premises. Figure 1.1.6-1 summarizes these
ways of stating the relation of entailment between a set of premises or assump-
tions Γ and a conclusion φ.

the assumptions Γ entail the conclusion φ
the conclusion φ is entailed by the assumptions Γ

the conclusion φ is a valid conclusion from the assumptions Γ
the argument Γ / φ is valid

Fig. 1.1.6-1. Several ways of stating a relation of entailment.

We will use the sign ⊨ (double right turnstile) as shorthand for the verb en-
tails, so we add to the English expressions in Figure 1.1.6-1 the claim Γ ⊨ φ
as a symbolic way of saying that the assumptions Γ entail the conclusion φ.
Using the sign ⊨, we can express the validity of argument in Figure 1.1.2-2  by
writing

All humans are mortal, Socrates is human ⊨ Socrates is mortal

The relation of entailment represents the positive side of deductive reason-
ing. The negative side is represented by the idea of a statement φ that cannot
be accurate when a set Γ of statements are all accurate. In this sort of case, we
will say that φ is excluded by Γ, and we will say that cases of this sort are char-
acterized by the relation of exclusion. We will see later that it is possible to
adapt the notation for entailment to express exclusion, so we will not introduce
special notation for this relation.

Entailment and exclusion are natural opposites, but the nature of the opposi-
tion means that the clear distinction between premises and conclusion is no
longer found when we consider exclusion. When we say that Γ ⊨ φ, we are
saying that there is no chance that φ will fail to be accurate when the members
of Γ are all accurate. When we say that Γ excludes φ, we are saying that there
is no chance that φ will succeed in being accurate along with the members of



Γ. In the latter case, we are really saying that a set consisting of sentence con-
sisting of the members of Γ together with φ cannot be wholely accurate, so it is
natural to trace the relation of exclusion to a property of inconsistency  that
characterizes such sets: we will say that a set of sentences is inconsistent when
its members cannot be jointly accurate. Then to say that φ is excluded by Γ is
to say that φ is inconsistent with (or given) Γ in the sense that adding φ to Γ
would produce an inconsistent set. The symmetry in the roles of terms in a re-
lation of exclusion is reflected in ordinary ways of expressing this side of de-
ductive reasoning: the difference between saying That hypothesis is incon-
sistent with our data and Our data is inconsistent with that hypothesis
is merely stylistic.

One aspect of the notation we will use for arguments and entailment de-
serves a final comment. The signs / and ⊨ differ not only in their content but
also in their grammatical role. A symbolic expression of the form Γ / φ is a
noun  phrase  since  it  abbreviates  the  English  expression  the  argument
formed of premises Γ and conclusion φ, so it is comparable in this respect
to an expression like x + y (which abbreviates the English the sum of x and
y). On the other hand, an expression of the form Γ ⊨ φ is a sentence, and it is
thus analogous to an expression like x < y. In short, ⊨ functions as a verb, but
the sign / functions as a noun. In Γ / φ, the symbols Γ and φ appear not as sub-
ject and object of a verb but as nouns used to specify the reference of a term,
much as the names Linden and Crawfordsville do in the term the distance
between Linden and Crawfordsville. And the relation between the claims

Γ ⊨ φ
Γ / φ is valid

is analogous to the relation between the claims

Linden is close to Crawfordsville
The distance between Linden and Crawfordsville is small

(Of course, there are also many respects in which these pairs of claims are not
analogous; for example, the relation expressed by ⊨ has a direction while that
expressed by is close to is reversible.)
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1.1.7. Formal logic
The subject we will study has traditional been given a variety of names. “De-
ductive logic” is one. Another is formal logic, and this term reflects an impor-
tant aspect of the way we will study deductive reasoning. Even among the in-
ferences that are deductive, we will consider only ones that do not depend on
the subject matter of the data. This means that these inferences will not depend
on the concepts employed to describe particular subjects, and it also means
that they will  not depend the mathematical structures (systems of numbers,
shapes,  etc.)  that  might be employed in such descriptions.  This can be ex-
pressed by saying that we will limit ourselves to inferences that depend only
on the form of the claims involved.

The distinction between form and content is a relative one. For example, the
use of numerical methods to extract information can be said to depend on con-
tent by comparison with the sort of inferences we will study. However, it can
count as formal by comparison with other ways of extracting information since
all that matters for much of the numerical analysis of data is the numbers that
appear in a body of measurements, not the nature of the quantities measured.

Our study is formal in a sense similar to that in which numerical methods
are formal, but it is formal to a greater degree. What matters for formal logic is
the appearance of certain words or grammatical constructions that can be em-
ployed in statements concerning any subject matter. Examples of such logical
words are and, not,  or, if, is (in the sense of is identical to), every,  and
some. While this list does not include all the logical words we will consider, it
does provide a fair indication of the forms of statements we will study. Indeed,
these seven words could serve as titles for chapters 2-8 of this text, respec-
tively. The way in which a statement is put together using words like these
(and using logically significant grammatical constructions not directly marked
by words) is its logical form, and formal logic is a study of reasoning that fo-
cuses on the logical forms of statements.

So the subject we will study will be not only deductive logic but formal
logic. That means that the norms of deductive reasoning that we will study will
be general rules applying to all statements with certain logical forms. It hap-
pens that we can give an exhaustive account of such rules in the case of the
logical forms that we will consider, so the content of the course can be defined
by these forms. Truth-functional logic, which will occupy us through chapter 5,
is concerned with logical forms that can be expressed using the words and,
not, or, and if while first-order logic (with identity) is concerned with the full
list above, adding to truth-functional logic forms that can be expressed by the



words is, every, and some.
Another traditional label for the subject we will study is the term symbolic

logic that appears in the course title. Most of what this term indicates about the
content of our study is captured already by the term formal logic because most
of the symbols we use will serve to represent logical forms. Certain of the logi-
cal forms that appear in the study of truth-functional logic are analogous to
patterns appearing in the symbolic statements of algebraic laws. Analogies of
this sort were recognized by G. W. Leibniz (1646-1716) and by others after
him, but they were first pursued extensively by George Boole (1815-1864),
who adopted a notation for logic that was modeled after algebraic notation.
The style of symbolic notation that  is  now standard among logicians owes
something to Boole (though the individual symbols are different) and some-
thing  also  to  the  notation  used  by  Gottlob  Frege  (1848-1925),  who  noted
analogies between first-order logic and the mathematical theory of functions.
This interest  in analogies with mathematical  theories distinguished logic as
studied by Boole and Frege from its more traditional study, and the term sym-
bolic has often been used to capture this distinction. The phrase mathematical
logic would be equally appropriate, and it has often been used as a label for the
subject we will study. However, it has also been used a little more narrowly to
speak of an application of logic to mathematical theories that makes these the-
ories  objects  of  mathematical  study in  their  own right.  That  application of
logic in a mathematical style to mathematics itself produces a kind of research
that is also known as metamathematics (which means, roughly, ‘the mathemat-
ics of mathematics’).
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1.1.s. Summary
The following summarizes this section, looking at it subsection by subsection.
Much of the special terminology introduced in the section appears in this sum-
mary, and these terms are often links back to the points in the text where they
were first introduced and explained.

Logic studies reasoning not to explain actual processes of reasoning but in-
stead to describe the norms of good reasoning.

The central focus of our study of logic will be inference . We will refer to
the starting points of inference as assumptions  or premises  and its end as a
conclusion . These two aspects of a stretch of reasoning can be referred to
jointly as an argument . We will separate them by a horizontal line when
they are listed vertically and by the sign / when they are listed horizontally.

We use the lower case Greek φ, ψ, and χ to stand for individual sentences
and upper case Greek Γ, Σ, and Δ to stand for sets of sentences. Our notation
for arguments will not distinguish a set from a list of its members; but it is
really sets that we focus on because, when considering the norms of infer-
ence, we will not distinguish between lists of sentences that determine the
same set.

Inference that  merely extracts  information from premises or  assumptions
and thus brings no risk of new error is deductive  inference. Inference that
goes beyond the content of the premises to, for example, generalize or ex-
plain is then non-deductive . Deductive inference may be distinguished as
risk-free in the sense that it adds no further chance of error to the data. The
study of the norms of deductive inference is deductive logic , and that is
topic of this course.

Since deductive inferences are risk free, they provide a lower bound on the
inferences that are good. Deductive reasoning also sets an upper bound on
good inference by rejecting certain conclusions as absolutely incompatible
with given premises.

The relation between premises and a conclusion that can be deductively in-
ferred from them is entailment . When the premises and conclusion of an ar-
gument are related in this way, the argument is said to be valid . Our sym-
bolic notation for this  relation is  the sign ⊨,  where Γ  ⊨  φ  says that  the
premises Γ entail the conclusion φ. A set of sentences is inconsistent  when
its members are mutually incompatible, and a sentence φ is excluded by  a
set Γ when φ and the members of Γ are mutually incompatible.



7 We will be interested in the deductive inferences whose validity is a result
of the logical form  of their premises and conclusions; so our study will be
an example of formal logic . The norms of deductive reasoning based on
logical form are analogous to some laws of mathematics. The recognition of
these analogies (especially by Boole  and Frege) has influenced the devel-
opment of formal deductive logic over the last two centuries, and logic stud-
ied from this perspective is often referred to as symbolic logic .
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1.1.x. Exercise questions
1. Some of the following references to arguments refer to the same argu-

ment in different ways (remember that changing the order of premises or
the number of times a given premise is referred to does not change the ar-
gument being referred to). If Γ stands for the sentences φ, χ, θ, what are
the different arguments referred to below? Identify each of the arguments
in a-h by listing the sentences making up its premises and conclusion and
tell which of a-h refer to the same argument:

 a. φ, ψ, χ / θ f. φ, θ, ψ, θ / χ
 b. θ, φ, ψ / χ g. Γ, φ / ψ
 c. χ, φ, ψ / θ h. Γ / θ
 d. Γ / ψ i. χ, θ, φ / ψ
 e. Γ, ζ / ψ h. Γ, ψ / χ
2. The basis for testing a scientific hypothesis can often be presented as an

argument whose conclusion is a prediction about the result of the test and
whose premises consist of the hypothesis being tested together with cer-
tain assumptions about the test (e.g., about the operation of any apparatus
being used to perform the test).

hypothesis to be tested:  hypothesis ⎫

assumptions about the test:
⎧
⎨
⎩

assumption
⋮

assumption
⎬
⎪
⎭

premises

prediction of the test result:  prediction  conclusion
Suppose that the prediction is entailed by the hypothesis together with the
assumptions about the test (i.e., suppose that the argument shown above
is valid) and answer the following questions:

 a. Can you conclude that the hypothesis is true on the basis of a suc-
cessful test (i.e., one for which the prediction is true)? Why or why
not?

 b. Can you conclude that the hypothesis is false on the basis of an un-
successful test (i.e., one for which the prediction is false)? Why or
why not?
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1.1.xa. Exercise answers
1. arguments references to them

(1) φ, χ, ψ / θ a, c
(2) θ, φ, ψ / χ b, f
(3) θ, φ, χ / ψ d, g, i
(4) ζ, θ, φ, χ / ψ e
(5) θ, φ, χ / θ h
(6) θ, φ, χ, ψ / χ j

2. a. Nothing definite can be concluded. The successful test tells you that
some true information has been extracted from the hypothesis and
auxiliary assumptions. But that can be so even if the hypothesis is
not true since a body of information that is not true as a whole can
still contain true information. For example, even if the prediction of
the result of one test holds true, predictions about other tests may
not.

 b. You can conclude that the hypothesis is false provided that the auxil-
iary assumptions are all true. The unsuccessful test tells you that a
false prediction has been extracted from the hypothesis together with
auxiliary assumptions about the test, but this can happen even if the
information provided by the hypothesis  itself  is  entirely  accurate.
The prediction may have failed, for example, because of incorrect
assumptions about the way some apparatus would work.
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