Appendices

Appendix A. Reference

A.0. Overview

A.1. Basic concepts

Definitions of entailment and related ideas

A.2. Logical forms

Forms expressed using one or more logical constants together with symbolic and English notation or readings

A.3. Truth tables

Tables that stipulate the meaning of the constants of truth-functional logic

A.4. Derivation rules

A guide to the use of derivation rules with links to the rules themselves

Glen Helman 03 Aug 2010

A.1. Basic concepts

Concept	Negative definition	Positive definition	
$φ$ is <i>entailed</i> by $Γ$ $Γ \models φ$	There is no logically possible world in which ϕ is false while all members of Γ are true.	ϕ is true in every logically possible world in which all members of Γ are true.	
φ and $ψ$ are (logically) equivalent $φ ≃ ψ$	There is no logically possible world in which ϕ and ψ have different truth values.	ϕ and ψ have the same truth value as each other in every logically possible world.	
$\varphi \text{ is a } tautology$ $\models \varphi$ $(or \top \vdash \varphi)$	There is no logically possible world in which ϕ is false.	φ is true in every logically possible world.	
$φ$ is inconsistent with $Γ$ $Γ$, $φ \models$ $(or Γ, φ \models \bot)$	There is no logically possible world in which ϕ is true while all members of Γ are true.	ϕ is false in every logically possible world in which all members of Γ are true.	
Γ is inconsistent $\Gamma \vDash (or \Gamma \vDash \bot)$	There is no logically possible world in which all members of Γ are true.	In every logically possible world, at least one member of Γ is false.	
$φ$ is absurd $φ \models (or φ \models \bot)$	There is no logically possible world in which ϕ is true.	φ is false in every logically possible world.	
Σ is rendered exhaustive by Γ $\Gamma \vDash \Sigma$	There is no logically possible world in which all members of Σ are false while all members of Γ are true.	At least one member of Σ is true in each logically possible world in which all members of Γ are true	

A.2. Logical forms

Forms for which there is symbolic notation

	Symbolic notation	English notation or English reading	
Negation	¬ φ	not φ	_
Conjunction	φΛψ	both ϕ and ψ	$(\phi \text{ and } \psi)$
Disjunction	$\phi \vee \psi$	either ϕ or ψ	$(\phi \text{ or } \psi)$
The conditional	$\begin{array}{l} \phi \rightarrow \psi \\ \psi \leftarrow \phi \end{array}$	$\begin{array}{c} \text{if } \phi \text{ then } \psi \\ \text{yes } \psi \text{ if } \phi \end{array}$	$\begin{array}{l} (\phi \text{ implies } \psi) \\ (\psi \text{ if } \phi) \end{array}$
Identity	$\tau = \upsilon$	τ is υ	
Predication	$\theta \tau_1 \tau_n$	θ fits $\tau_1,, \tau_n$	A series of terms $\tau_1,, \tau_n$ can be read (series) $\tau_1,, \theta$ n
Compound term	$\gamma \tau_1 \tau_n$	$ \begin{array}{l} \gamma \text{ of } \tau_1, , \tau_n \\ \gamma \text{ applied to } \tau_1, , \tau_n \end{array} $	$ au_n$ (using the expression on to distinguish this use of and from its use in conjunction and adding series when necessary to avoid ambiguity)
Predicate abstract	$\left[\varphi\right]_{\mathbf{x}_{1}\mathbf{x}_{n}}$	what φ says of x_1x_n	ı
Functor abstract	$\left[au ight]_{ ext{x}_1 ext{x}_n}$	τ for $\mathbf{x}_1 \mathbf{x}_n$	
Universal quantification	∀х Өх		h that θx
Restricted universal	(∀x: ρx) θx	forall x st ρ x θ x everything, x, such t	hat ρx is such that θx
Existential quantification	Эх Өх	$\begin{array}{l} \text{for some } x \; \theta x \\ \text{something, } x, \text{ is such} \end{array}$	n that θx
Restricted existential	(∃x: ρx) θx	forsome x st ρx θx something, x , such that ρx is such that θx	
Definite description	lx ρx	the x st ρ x the thing, x, such th	at px

Some paraphrases of other forms

Truth-functional compounds

	J 1	
neither φ nor ψ	¬ (φ ∨ ψ) ¬ φ ∧ ¬ ψ	
ψ only if φ	$\neg \psi \leftarrow \neg \phi$	
ψ unless φ	ψ ← ¬ φ	
	Generalizations	
All Cs are such that (they)	(∀x: x is a C) x	
No Cs are such that (they)	$(\forall x: x \text{ is a } C) \neg \dots x \dots$	
Only Cs are such that (they)	$(\forall x: \neg x \text{ is a } C) \neg \dots x \dots$	
with: among Bs	add to the restriction: $x \in B$	
except Es	¬ x is an E	
other than τ	$\neg x = \tau$	
Ι	Numerical quantifier phrases	
At least 1 C is such that (it)	(∃x: x is a C) x	
At least 2 Cs are such that (they)	$(\exists x: x \text{ is a C}) (\exists y: y \text{ is a C} \land \neg y = x) (\dots x \dots \land \dots y \dots)$	
Exactly 1 C is such that (it)	$ \begin{array}{c} (\exists x \colon x \text{ is a C}) (\; \dots \; x \; \dots \; \wedge \; (\forall y \colon y \text{ is a C} \; \wedge \; \neg \; y = x) \; \neg \; \dots \; y \; \dots) \\ \\ \textit{or} \\ (\exists x \colon x \text{ is a C}) (\; \dots \; x \; \dots \; \wedge \; (\forall y \colon y \text{ is a C} \; \wedge \; \dots \; y \; \dots \;) \; x = y) \end{array} $	
Definite	descriptions (on Russell's analysis)	
The C is such that (it)	$(\exists x: x \text{ is a } C \land (\forall y: \neg y = x) \neg y \text{ is a } C) \dots x \dots$ or $(\exists x: x \text{ is a } C \land (\forall y: y \text{ is a } C) x = y) \dots x \dots$	

Glen Helman 03 Aug 2010

A.3. Truth tables

Taute	ology	Absi	ırdity	Neg	ation
<u>T</u> T		$\frac{\perp}{F}$		$\begin{array}{c c} \phi & \neg \phi \\ \hline T & F \\ F & T \end{array}$	
Conju	nction	Disju	nction	Cona	litional
φψ	φΛψ	φψ	φνψ	φψ	$\phi \rightarrow \psi$
ТТ	T	ТТ	T	ТТ	T
TF	F	ΤF	T	ΤF	F
FΤ	F	FΤ	T	FΤ	T
FF	F	FF	F	FF	Т

Glen Helman 03 Aug 2010

A.4. Derivation rules

Basic system

Rules for developing gaps			
	for resources	for goals	
atomic sentence		IP	
negation ¬ φ	$\begin{array}{c} CR\\ (\text{if }\phi \text{ not atomic}\\ \& \text{ goal is }\bot) \end{array}$	RAA	
conjunction φ∧ψ	Ext	Cnj	
$\begin{array}{c} disjunction \\ \phi \lor \psi \end{array}$	PC	PE	
$\begin{array}{c} conditional \\ \phi \rightarrow \psi \end{array}$	$\begin{array}{c} RC \\ \text{(if goal is } \bot) \end{array}$	СР	
universal ∀x θx	UI	UG	
existential ∃x θx	PCh	NcP	

In addition, if the conditions for applying a rule are met except for differences between co-aliases, then the rule can be applied and is notated by adding "="; QED= and Nc= are examples of this.

, sterri				
Rules for closing gaps				
	when	to close		rule
co-c	aliases	resources	goal	
		φ	φ	QED
		ϕ and \neg ϕ	Τ	Nc
			Т	ENV
		Τ		EFQ
τ	—υ		$\tau = \upsilon$	EC
τ	—v	$\neg \tau = \upsilon$	Τ	DC
τ ₁ —υ ₁ ,	\dots , τ_n — υ_n	$P\tau_1\tau_n$	Pv_1v_n	QED=
τ_1 — υ_1 ,	$, \tau_n$ — v_n	$P\tau_1\tau_n$ $\neg P\upsilon_1\upsilon_n$	Τ	Nc=
Detachment rules (optional)				
	require	ed resources	rule	?
	main	auxiliar	y	
		φ	MPI)
	$\phi \rightarrow \psi$	¬± ψ	MT	Γ
•	φνψ	$\neg^{\pm} \phi$ or \neg^{\pm}	Ψ MTI	-

MPT

φ or ψ

Additional rules (not guaranteed to be progressive)

Attachment rules		
added resource	rule	
φΛψ	Adj	
$\phi \to \psi$	Wk	
$\phi \vee \psi$	Wk	
$\neg \ (\phi \wedge \psi)$	Wk	
$\tau = \upsilon$	CE	
θv_1v_n	Cng	
∃х Өх	EG	

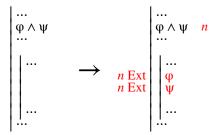
Rule for lemmas prerequisite rule the goal is \perp LFR

 $\neg (\phi \land \psi)$

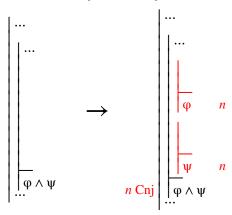
Diagrams

Rules from chapter 2

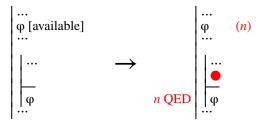
Extraction (Ext)



Conjunction (Cnj)



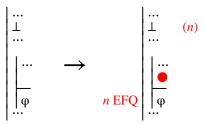
Quod Erat Demonstrandum (QED)



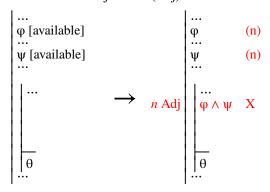
Ex Nihilo Verum (ENV)



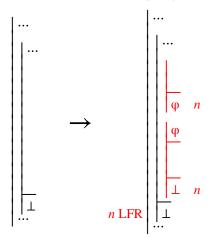
Ex Falso Quodlibet (EFQ)



Adjunction (Adj)

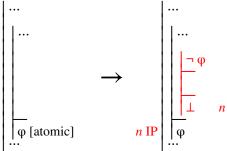


Lemma for Reductio (LFR)

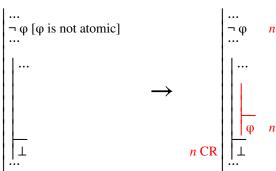


Rules from chapter 3

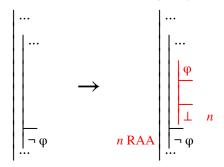
Indirect Proof (IP)



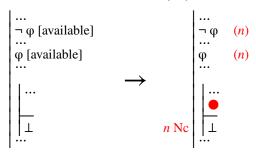
Completing the Reductio (CR)



Reductio ad Absurdum (RAA)

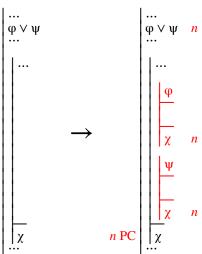


Non-contradiction (Nc)

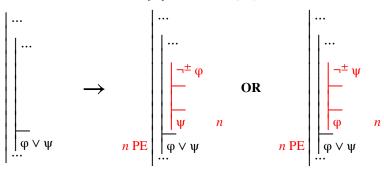


Rules from chapter 4

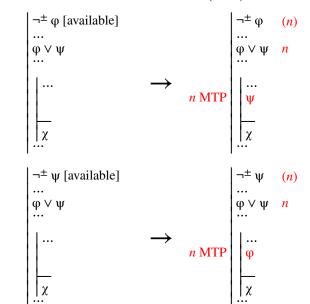
Proof by Cases (PC)



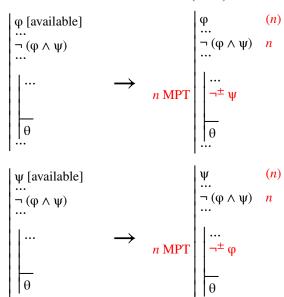
Proof of Exhaustion (PE)



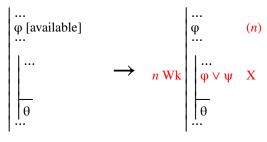
Modus Tollendo Ponens (MTP)



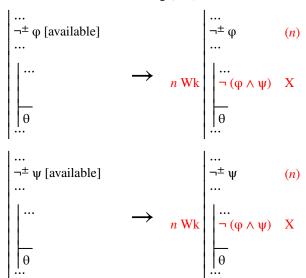
Modus Ponendo Tollens (MPT)



Weakening (Wk)

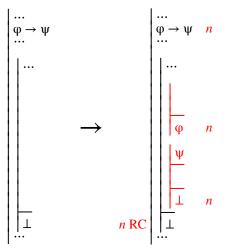


Weakening (Wk)

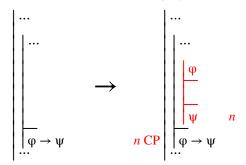


Rules from chapter 5

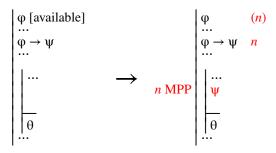
Rejecting a Conditional (RC)



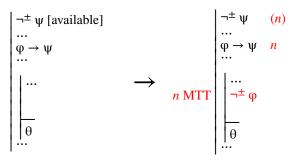
Conditional Proof (CP)



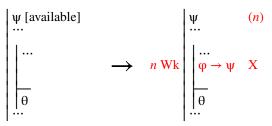
Modus Ponendo Ponens (MPP)



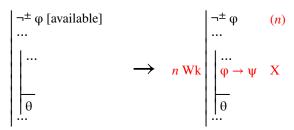
Modus Tollendo Tollens (MTT)



Weakening (Wk)

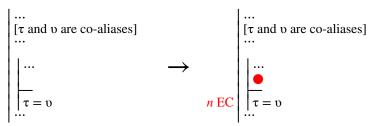


Weakening (Wk)

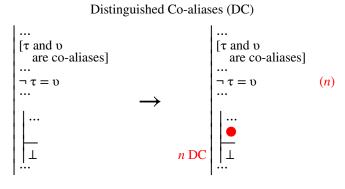


Rules from chapter 6

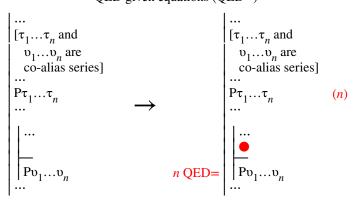
Equated Co-aliases (EC)



Distinguished Co-aliases (DC)

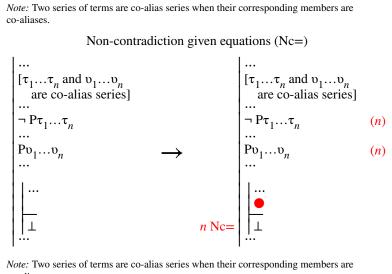


QED given equations (QED=)



Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Non-contradiction given equations (Nc=)



Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Co-alias Equation (CE)

$$\begin{array}{c} \dots \\ [\tau \text{ and } \upsilon \\ \text{are co-aliases}] \\ \dots \\ \hline \\ | \dots \\ \hline \\ | \varphi \\ \dots \\ \hline \end{array} \begin{array}{c} \dots \\ [\tau \text{ and } \upsilon \\ \text{are co-aliases}] \\ \dots \\ \hline \\ \tau = \upsilon \\ \end{array} \begin{array}{c} X \\ \\ X \\ \hline \\ \psi \\ \dots \end{array}$$

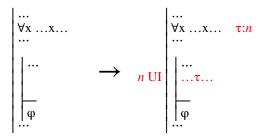
Congruence (Cng)



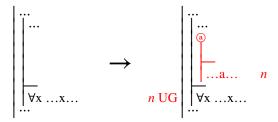
Note: θ can be an abstract, so $\theta \tau_1 \dots \tau_n$ and $\theta \upsilon_1 \dots \upsilon_n$ are any formulas that differ only in the occurrence of terms and in which the corresponding terms are co-aliases.

Rules from chapter 7

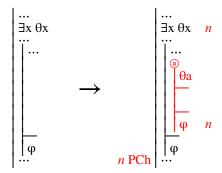
Universal Instantiation (UI)



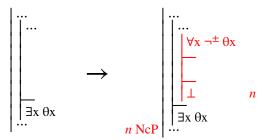
Universal Generalization (UG)



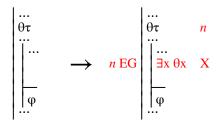
Proof by Choice (PCh)



Non-constructive Proof (NcP)



Existential Generalization (EG)



Glen Helman 28 Oct 2010