Appendices

Appendix A. Reference

A.0. Overview

A.1. Basic concepts

Definitions of entailment and related ideas

A.2. Logical forms

Forms expressed using one or more logical constants together with symbolic and English notation or readings

A.3. Truth tables

Tables that stipulate the meaning of the constants of truth-functional logic

A.4. Derivation rules

A guide to the use of derivation rules with links to the rules themselves

Glen Helman 03 Aug 2010

A.1. Basic concepts

Concept	Negative definition	Positive definition
$φ$ is <i>entailed</i> by Γ $\Gamma \models φ$	There is no logically possible world in which ϕ is false while all members of Γ are true.	ϕ is true in every logically possible world in which all members of Γ are true.
φ and $ψ$ are (logically) equivalent $φ ≃ ψ$	There is no logically possible world in which ϕ and ψ have different truth values.	ϕ and ψ have the same truth value as each other in every logically possible world.
$\varphi \text{ is a } tautology$ $\models \varphi$ $(or \top \vdash \varphi)$	There is no logically possible world in which ϕ is false.	ϕ is true in every logically possible world.
φ is inconsistent with Γ $\Gamma, \varphi \vDash (or \Gamma, \varphi \vDash \bot)$	There is no logically possible world in which ϕ is true while all members of Γ are true.	ϕ is false in every logically possible world in which all members of Γ are true.
Γ is inconsistent $\Gamma \vDash (or \Gamma \vDash \bot)$	There is no logically possible world in which all members of Γ are true.	In every logically possible world, at least one member of Γ is false.
$φ$ is absurd $φ \models (or φ \models \bot)$	There is no logically possible world in which ϕ is true.	ϕ is false in every logically possible world.
Σ is rendered exhaustive by Γ $\Gamma \vDash \Sigma$	There is no logically possible world in which all members of Σ are false while all members of Γ are true.	At least one member of Σ is true in each logically possible world in which all members of Γ are true

Glen Helman 03 Aug 2010

A.2. Logical forms

Forms for which there is symbolic notation

	Symbolic notation	English notation or English reading	
Negation	¬φ	not φ	
Conjunction	φΛψ	both ϕ and ψ	$(\phi \text{ and } \psi)$
Disjunction	φ∨ψ	either ϕ or ψ	$(\phi \text{ or } \psi)$
The conditional	$\begin{array}{c} \phi \rightarrow \psi \\ \psi \leftarrow \phi \end{array}$	if φ then ψ yes ψ if φ	$\begin{array}{c} (\phi \text{ implies } \psi) \\ (\psi \text{ if } \phi) \end{array}$
Identity	$\tau = \upsilon$	τ is υ	
Predication	$\theta \tau_1 \tau_n$	θ fits $\tau_1,,\tau_n$	A series of terms $\tau_1,, \tau_n$ can be read (series) $\tau_1,, \vartheta n$
Compound term	$\gamma \tau_1 \tau_n$	$ \begin{array}{c} \gamma \text{ of } \tau_1, , \tau_n \\ \gamma \text{ applied to } \tau_1, , \tau_n \end{array} $	$ au_n$ (using the expression on to distinguish this use of and from its use in conjunction and adding series when necessary to avoid ambiguity)
Predicate abstract	$[\phi]_{\mathbf{x}_1 \dots \mathbf{x}_n}$	what φ says of $\mathbf{x}_1\mathbf{x}_n$	
Functor abstract	$\left[au ight]_{ ext{x}_{1} ext{x}_{n}}$	τ for $\mathbf{x}_1\mathbf{x}_n$	_
Universal quantification	$\forall x \ \theta x$	forall x θx everything, x , is such that θx	
Restricted universal	(∀x: ρx) θx	forall x st ρx θx everything, x, such that ρx is such that θx	
Existential quantification	∃х θх	forsome x θx something, x , is such that θx	
Restricted existential	(∃x: ρx) θx	forsome x st ρx θx something, x, such that ρx is such that θx	
Definite description	lx ρx	the x st ρ x the thing, x, such th	at px

Some paraphrases of other forms

Truth-functional compounds

	J I		
neither φ nor ψ	$\neg \ (\phi \lor \psi) \\ \neg \ \phi \land \neg \ \psi$		
ψ only if φ	$\neg \ \psi \leftarrow \neg \ \phi$		
ψ unless φ	$\psi \leftarrow \neg \ \phi$		
	Generalizations		
All Cs are such that (they)	(∀x: x is a C) x	·	
No Cs are such that (they)	(∀x: x is a C) ¬	х	
Only Cs are such that (they)	(∀x: ¬ x is a C) ¬	. x	
with: among Bs	add to the restriction:	x is a B	
except Es		¬ x is an E	
other than τ		$\neg x = \tau$	
1	Numerical quantifier phrases		
At least 1 C is such that (it)	(∃x: x is a C) x	·	
At least 2 Cs are such that (they)	$(\exists x: x \text{ is a C}) (\exists y: y \text{ is a C} \land \neg y = x)$	(x ∧ y)	
Exactly 1 C is such that (it)	$(\exists x \colon x \text{ is a C}) \ (\ \dots \ x \ \dots \ \land \ (\forall y \colon y \text{ is a C} \ \land \\ or \\ (\exists x \colon x \text{ is a C}) \ (\ \dots \ x \ \dots \ \land \ (\forall y \colon y \text{ is a C})$		
Definite descriptions (on Russell's analysis)			
The C is such that (it)	$(\exists x: x \text{ is a } C \land (\forall y: \neg y = x) \neg or$ $(\exists x: x \text{ is a } C \land (\forall y: y \text{ is a } C)$		

Glen Helman 03 Aug 2010

A.3. Truth tables

Taut	ology	Absi	urdity	Neg	gation
_	<u>T</u> T	-	<u> </u>	φ Τ F	¬φ F T
Conji	ınction	Disju	nction	Cond	litional
φψ	φΛψ	φψ	φνψ	φψ	$\phi {\to} \psi$
ТТ	T	ТТ	T	ТТ	T
ΤF	F	TF	T	ΤF	F
FΤ	F	FΤ	T	FΤ	T
FF	F	FF	F	FF	T

Glen Helman 03 Aug 2010

A.4. Derivation rules

Basic system

Rules for developing gaps			
	for resources	for goals	
atomic sentence		IP	
negation ¬ φ	$\begin{array}{c} CR\\ (\text{if }\phi \text{ not atomic}\\ \& \text{ goal is }\bot) \end{array}$	RAA	
conjunction φ ∧ ψ	Ext	Cnj	
disjunction φ∨ψ	PC	PE	
$\begin{array}{c} conditional \\ \phi \rightarrow \psi \end{array}$	RC (if goal is ⊥)	СР	
universal ∀x θx	UI	UG	
existential ∃x θx	PCh	NcP	

Rules for closing gaps				
whe	rule			
co-aliases	resources	goal		
	φ	φ	QED	
	ϕ and \neg ϕ	Τ	Nc	
		Т	ENV	
	Τ		EFQ	
τ—υ		$\tau = \upsilon$	EC	
τ—υ	$\neg \ \tau = \upsilon$	Τ	DC	
τ_1 — υ_1 ,, τ_n — υ_n	$_{n}$ $P\tau_{1}\tau_{n}$	Pv_1v_n	QED=	
τ_1 — υ_1 ,, τ_n — υ_n	$ \begin{array}{ccc} & \operatorname{P}\tau_1\tau_n \\ & \neg \operatorname{P}\upsilon_1\upsilon_n \end{array} $	Τ	Nc=	
Detachment rules (optional)				
requir	ed resources	s rule	?	
main	auxiliar	у		
	φ	MPI	P	

 $\phi \lor \psi \quad \neg^{\pm} \phi \text{ or } \neg^{\pm} \psi \text{ MTP}$

MTT

MPT

In addition, if the conditions for applying a rule are met except for differences between co-aliases, then the rule can be applied and is notated by adding "="; QED= and Nc= are examples of this.

Additional rules (not guaranteed to be progressive)

Attachment ru	iles
added resource	rule
φΛψ	Adj
$\phi \rightarrow \psi$	Wk
φ∨ψ	Wk
$\neg \ (\phi \wedge \psi)$	Wk
$\tau = \upsilon$	CE
$\theta v_1 v_n$	Cng
∃х Өх	EG

Rule for lemmas

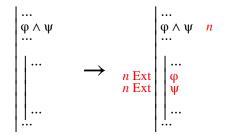
prerequisite rule

the goal is \perp LFR

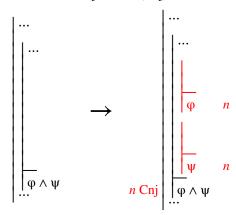
Diagrams

Rules from chapter 2

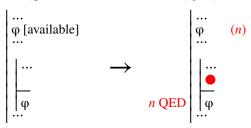
Extraction (Ext)



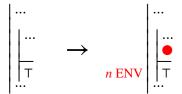
Conjunction (Cnj)



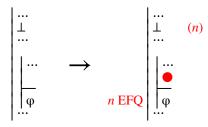
Quod Erat Demonstrandum (QED)



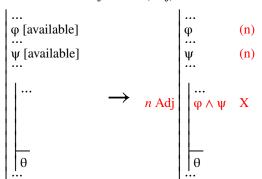
Ex Nihilo Verum (ENV)



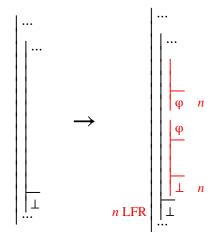
Ex Falso Quodlibet (EFQ)



Adjunction (Adj)

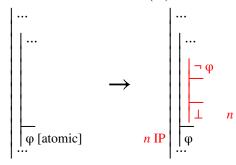


Lemma for Reductio (LFR)

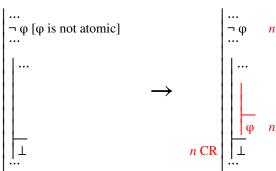


Rules from chapter 3

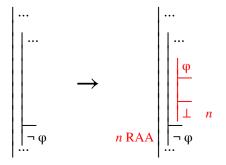
Indirect Proof (IP)



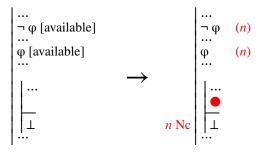
Completing the Reductio (CR)



Reductio ad Absurdum (RAA)

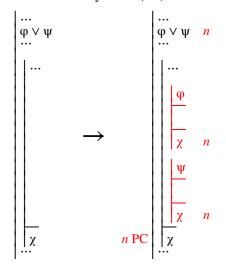


Non-contradiction (Nc)

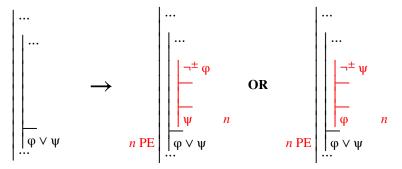


Rules from chapter 4

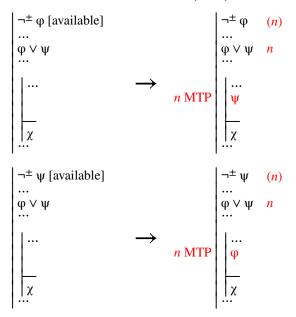
Proof by Cases (PC)



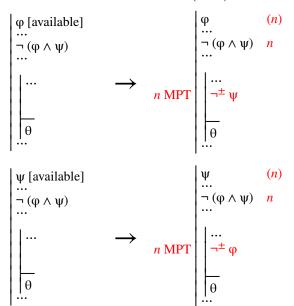
Proof of Exhaustion (PE)



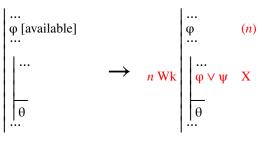
Modus Tollendo Ponens (MTP)



Modus Ponendo Tollens (MPT)



Weakening (Wk)

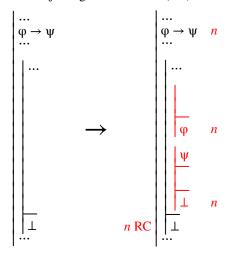


$$\begin{array}{c|c} \dots & \dots & \dots \\ \psi \text{ [available]} & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \vdots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots &$$

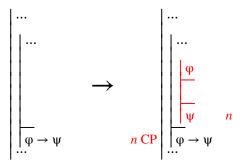
Weakening (Wk)

Rules from chapter 5

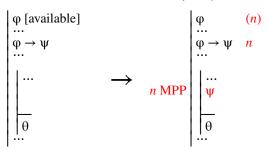
Rejecting a Conditional (RC)



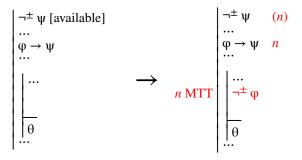
Conditional Proof (CP)



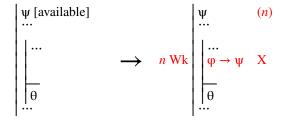
Modus Ponendo Ponens (MPP)



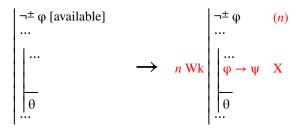
Modus Tollendo Tollens (MTT)



Weakening (Wk)

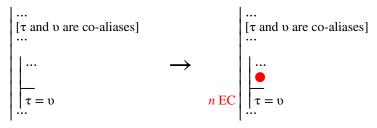


Weakening (Wk)



Rules from chapter 6

Equated Co-aliases (EC)



Distinguished Co-aliases (DC)

QED given equations (QED=)

$$\begin{array}{c} \dots \\ [\tau_1...\tau_n \text{ and} \\ \upsilon_1...\upsilon_n \text{ are} \\ \text{co-alias series}] \\ \dots \\ P\tau_1...\tau_n \\ \dots \end{array} \rightarrow \begin{array}{c} \dots \\ [\tau_1...\tau_n \text{ and} \\ \upsilon_1...\upsilon_n \text{ are} \\ \text{co-alias series}] \\ \dots \\ P\tau_1...\tau_n \\ \dots \end{array}$$

Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Non-contradiction given equations (Nc=)

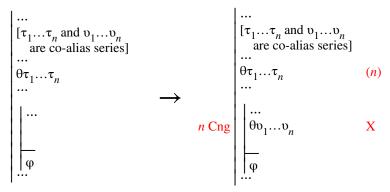
$$\begin{bmatrix} \dots \\ [\tau_1...\tau_n \text{ and } \upsilon_1...\upsilon_n \\ \text{are co-alias series}] \\ \dots \\ \neg P\tau_1...\tau_n \\ \dots \\ P\upsilon_1...\upsilon_n \\ \dots \end{bmatrix} \xrightarrow{n \text{ Nc} =} \begin{bmatrix} \dots \\ [\tau_1...\tau_n \text{ and } \upsilon_1...\upsilon_n \\ \text{are co-alias series}] \\ \dots \\ \neg P\tau_1...\tau_n \\ \dots \\ \dots \\ \dots \\ n \text{ Nc} \end{bmatrix}$$

Note: Two series of terms are co-alias series when their corresponding members are co-aliases.

Co-alias Equation (CE)

$$\begin{array}{c} \dots \\ [\tau \text{ and } \upsilon \\ \text{ are co-aliases}] \\ \dots \\ \hline \\ \phi \\ \dots \\ \hline \end{array} \qquad \begin{array}{c} \dots \\ [\tau \text{ and } \upsilon \\ \text{ are co-aliases}] \\ \dots \\ \hline \\ \tau = \upsilon \\ \end{array} \qquad \begin{array}{c} \dots \\ \tau = \upsilon \\ \end{array}$$

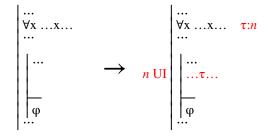
Congruence (Cng)



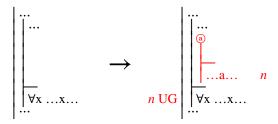
Note: θ can be an abstract, so $\theta \tau_1 ... \tau_n$ and $\theta \upsilon_1 ... \upsilon_n$ are any formulas that differ only in the occurrence of terms and in which the corresponding terms are co-aliases.

Rules from chapter 7

Universal Instantiation (UI)

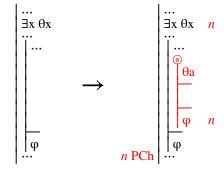


Universal Generalization (UG)

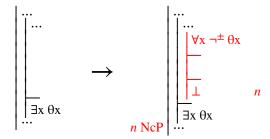


Rules from chapter 8

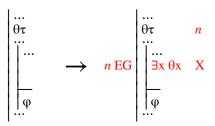
Proof by Choice (PCh)



Non-constructive Proof (NcP)



Existential Generalization (EG)



Glen Helman 28 Oct 2010