
8.5. Proofs by choice and proofs of existence
8.5.0. Overview
Although  formal  proofs  for  disjunction  involve  some  new ideas,  these  are
mainly recombinations of ideas used for disjunction and universals.

8.5.1. Proof by choice
A conclusion can be derived from an existential by choosing a new name for
the example whose existence it claims.

8.5.2. Constructive and non-constructive proof
A claim of  exemplification  can  be  established  either  by  constructing  an
example or by reducing to absurdity the assumption that there is no such
example.

8.5.3. Derivations for existentials
Our selection of  derivation rules  for  existentials  is  analogous to  that  for
disjunction,  with  two  basic  rules  supplemented  by  an  often  useful
attachment rule.

8.5.4. First-order logic
This completes our account of entailment for first-order logic, which has
come to replace the theory of syllogisms as the generally accepted core of
deductive logic.
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8.5.1. Proof by choice
As has been the case elsewhere in this chapter, our discussion of principles of
entailment for existentials can build on our discussion of universals in the last
chapter.  The  differences  between  the  principles  governing  universal  and
existential quantifiers will, in most cases, be analogous to differences between
the principles for conjunction and disjunction. The laws of entailment for the
universal quantifiers were modifications of laws for conjunction, and the rules
for the existential quantifiers will nearly all be based in a similar way on rules
for disjunction. Our planning rule for existential sentences is the one exception
to  this,  and  even  it  is  analogous  to  a  rule  that  could  have  been  used  for
disjunction.

These  analogies  with  the  universal  quantifier  on  the  one  hand  and  with
disjunction on the other derive from the truth conditions for the unrestricted
existential, which follow the conditions for disjunction in precisely the way the
conditions for the universal follow those for conjunction. A sentence ∃x θx is
true in a structure if and only if it has at least one true instance in a language
expanded by the range R of that structure. In other words, an existential claim
behaves like a disjunction of its instances when these instances are taken from
a language that has a name for each reference value in the structure. However,
as was the case with the universal,  the set  of instances can vary from one
structure to another, so general laws of entailment cannot employ any definite
information about what the instances of an existential sentence are.

We will begin our discussion of principles of entailment with the role of an
unrestricted existential as a premise. First, recall the corresponding principle
for disjunction. A disjunctive premise may be used to draw a conclusion by
way of a proof by cases. In such a proof, we suppose in turn that each of the
disjuncts is true and argue for the conclusion in each case. A comparable way
of arguing from an existential would be to establish many case arguments, each
one considering an instance of the existential as one case. Since we cannot
associate the existential with any definite set of instances, there is no way to
delimit the range of case arguments we would need to consider, so we must use
adapt a device from our treatment of the universal:  we need to set  out the
indefinitely many arguments by offering a general pattern. That is, to use an
existential premise to draw a conclusion, we draw the conclusion from one
instance of the existential in a way that sets a pattern for all other instances.

This sort of argument may be called a proof by choice, a name which reflects
another way of looking at the principle behind it. Consider the two arguments
below.



Anyone who worked late
got overtime

If anything broke down,
Tom worked late

Something broke down
Tom got overtime

Anyone who worked late
got overtime

If anything broke down,
Tom worked late

E broke down
Tom got overtime

The validity of the argument on the left can be traced to the validity of the one
on the right. In the latter, we use the premise E broke down in place of the
existential Something broke down, so we argue for the conclusion from an
instance of the existential. When we replace an existential by an instance of it,
we are choosing E as a name for an example that the existential claims to exist,
so this is an argument to proceeds by way of the choice of a name.

Of course, we cannot assume that the “something” claimed to exist by an
existential premise is some thing that we have other information about. That is,
choosing  a  name  really  means  choosing  a  new  name.  For  an  unrestricted
existential tells us nothing about the example it claims to exist except for the
property it is said to exemplify. So the name we choose must be one that could
apply to anything that has this property. And that returns us to the first way of
looking  at  proofs  by  choice:  they  must  argue  from  one  instance  of  an
existential in a way that sets a pattern for all such instances.

Recalling the test we used for the generality of arguments in the case of the
universal quantifiers, we can expect our analysis of the role of an existential as
a premise to make reference to a term that is independent in an appropriate
sense.  We will  want  a  term α that  has  no connection to  the  premises  and
conclusion of the argument—including the existential ∃x θx—apart from the
assumption θα. So suppose the term α is unanalyzed term and does not appear
in the set Γ, the sentence φ, or the existential ∃x θx, and consider the two
arguments

Γ, ∃x θx / φ
Γ, θα / φ.

We can argue that each is valid if and only if the other is if we can show that
each is divided by a structure if and only if the other is. If a structure S divides
the premises and conclusion of the first, it will assign θ a non-empty extension,
and we can form a structure S′ that divides the second argument by assigning a
value in this extension to the term α. For this assignment will not change the
extension of θ or the truth values of φ and the members Γ since α does not
appear in these expressions, so θα will be true and the conclusion and the other
premises will  keep the same truth values. On the other hand, any structure



dividing the second argument will give θ a non-empty extension (because the
value of the term α will be in it) so this structure will make ∃x θx true and also
divide the first argument. Thus we will have a structure dividing one argument
if and only if we have a structure dividing the other, and each argument is valid
if and only if the other is.

This gives us our principle describing the role of the unrestricted existential
as a premise.

LAW FOR THE UNRESTRICTED EXISTENTIAL AS A PREMISE. Γ, ∃x θx ⊨ φ if
and only if Γ, θα ⊨ φ (for any set Γ, predicate θ, and sentence φ and any
unanalyzed term α that does not appear in Γ, θ, or φ)

The corresponding principle for the restricted existential combines these ideas
with the properties of conjunction:

Γ, (∃x: ρx) θx ⊨ φ if and only if Γ, ρα, θα ⊨ φ
(for any set Γ, predicates ρ and θ, and sentence φ and any unanalyzed
term α that does not appear in Γ, ρ, θ, or φ)

That is,  having a restricted existential as an assumption comes to the same
thing as assuming that an independent term refers to something that is in the
domain and has the attribute.
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8.5.2. Constructive and non-constructive proof
Let us now turn to the task of establishing an existential conclusion. As the
title suggests, we will consider two ways of doing this. In the first and most
general of these, we establish a claim ∃x θx that a property θ is exemplified by
reducing to absurdity the claim ∀x ¬  θx that nothing has this property. This
way of  drawing an existential  conclusion is  called a  non-constructive proof
because  it  enables  us  to  establish  a  claim of  exemplification  without  ever
describing a particular example. The use of the term construction here can be
traced historically to geometry, where claims of exemplification are typically
established by a geometric construction of the figure that is claimed to exist;
but the term construction  has come to be applied in mathematics to other
techniques that specify particular examples.

We will adopt the idea of non-constructive proof as our basic principle for
the existential as a conclusion.

LAW FOR THE UNRESTRICTED EXISTENTIAL AS A CONCLUSION. Γ ⊨ ∃x θx if
and only if Γ, ∀x ¬  θx ⊨ ⊥ (for any set Γ and predicate θ)

This  principle  does  not  explain  the  role  of  the  existential  as  a  conclusion
directly, but instead makes a connection with the role of the universal as a
premise. We are led to do things in this way by entailment’s focus on a single
sentence as the conclusion. Were we to consider conditional exhaustiveness
rather than entailment, a law for ∃ that makes no reference to ∀ would be easier
to state because the consideration of multiple alternatives makes it possible to
formulate a principle dual to the principle for the universal as a premise; see
appendix B for the form this principle takes.

The second rule for existential conclusions takes a more direct approach. A
constructive proof of a claim of exemplification establishes the claim by first
producing an example of the sort that is claimed to exist. The move from an
example  to  a  claim of  exemplification  appears  formally  as  a  step  from an
instance of an existential to the existential itself. The principle of entailment
governing this step is commonly known as existential generalization:

θτ ⊨ ∃x θx (for any term τ)

The conclusion of this entailment is not a generalization in the sense in which
we have been using the term. But it may be said of someone who is making
heavy  use  of  words  like  something  and  someone  that  he  is  “speaking  in
generalities”  and  is  not  being  specific.  The  principle  of  existential
generalization is a license to move from a specific claim to a generality of an
existential sort. We cannot rely on this principle alone, but it does provide a
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useful supplement in the way the principle of weakening supplements the law
for disjunction as a conclusion. And, like weakening, we will count existential
generalization  as  an  attachment  principle.  (What  is  attached?  In  form,  we
could say it is the existential quantifier; in what is said, it is the other instances
of the conclusion, the other ways in which it could be true.)

Although non-constructive proofs of exemplification have been common in
modern  mathematics,  some  have  questioned  their  value.  The  doubts  about
them have not usually been doubts about their validity (though Brouwer, who
was mentioned in 3.1.3 , could be said to have doubted that—in spite of the
fact  that  early  in  his  career  he  produced  some non-constructive  proofs  for
which  he  is  still  famous).  The  feature  of  non-constructive  proofs  that  lies
behind these doubts is a different sort  of weakness that is  granted even by
those  who  accept  such  proofs  happily:  because  they  do  not  produce  an
example, non-constructive proofs may provide little insight into the reasons
why a claim of exemplification is true.

The  deepest  concerns  about  non-constructive  proof  are  focused  on
arguments about abstract and, especially, infinite structures, and even Brouwer
thought that non-constructive proofs were valid for reasoning about ordinary
claims concerning the  world  of  sense  experience.  Still,  the  indirection and
uninformativeness  of  non-constructive  arguments  can  be  felt  with  ordinary
reasoning  and  is  often  unnecessary,  so  it  is  worthwhile  considering  the
alternative.

Before considering the implementation of these principles of entailment in
derivations, let us look a little more closely at the reasons why our general
account of the existential as the conclusion has been made parasitic on our
account of the universal as a premise. First, recall our account of the role of
disjunction as conclusion. In one of its forms it is this: Γ ⊨ φ ∨ ψ if and only if
Γ, ¬  φ ⊨ ψ. We could have avoided the asymmetric treatment of the two
components  in  this  principle  if  we had resorted  to  an  even heavier  use  of
negation; applying the idea behind IP to the right side of the law, we get this:
Γ ⊨ φ ∨ ψ if and only if Γ, ¬  φ, ¬  ψ ⊨ ⊥. That is, a disjunction is a valid
conclusion if and only if we can reduce to absurdity the supposition that its
components are both false. A strict analogue for the existential of this rule for
disjunction would say that we can conclude an existential ∃x θx from premises
Γ if and only if we can reduce to absurdity the result of adding denials of all
the instances of ∃x θx to Γ. But, since there is no definite set of instances, we
cannot  take this  approach literally.  So,  instead of  adding the denials  of  all
instances of the existential, we add the corresponding generalization ∀x ¬  θx.

Any  approach  to  existential  conclusions  that  is  more  analogous  to  the
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principle for disjunctions as a conclusion would force us to consider repeated
partial  planning  for  existential  goals  as  we  consider  we  consider  repeated
partial exploitation of universal premises. And that would involve a far greater
modification of the system of derivations than the rules we will now go on to
consider.
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8.5.3. Derivations for existentials
To implement the laws we have just been considering, we will again use ideas
introduced in connection with universals. In particular, a proof by choice will
be marked by a veil of ignorance flagged by an independent term, and it will
have  a  supposition  that  sets  out  the  example  chosen.  However,  the
complications that appeared with the rules for exploiting universals may be left
with  those  rules,  since  we  manage  planning  for  an  existential  conclusion
simply by passing the buck on to universals.

The  two  basic  rules  for  the  unrestricted  existential  are  Proof  by  Choice
(PCh) and Non-constructive Proof (NcP):

│⋯
│∃x θx
│⋯
││⋯
││
││
││
││
││
││
│├─
││φ
│⋯

→

│⋯
│∃x θx n
│⋯
││⋯
││ⓐ
│││θa
││├─
│││
││├─
│││φ n
│├─
││φ

n PCh│⋯

Fig. 8.5.3-1. Developing a derivation at stage n by exploiting an
unrestricted existential; the independent term a is new to the derivation.

│⋯
││⋯
││
││
││
││
││
│├─
││∃x θx
│⋯

→

│⋯
││⋯
│││∀x ¬  θx
││├─
│││
││├─
│││⊥ n
│├─
││∃x θx

n NcP│⋯

Fig. 8.5.3-2. Developing a derivation at stage n by planning for an
unrestricted existential.

Notice that the existential is rendered inactive in the first rule. Also remember
that  the  independent  term  that  is  used  in  this  rule  should  be  new  to  the
derivation; that will insure that the supposition that is introduced represents the
only information about this independent term that may be used in closing the
gap.

The second rule will often be a very indirect way of reaching an existential

±



goal,  and  the  attachment  rule,  Existential  Generalization  (EG),  which
implements  the  idea  of  constructive  proof,  can  simplify  derivations
considerably:

│⋯
│θτ
│⋯
││⋯
││
││
│├─
││φ
│⋯

→

│⋯
│θτ n
│⋯
││⋯

n EG││∃x θx X
││
│├─
││φ
│⋯

Fig. 8.5.3-3. Developing a derivation at stage n by adding an unrestricted
existential that has an instance among the active resources.

Although this is an attachment rule and therefore not part of the basic system,
you should be as ready to use it as the two above.

Here are two derivations that illustrate these rules. Each shows that a claim
of  uniformly  general  exemplification  implies  the  corresponding  claim  of
general exemplification without a claim of uniformity.

│∃x ∀y Rxy 1
├─
│ⓐ
││∀y Ray b:3
│├─
││ⓑ

3 UI │││Rab (6)│││││││∀x ¬ Rxb a:5
│││├─

5 UI ││││¬ Rab (6)
││││●
│││├─

6 Nc ││││⊥ 4
││├─

4 NcP│││∃x Rxb 2
│├─

2 UG ││∀y ∃x Rxy 1
├─

1 PCh│∀y ∃x Rxy

 │∃x ∀y Rxy 1
├─
│ⓐ
││∀y Ray b:3
│├─
││ⓑ

3 UI │││Rab (4)││││││
4 EG │││∃x Rxb X,(5)

│││
│││●
│││
│││
││├─

5 QED│││∃x Rxb 2
│├─

2 UG ││∀y ∃x Rxy 1
├─

1 PCh │∀y ∃x Rxy

The derivation on the left uses a non-constructive proof of the existential that
is  set  as the goal in stage 2 while the one on the right uses EG to give a
constructive proof of this existential. Both derivations begin by exploiting the
existential premise, but derivations for the same entailment could have been
developed by planning for the initial conclusion first; and, when NcP is used, it
would be possible to postpone the exploitation of the initial premise until after
NcP is applied. (It would be a good exercise at this point to write down these



│⋯
│∃x θx
│⋯
││⋯
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
││
│├─
││φ
│⋯

→

│⋯
│∃x θx n
│⋯
││⋯
│││θσ
││├─
│││
││├─
│││φ n
││
││⋮
││
│││θτ
││├─
│││
││├─
│││φ n
││
││ⓐ
│││θa
││├─
│││
││├─
│││φ n
│├─

n PCh+││φ
│⋯

Fig.  8.5.3-4.  Developing  a
derivation  at  stage  n  by
exploiting  an  unrestricted  or  a
restricted  existential;  the
independent term a is new to the
derivation and the terms σ, …, τ
include  at  least  one  from  each
current alias set for the gap

other derivations for this argument.) The savings in length and complexity that
were achieved by using EG in this case are typical.

Since EG can be used only when the resources entail an existential, it often
cannot  be  used  in  derivations  that  fail,  and  NcP is  required  even  in  some
derivations  for  valid  existential  conclusions.  A  derivation  showing  the
obversion principle ¬ ∀x Fx ⊨ ∃x ¬ Fx is simple example of this.

│¬ ∀x Fx (2)
├─
││∀x Fx (2)
││●
│├─

2 Nc ││⊥ 1
├─

1 NcP│∃x ¬ Fx
EG could not have been applied here because the premise does not entail any
sentence ¬ Fτ from which we could generalize.

Arguments  for  the  soundness  and
completeness of this system carry over
from  7.7  without  any  new  wrinkles.
We solved all the key problems there,
and  a  number  are  not  even  repeated
here.  However,  we  cannot  avoid  the
consequences  of  the  failure  of
decisiveness. If we wish to find finite
counterexamples  whenever  they  exist,
we  need  to  use  a  modified  rule  for
exploiting  existential  resources  in  the
way  the  rule  for  planning  for  a
universal goal was modified in 7.8.1 .
Without such a rule, we will not reach
dead-end  open  gap  in  any  derivation
whose  resources  contain  a  weak,
though  unrestricted,  claim  of  general
exemplification (e.g., a sentence of the
form ∀x  ∃y  Rxy).  The  modified  rule
needed  to  search  for  finite
counterexamples  is  Supplemented
Proof by Choice (PCh+).

The following derivation illustrates this rule. It shows that a claim of general
exemplification need not imply uniformity. That is, it finds a counterexample to
the entailment ∀x ∃y Rxy ⊨ ∃y ∀x Rxy.



│∀x ∃y Rxy a:2, c:9
├─
││∀y ¬ ∀x Rxy a:3, c:10
│├─

2 UI ││∃y Ray 5
3 UI ││¬ ∀x Rxa 4

││
││││Raa (7)
│││├─
│││││●
││││├─

7 QED │││││Raa 6
││││
││││ⓒ
││││││¬ Rca (15)
│││││├─

9 UI ││││││∃y Rcy 12
10 UI ││││││¬ ∀x Rxc 11

││││││
││││││││Rca (15)
│││││││├─
││││││││(unfinished but closes)
│││││││├─
││││││││∀x Rxc 12
│││││││
││││││││Rcc
│││││││├─
││││││││││¬ Rac
│││││││││├─
││││││││││○ Raa, ¬ Rca, Rcc, ¬ Rac ⊭ ⊥
│││││││││├─
││││││││││⊥ 14
││││││││├─

14 IP │││││││││Rac 13
││││││││
│││││││││(unfinished but closes)
││││││││├─
│││││││││Rcc 13
││││││││
││││││││ⓔ
│││││││││(unfinished)
││││││││├─
│││││││││Rec 13
│││││││├─

13 UG+ ││││││││∀x Rxc 12
│││││││
│││││││ⓓ
││││││││Rcd
│││││││├─
││││││││(unfinished)
│││││││├─
││││││││∀x Rxc 12
││││││├─

12 PCh+│││││││∀x Rxc 11
│││││├─

11 CR ││││││⊥ 8
││││├─

8 IP │││││Rca 6
│││├─

6 UG+ ││││∀x Rxa 5
│││
│││ⓑ
││││Rab
│││├─
││││(unfinished)
│││├─
││││∀x Rxa 5
││├─

5 PCh+ │││∀x Rxa 4
│├─

4 CR ││⊥ 1
├─

1 NcP │∃y ∀x Rxy

 

①
a

②
c

R

Although this is long and cumbersome, the development of the dead-end gap



goes  through  the  kinds  steps  you  would  need  to  go  through  in  your  own
thinking to arrive the same counterexample (the bracketed numbers link steps
in this thinking with the stages of the derivation):

The premise says that everything stands in relation R to something
or other. And, to make the conclusion false, we need to know that
there is nothing that has everything standing in the relation R to it
[1]. So we must have an object a such that a stands in R to something
but not everything stands in R to a [2-4]. Now we can’t be sure that a
is related to itself; but we can still consider this possibility as one
way of making it true that a is related to something by R, so let’s
suppose  that  Raa  [5].  But  we  also  need  to  make  it  false  that
everything stands in R to a, so let’s suppose we have an object c that
doesn’t stand in R to a [6-8]. Now c must stand in R to something and
it can’t have everything standing in R to it [9-11, cf. 2-4]. Let’s try
supposing it stands in R to itself (though it might be something else
that  it  is  related  to)  [12].  Now,  we  must  also  be  sure  that  not
everything stands in R to c, but nothing keeps us from supposing that
a  does  not  [13-14].  Summing up,  we’ve  described a  possible  world
containing objects a and c where Raa, ¬ Rca, Rcc, ¬ Rac; and that’s
enough to make the premise true and the conclusion false.

Developing  the  unfinished  gaps  would  lead  to  other  counterexamples.  For
example, the last open gap in this derivation explores the possibility of making
the premise true by having a stand in R to another object  b and it  would,
among other things, lead us to a counterexample in which each of a and b is
stands in R to the other but neither stands in R to itself.
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8.5.4. First-order logic

Although we will go on in 8.6  to give some consideration to derivations for
the description operator, our system of derivations is now essentially complete.
It is intended to capture entailments that derive from truth-functional logic and
the logical properties of identity, predication, and the quantifiers. This range of
logical  forms is  the  concern  of  first-order  logic.  (Usage  varies  a  little,  and
sometimes identity is not included; in that case, our subject is “first-order logic
with  identity.”)  Beginning  about  a  century  ago,  first-order  logic  came  to
replace the theory of syllogisms as the commonly accepted core of deductive
logic. In the current practice of mathematics, for example, even very abstract
general principles falling beyond its scope would be treated as special axioms
(of the theory of sets for example) while principles of first-order logic would
be  accepted  as  background  assumptions  within  the  context  of  which  the
consequences of special axioms are assessed.

The  theory  of  syllogisms  itself  appears  as  an  account  of  a  very  special
collections of arguments. The outlines of this collection were sketched in 7.5.6
, but having the existential quantifier makes it possible to provide more detail
in a compact way. The four moods, the logical forms recognized by the theory,
are as follows (with the vowels that serve as their traditional labels):

A: (∀x: ρx) θx E: (∀x: ρx) ¬ θx
I: (∃x: ρx) θx O: (∃x: ρx) ¬ θx

and  the  four  figures  are  the  following  patterns  of  occurence  of  the  three
predicates that can appear in a syllogism (where the predicate shown on the
left is the resticting predicate of the sentence and the one on the right is its
quantified predicate):

μ θ
ρ μ

ρ θ

θ μ
ρ μ

ρ θ

μ θ
μ ρ

ρ θ

θ μ
μ ρ

ρ θ
1 2 3 4

Here μ is the middle term.
Of the 64 syllogisms of the first figure, the following four are valid:

(∀x: μx) θx
(∀x: ρx) μx

(∀x: ρx) θx

(∀x: μx) ¬ θx
(∀x: ρx) μx

(∀x: ρx) ¬ θx

(∀x: μx) θx
(∃x: ρx) μx

(∃x: ρx) θx

(∀x: μx) ¬ θx
(∃x: ρx) μx

(∃x: ρx) ¬ θx
Barbara Celarent Darii Ferio

Notice that the pattern of vowels in the traditional name shown below each

st nd rd th



argument matches the moods of its premises and conclusion. The proportion of
valid  arguments  in  the  other  figures  is  similar,  and  there  are  fifteen  valid
syllogisms all told.

One of the limitations of theory of syllogisms is an inability to consider
logical  relations  between  the  restricitng  and  quantified  predicates  of  a
generalization or claim of exemplification. For example, using the resources of
first-order logic, we can account for the fact that Every horse is a mammal
implies  Any  head  of  a  horse  is  a  head  of  a  mammal  (an  entailment
mentioned in 7.1.1 ).

(∀x: Hx) Mx

(∀x: (∃y: Hy) Dxy) (∃z: Mz) Dxz

H: [ _ is a horse]; M: [ _ is a mammal]; D: [ _ is a head of _ ]

│∀x (Hx → Mx) b:5
├─
│ⓐ
│││∃y (Hy ∧ Day) 3
││├─
│││ⓑ
││││Hb ∧ Dab 4
│││├─

4 Ext ││││Hb (6)
4 Ext ││││Dab (7)
5 UI ││││Hb → Mb 6
6 MPP││││Mb (7)
7 Adj ││││Mb ∧ Dab X, (8)
8 EG ││││∃z (Mz ∧ Daz) X, (9)

││││●
│││├─

9 QED││││∃z (Mz ∧ Daz) 3
││├─

3 PCh │││∃z (Mz ∧ Daz) 2
│├─

2 CP ││∃y (Hy ∧ Day) → ∃z (Mz ∧ Daz) 1
├─

1 UG │∀x (∃y (Hy ∧ Dxy) → ∃z (Mz ∧ Dxz))

(The use of adjunction and existential generalization at stages 7 and 8 saves us
having to enter ∀z ¬ (Mz ∧ Daz) as a supposition to be reduced to absurdity.)
Even  though  this  argument  is  closely  related  to  syllogisms—the  active
resources and goal after the use of CP at stage 2 form a valid syllogism of the
third figure known as Disamis—its validity cannot be explained without an
analysis  of  the  restricting  and  quantified  predicates  of  the  conclusion,
something the theory of syllogisms does not provide for.

Although first-order logic forms the core of deductive logic, it  is not the
whole of it. One way to go beyond it is to study the sort of non-truth-functional



connectives noted in 3.1.2 . Another is to consider further sorts of quantifiers.
The  qualification  first-order  derives  from  the  fact  that  we  analyze
quantification only over individuals and not over properties and relations. Thus
we cannot analyze the sentence Objects a and b are identical if and only if
every property of one is a property of the other,  and we cannot ask
whether this sentence is a tautology. The representation of such higher-order
quantification symbolically would present few new problems. We would need
bindable  variables  that  functioned  syntactically  as  predicates,  notation  for
complex  predicates  of  predicates  (with  our  quantifiers  serving  as  simple
predicates  of  predicates),  and  quantifiers  applying  to  such  predicates  of
predicates. This would give us second-order logic.  To go further, we might
introduce quantification for predicates of predicates—and so on. If this process
is  continued  to  all  (finite)  orders,  we  end  up  with  what  is  known  as
higher-order logic or (simple) type theory.

While higher-order logic introduces nothing really new in its  syntax,  the
account  of  entailment  for  it  is  a  completely  different  game,  and  the  new
problems appear already with second-order logic. In particular, there can be no
sound system for settling questions of validity for second-order logic that is
even complete, much less decisive. Indeed, a full understanding of validity for
second-order logic would provide a full understanding of all truths concerning
positive integers. But it was shown by Kurt Gödel in the early 1930s that these
truths cannot be captured by anything like a system of derivations. (This is the
result  mentioned in 7.7.1  as the basis  on which Church showed that  there
could be no system of derivations for first-order logic that was decisive as well
as sound and complete.)

So there is reason to distinguish the theory of first-order quantification from
higher-order  logic.  Frege’s  work did  not  make this  distinction.  The subject
matter he addressed included the whole of what is now known as type theory
because  he  was  interested  in  connections  with  arithmetic,  whose  truths  he
wished  to  explain  as  logical  tautologies.  Although  he  provided  what  was
essentially a complete account of validity for first-order logic, his treatment of
other areas introduced inconsistencies. These were repaired shortly after (in
the first decade of the 20  century) by Bertrand Russell, whose work led to the
current conception of type theory. First-order logic came to be distinguished
within type theory and was permanently set in its present form by Gödel when
he showed that Frege’s initial ideas provided a complete account of validity for
this part of logic.

Glen Helman 20 Nov 2010
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8.5.s. Summary
Existentials bear the kind of analogy to disjunctions that universals bear to
conjunctions, and their role in entailment reflects this. Our principle for the
unrestricted existential as premise  says  that  the  existential  will  support  a
proof by choice . This is a sort of proof by cases in which cases for each
instance  of  the  existential  are  handled  not  one  by  one  but  by  using  an
independent term  to make a general argument. This instance can be thought
of as an example, chosen in ignorance of its identity, of the sort that the
existential claims to exist.

There  are  two  approaches  to  establishing  an  existential  conclusion.  Our
general  principle  for  the  unrestricted existential as a conclusion  uses  the
idea of non-constructive proof , in which a claim of exemplification is based
on the reduction to absurdity of a corresponding negative universal.  In a
constructive proof  using  existential generalization ,  an  existential
conclusion is based on the proof of an instance, which thus “constructs” an
example of the sort the existential claims to exist.

The  laws  for  existential  premises  and  conclusions  are  implemented  in
exploitation  and  planning  rules  using  some  ideas  from  the  rules  for
universals.  The principles for unrestricted existentials are implemented in
the  rules  Proof by Choice (PCh) ,  Non-constructive Proof (NcP) ,  and
Existential Generalization (EG) .  Also  as  was  the  case  with  the  universal
quantifier,  to  uncover  counterexamples  to  invalid  arguments  using  finite
ranges (when such counterexamples exist), we would need a supplemented
form of proof, in this case PCh+.

The system we have now completed accounts for the entailments of what is
known as first-order logic . It has come to been seen as the core of deductive
logic. Until a century ago that status was given to the theory of syllogims ,
which can be regarded as a portion of first-order logic which does not make
use of the possibility of analyzing the restricting and quantified predicates of
generalizations or claims of exemplification.

The qualification first-order  indicates that  we consider quantification
only over individuals and not over properties, properties of those properties,
or any other second-order  or higher-order  entities. Although higher-order
logic, or type theory , has attracted interest since Frege, it cannot be given a
complete system of derivations.

Glen Helman 03 Aug 2010



8.5.x. Exercise questions
1. Use the system of derivations to establish each of the following:

a. ∃x Fx, ∀x (Fx → Gx) ⊨ ∃x Gx
b. ∃x (Fx ∧ Gx), ∀x (Gx → Hx) ⊨ ∃x (Fx ∧ Hx) [this is the syllogism

Darii]
c. ∀x (Fx → Ga) ≃ ∃x Fx → Ga
d. Fa ≃ ∃x (x = a ∧ Fx)
e. ∃x (Fx ∧ ∀y Rxy) ⊨ ∀x ∃y (Fy ∧ Ryx)
f. ∃x (Gx ∧ Fx), ¬ Fa ⊨ ∃x (¬ x = a ∧ Gx)
g. ∀x (Fx → Ga),∀x (Ga → Fx), ∃x Fx ⊨ ∀x Fx
h. Everyone loves everyone who loves anyone, Someone loves

someone ⊨ Everyone loves everyone
i. Something is such that nothing other than it is done ≃ At

most one thing is done
2. Use derivations to check each of the claims below; if a derivation

indicates that a claim fails, describe a structure that divides an open gap.
You need not worry about infinite derivations.
a. ∃x Fx, ∃x Gx ⊨ ∃x (Fx ∧ Gx)
b. ∃x (Fx ∧ Gx), ∃x (Fx ∧ Hx), ∀x (Fx → ∀y (Fy → x = y)) ⊨ ∃x (Gx

∧ Hx)
3. In the following, choose one of each bracketed pair of premises and one

each bracketed pair of words or phrases in the conclusion so as to make a
valid argument; then analyze the premises and conclusion and construct a
derivation to show that the argument is valid.

a.

Some road sign was colored
[Every stop sign was a road sign | Every road sign was a traffic

marker]
[If anything was red, it was colored | If anything was colored,

it was painted]
Some [stop sign | traffic marker] was [red | painted]

b.
Someone who owns a snake was pleased
[Every cobra is a snake | Every snake is a reptile]
Someone who owns a [cobra | reptile] was pleased

For more exercises, use the exercise machine .

Glen Helman 03 Aug 2010



8.5.xa. Exercise answers
1. Some of the derivations below are given in two forms, one that does not

use EG and another that does.
 a. │∃x Fx 1

│∀x (Fx → Gx) a:2
├─
│ⓐ
││Fa (3)
│├─

2 UI ││Fa → Ga 3
3 MPP││Ga

│││∀x ¬ Gx a:5
││├─

5 UI │││¬ Ga (6)
│││●
││├─

6 Nc │││⊥
│├─

4 NcP ││∃x Gx 1
├─

1 PCh │∃x Gx

 │∃x Fx 1
│∀x (Fx → Gx) a:2
├─
│ⓐ
││Fa (3)
│├─

2 UI ││Fa → Ga 3
3 MPP││Ga (4)
4 EG ││∃x Gx X, (5)

││●
│├─

5 QED││∃x Gx 1
├─

1 PCh │∃x Gx

 b. │∃x (Fx ∧ Gx) 1
│∀x (Gx → Hx) a:3
├─
│ⓐ
││Fa ∧ Ga 2
│├─

2 Ext ││Fa (7)
2 Ext ││Ga (4)
3 UI ││Ga → Ha 4
4 MPP││Ha (8)

││
│││∀x ¬ (Fx ∧ Hx) a:6
││├─

6 UI │││¬ (Fa ∧ Ha) 7
7 MPT│││¬ Ha (8)

│││●
││├─

8 Nc │││⊥ 5
│├─

5 NcP ││∃x (Fx ∧ Hx) 1
├─

1 PCh │∃x (Fx ∧ Hx)

 │∃x (Fx ∧ Gx) 1
│∀x (Gx → Hx) a:3
├─
│ⓐ
││Fa ∧ Ga 2
│├─

2 Ext ││Fa (5)
2 Ext ││Ga (4)
3 UI ││Ga → Ha 4
4 MPP││Ha (5)
5 Adj ││Fa ∧ Ha X, (6)
6 EG ││∃x (Fx ∧ Hx) X, (7)

││●
│├─

7 QED││∃x (Fx ∧ Hx) 1
├─

1 PCh │∃x (Fx ∧ Hx)



 c. │∀x (Fx → Ga) b:3
├─
││∃x Fx 2
│├─
││ⓑ
│││Fb (4)
││├─

3 UI │││Fb → Ga 4
4 MPP│││Ga (5)

│││●
││├─

5 QED│││Ga 2
│├─

2 PCh ││Ga 1
├─

1 CP │∃x Fx → Ga
  │∃x Fx → Ga 4

├─
│ⓑ
│││Fb (8)
││├─
││││¬ Ga (4)
│││├─

4 MTT││││¬ ∃x Fx 5
││││
││││││∀x ¬ Fx b:7
│││││├─

7 UI ││││││¬ Fb (8)
││││││●
│││││├─

8 Nc ││││││⊥ 6
││││├─

6 NcP │││││∃x Fx 5
│││├─

5 CR ││││⊥ 3
││├─

3 IP │││Ga 2
│├─

2 CP ││Fb→Ga 1
├─

1 UG │∀x (Fx → Ga)

 │∃x Fx → Ga 4
├─
│ⓑ
│││Fb (3)
││├─

3 EG │││∃x Fx X, (4)
4 MPP│││Ga (5)

│││●
││├─

5 QED│││Ga 2
│├─

2 CP ││Fb → Ga 1
├─

1 UG │∀x (Fx → Ga)



 d. │Fa (3)
├─
││∀x ¬ (x = a ∧ Fx) a:2
│├─

2 UI ││¬ (a = a ∧ Fa) 3
3 MPT││¬ a = a (4)

││●
│├─

4 DC ││⊥ 1
├─

1 NcP │∃x (x = a ∧ Fx)

 │Fa (2)
├─

1 EC │a = a X, (2)
2 Adj │a = a ∧ Fa X, (3)
3 EG │∃x (x = a ∧ Fx) X, (4)

│●
├─

4 QED│∃x (x = a ∧ Fx)

  │∃x (x = a ∧ Fx) 1
├─
│ⓑ
││b = a ∧ Fb 2
│├─

2 Ext ││b = a a—b
2 Ext ││Fb (3)

││●
│├─

3 QED=││Fa 1
├─

1 PCh │Fa

 e. │∃x (Fx ∧ ∀y Rxy) 2
├─
│ⓐ
││ⓑ
│││Fb ∧ ∀y Rby 3
││├─

3 Ext │││Fb (6)
3 Ext │││∀y Rby a:7

│││
││││∀y ¬ (Fy ∧ Rya) b:5
│││├─

5 UI ││││¬ (Fb ∧ Rba) 6
6 MPT││││¬ Rba (8)
7 UI ││││Rba (8)

││││●
│││├─

8 Nc ││││⊥ 4
││├─

4 NcP │││∃y (Fy ∧ Rya) 2
│├─

2 PCh ││∃y (Fy ∧ Rya) 1
├─

1 UG │∀x ∃y (Fy ∧ Ryx)

 │∃x (Fx ∧ ∀y Rxy) 2
├─
│ⓐ
││ⓑ
│││Fb ∧ ∀y Rby 3
││├─

3 Ext │││Fb (5)
3 Ext │││∀y Rby a:4
4 UI │││Rba (5)
5 Adj │││Fb ∧ Rba X, (6)
6 EG │││∃y (Fy ∧ Rya) X, (7)

│││●
││├─

7 QED│││∃y (Fy ∧ Rya) 2
│├─

2 PCh ││∃y (Fy ∧ Rya) 1
├─

1 UG │∀x ∃y (Fy ∧ Ryx)



 f. │∃x (Gx ∧ Fx) 1
│¬ Fa (6)
├─
│ⓑ
││Gb ∧ Fb 2
│├─

2 Ext ││Gb (5)
2 Ext ││Fb (6)

││
│││∀x ¬ (¬ x = a ∧ Gx) b:4
││├─

4 UI │││¬ (¬ b = a ∧ Gb) 5
5 MPT│││b = a a—b

│││●
││├─

6 Nc= │││⊥ 3
│├─

3 NcP ││∃x (¬ x = a ∧ Gx) 1
├─

1 PCh │∃x (¬ x = a ∧ Gx)
 g. │∀x (Fx → Ga) c:3

│∀x (Ga → Fx) b:5
│∃x Fx 2
├─
│ⓑ
││ⓒ
│││Fc (4)
││├─

3 UI │││Fc → Ga 4
4 MPP│││Ga (6)
5 UI │││Ga → Fb 6
6 MPP│││Fb (7)

│││●
││├─

7 QED│││Fb 2
│├─

2 PCh ││Fb 1
├─

1 UG │∀x Fx



 h. (∀x: Px) (∀y: Py ∧ (∃z: Pz) Lyz) Lxy
(∃x: Px) (∃y: Py) Lxy

(∀x: Px) (∀y: Py) Lxy

│∀x (Px → ∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lxy)) b:7, a:14
│∃x (Px ∧ ∃y (Py ∧ Lxy)) 5
├─
│ⓐ
│││Pa (15)
││├─
│││ⓑ
│││││Pb (8), (19)
││││├─
│││││ⓒ
││││││Pc ∧ ∃y (Py ∧ Lcy) 6
│││││├─

6 Ext ││││││Pc (12), (17)
6 Ext ││││││∃y (Py ∧ Lcy) 10
7 UI ││││││Pb → ∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lby) 8
8 MPP ││││││∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lby) c:9
9 UI ││││││(Pc ∧ ∃z (Pz ∧ Lcz)) → Lbc 13

││││││
││││││ⓓ
│││││││Pd ∧ Lcd (11)
││││││├─

11 EG │││││││∃z (Pz ∧ Lcz) X, (12)
12 Adj │││││││Pc ∧ ∃z (Pz ∧ Lcz) X, (13)
13 MPP│││││││Lbc (17)
14 UI │││││││Pa → ∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lay) 15
15 MPP│││││││∀y ((Py ∧ ∃z (Pz ∧ Lyz)) → Lay) b:16
16 UI │││││││(Pb ∧ ∃z (Pz ∧ Lyz)) → Lab 20
17 Adj │││││││Pc ∧ Lbc X, (18)
18 EG │││││││∃z (Pz ∧ Lbz) X, (19)
19 Adj │││││││Pb ∧ ∃z (Pz ∧ Lbz) X, (20)
20 MPP│││││││Lab (21)

│││││││●
││││││├─

21 QED│││││││Lab 10
│││││├─

10 PCh ││││││Lab 5
││││├─

5 PCh │││││Lab 4
│││├─

4 CP ││││Pb → Lab 3
││├─

3 UG │││∀y (Py → Lay) 2
│├─

2 CP ││Pa → ∀y (Py → Lay) 1
├─

1 UG │∀x (Px → ∀y (Py → Lxy))
Note that stages 10 and 11 serve only to move us from ∃y (Py ∧ Lcy) to
∃z (Pz ∧ Lcz)—i.e., to change a bound variable. If sentences that differ only
in the choice of a letter for a bound variable are regarded as the same (or if a
different variable had been chosen when analyzing the second premise), the
assumption Pc ∧ ∃y (Py ∧ Lcy) could be used as a premise for MPP and
stages 10-12 would not be needed.



 i. ∃x ¬ (∃y: ¬ y = x) Dy ≃ ¬ ∃x (∃y: ¬ y = x) (Dx ∧ Dy)
│∃x ¬ ∃y (¬ y = x ∧ Dy) 2
├─
││∃x ∃y (¬ y = x ∧ (Dx ∧ Dy)) 3
│├─
││ⓐ
│││¬ ∃y (¬ y = a ∧ Dy) 7
││├─
│││ⓑ
││││∃y (¬ y = b ∧ (Db ∧ Dy)) 4
│││├─
││││ⓒ
│││││¬ c = b ∧ (Db ∧ Dc) 5
││││├─

5 Ext │││││¬ c = b (13)
5 Ext │││││Db ∧ Dc 6
6 Ext │││││Db (10)
6 Ext │││││Dc (12)

│││││
│││││││∀y ¬ (¬ y = a ∧ Dy) b:9, c:11
││││││├─

9 UI │││││││¬ (¬ b = a ∧ Db) 10
10 MPT│││││││b = a a—b, c
11 UI │││││││¬ (¬ c = a ∧ Dc) 12
12 MPT│││││││c = a a—b—c

│││││││●
││││││├─

13 DC │││││││⊥ 8
│││││├─

8 NcP ││││││∃y (¬ y = a ∧ Dy) 7
││││├─

7 CR │││││⊥ 4
│││├─

4 PCh ││││⊥ 3
││├─

3 PCh │││⊥ 2
│├─

2 PCh ││⊥ 1
├─

1 RAA │¬ ∃x ∃y (¬ y = x ∧ (Dx ∧ Dy))



  │¬ ∃x ∃y (¬ y = x ∧ (Dx ∧ Dy)) (12)
├─
││∀x ∃y (¬ y = x ∧ Dy) a:2, b:5
│├─

2 UI ││∃y (¬ y = a ∧ Dy) 3
││
││ⓑ
│││¬ b = a ∧ Db 4
││├─

4 Ext │││¬ b = a
4 Ext │││Db (8)
5 UI │││∃y (¬ y = b ∧ Dy) 6

│││
│││ⓒ
││││¬ c = b ∧ Dc 7
│││├─

7 Ext ││││¬ c = b (9)
7 Ext ││││Dc (8)
8 Adj ││││Db ∧ Dc X, (9)
9 Adj ││││¬ c = b ∧ (Db ∧ Dc) X, (10)
10 EG││││∃y (¬ y = b ∧ (Db ∧ Dy)) X, (11)
11 EG││││∃x ∃y (¬ y = x ∧ (Dx ∧ Dy)) X, (12)

││││●
│││├─

12 Nc││││⊥ 6
││├─

6 PCh│││⊥ 3
│├─

3 PCh││⊥ 1
├─

1 NcP│∃x ¬ ∃y (¬ y = x ∧ Dy)

2. a. │∃x Fx 1
│∃x Gx 2
├─
│ⓐ
││Fa (5)
│├─
││ⓑ
│││Gb (7)
││├─
││││∀x ¬ (Fx ∧ Gx) a:4, b:6
│││├─

4 UI ││││¬ (Fa ∧ Ga) 5
5 MPT││││¬ Ga
6 UI ││││¬ (Fb ∧ Gb) 7
7 MPT││││¬ Fb

││││○ Fa,¬ Fb,¬ Ga,Gb ⊭ ⊥
│││├─
││││⊥ 3
││├─

3 NcP │││∃x (Fx ∧ Gx) 2
│├─

2 PCh ││∃x (Fx ∧ Gx) 1
├─

1 PCh │∃x (Fx ∧ Gx)

①
a

②
b

F G



 b. │∃x (Fx ∧ Gx) 1
│∃x (Fx ∧ Hx) 3
│∀x (Fx → ∀y (Fy → x = y)) a:3
├─
│ⓐ
││Fa ∧ Ga 2
│├─

2 Ext ││Fa (6)
2 Ext ││Ga (11)

││
││ⓑ
│││Fb ∧ Hb 4
││├─

4 Ext │││Fb (8)
4 Ext │││Hb (12)
5 UI │││Fa → ∀y (Fy → a = y) 6
6 MPP │││∀y (Fy → a = y) b:7
7 UI │││Fb → a = b 8
8 MPP │││a = b a—b

│││
││││∀x ¬ (Gx ∧ Hx) a:10
│││├─

10 UI ││││¬ (Ga ∧ Ha) 11
11 MPT││││¬ Ha (12)

││││●
│││├─

12 Nc= ││││⊥ 9
││├─

9 NcP │││∃x (Gx ∧ Hx) 3
│├─

3 PCh ││∃x (Gx ∧ Hx) 1
├─

1 PCh │∃x (Gx ∧ Hx)



3. a. (∃x: Sx) Cx
(∀x: Sx) Tx
∀x (Cx → Px)

(∃x: Tx) Px

│∃x (Sx ∧ Cx) 1
│∀x (Sx → Tx) a:3
│∀x (Cx → Px) a:5
├─
│ⓐ
││Sa ∧ Ca 2
│├─

2 Ext ││Sa (4)
2 Ext ││Ca (6)
3 UI ││Sa → Ta 4
4 MPP││Ta (7)
5 UI ││Ca → Pa 6
6 MPP││Pa (7)
7 Adj ││Ta ∧ Pa X, (8)
8 EG ││∃x (Tx ∧ Px) X, (9)

││●
│├─

9 QED││∃x (Tx ∧ Px) 1
├─

1 PCh │∃x (Tx ∧ Px)



 b. (∃x: Px ∧ (∃y: Sy) Oxy) Dx
(∀x: Sx) Rx

(∃x: Px ∧ (∃y: Ry) Oxy) Dx

│∃x ((Px ∧ ∃y (Sy ∧ Oxy)) ∧ Dx) 1
│∀x (Sx → Rx) b:6
├─
│ⓐ
││(Pa ∧ ∃y (Sy ∧ Oay)) ∧ Da 2
│├─

2 Ext ││Pa ∧ ∃y (Sy ∧ Oay) 3
2 Ext ││Da (11)
3 Ext ││Pa (10)
3 Ext ││∃y (Sy ∧ Oay) 3

││
││ⓑ
│││Sb ∧ Oab 5
││├─

5 Ext │││Sb (7)
5 Ext │││Oab (8)
6 UI │││Sb → Rb 7
7 MPP │││Rb (8)
8 Adj │││Rb ∧ Oab X, (9)
9 EG │││∃y (Ry ∧ Oay) X, (10)
10 Adj │││Pa ∧ ∃y (Ry ∧ Oay) X, (11)
11 Adj │││(Pa ∧ ∃y (Ry ∧ Oay)) ∧ Da X, (12)
12 EG │││∃x ((Px ∧ ∃y (Ry ∧ Oxy)) ∧ Dx) X, (13)

│││●
││├─

13 QED│││∃x ((Px ∧ ∃y (Ry ∧ Oxy)) ∧ Dx) 4
│├─

4 PCh ││∃x ((Px ∧ ∃y (Ry ∧ Oxy)) ∧ Dx) 1
├─

1 PCh │∃x ((Px ∧ ∃y (Ry ∧ Oxy)) ∧ Dx)

Glen Helman 03 Aug 2010


