
7.8. Finite & infinite structures
7.8.0. Overview
Many arguments that generate unending derivations have counterexamples that
use  only  finitely  many  reference  values.  But,  although  the  rules  can  be
modified  to  uncover  such  counterexamples,  this  is  not  enough  to  insure
decisiveness.

7.8.1. Finding finite structures
We can search for finite counterexamples by modifying rules to consider old
terms along with new ones or to consider the possibility that new terms are
co-aliases of old ones.

7.8.2. The failure of decisiveness
We  cannot  hope  to  find  counterexamples  in  this  way  for  all  invalid
arguments because the counterexamples to some invalid arguments always
have infinite ranges.
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7.8.1. Finding finite structures
To complete the discussion of the adequacy of the system of derivations for
generalizations, we will look a little more closely at the reasons why it is not
decisive.  There  are  two aspects  to  the  problem,  one  concerning  universals
alone and another  concerning their  interaction with functors.  The infinitely
developing derivations displayed earlier are enough to show us that our system
is not decisive, but the failure of decisiveness in these derivations does not run
very deep and can be overcome by a relatively small adjustment to our rules.
Different adjustments are needed to handle universals and functors,  and we
will consider the case of universals first.

The rule UG directs us to reach a universal goal ∀x θx by trying to close a
gap whose goal is an instance θa for some independent term a. Although we
need to close such a gap to show that the universal goal can be reached, this
gap need not point us toward the only way of dividing the original gap. When
we are constructing general arguments we are checking for counterexamples to
generalizations. Thus, for a general argument to go through, we must show that
there is no counterexample of any sort; it is not enough to show that the things
we are already speaking of are not counterexamples.

However, to show that a general argument fails, a counterexample of any
sort, new or old, will do; and a structure dividing a gap between resources and
an instance of the universal for an old term would be enough to show that the
universal is not entailed by those resources. This means that, in a negative use
of  derivations,  there  is  some reason  for  considering  gaps  whose  goals  are
instances  for  old  terms.  We  can  refine  our  analysis  of  entailment  to  take
account of this by making the planning rule for universals more elaborate. The
alteration makes derivations cumbersome in practice; but, even if we do not
put it put into actual use, it can help to focus attention on deeper reasons for
failure of decisiveness.

The  revised  rule  is  Supplemented  Universal  Generalization  (UG+);  it  is
shown in Figure 7.8.1-1.
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Fig. 7.8.1-1. Developing a derivation at stage n by planning for an
unrestricted universal; the independent term a is new to the derivation and
the terms σ, τ, …, υ include at least one from each current alias set for the

gap.

The rule  UG+ alters  UG by  adding  further  new gaps  in  which  we  try  to
conclude instances of the universal not only for a new term but also for terms
already appearing in the gap. Adding these new gaps will certainly make it no
easier to show that an entailment holds. And they make it no harder either:
anything that can be shown for the independent term a can be shown for any
term, so if that gap closes, all the others will, too. The function of the added
gaps is instead to help us show that an entailment fails while using as few
terms as  possible.  The new gaps provide new directions in  which we may
search for a path that not only remains open but reaches a dead end.

The derivation below shows the effect of the first rule when it is applied to
one of the examples of 7.7.3 . The first gap in this derivation has reached a
dead end. Its only active resources are the initial premise and Raa, and neither
is  exploitable.  In  the  case  of  the  universal  premise,  this  is  because  it  has
already been exploited for the term a, which is the only term ever appearing in
this gap.

│∀x ¬ ∀y ¬ Rxy a:1
├─

1 UI │¬ ∀y ¬ Ray 2
│
││││Raa
│││├─
││││○ Raa ⊭ ⊥
│││├─
││││⊥ 4
││├─

4 RAA│││¬ Raa 3
││
││ⓑ
│││(unfinished)
││├─
│││¬ Rab 3
│├─

3 UG+││∀y ¬ Ray 2
├─

2 CR │⊥

 

①
a

R

The gap describes a structure whose referential range contains one value, and
the predicate R will be true of the pair consisting of this value and itself. The
initial premise—which says that there is no value that is related to nothing by
R—is  thus  true  in  this  structure,  showing  that  the  reductio  entailment
∀x ¬ ∀y ¬ Rxy ⊨ ⊥ fails.

A planning rule for universal goals is one way we can be led to introduce
and  unending  series  of  terms.  Another  way  we  have  seen  occurs  when  a
universal quantifier binds a variable occurring in a compound term. When such
a generalization is instantiated, a new compound terms can be introduced into
the  derivation,  leading  to  still  further  instantiation.  We  could  avoid  such
further instantiation if the new compound term was in the same alias set as a
term  for  which  the  universal  had  already  been  instantiated,  so  we  can
investigate the possibility of avoiding an infinitely developing gap by trying to
put new compound terms in already existing alias sets. On this approach, when
we introduce a new compound term that does not automatically become part of
an  already  existing  alias  set,  we  also  look  at  ways  of  identifying  the  new
compound term with existing terms, at least one from each alias set. We will
say that in doing this we are securing the term. Of course, it may be that no
identification with existing terms is consistent with our resources. We allow for
this possibility by adding a gap in which we make no assumptions about the
new term.

The rule shown in Figure 7.8.1-2 can be used to secure terms. We suppose
in turn that a compound term is a co-alias of each of a series of unanalyzed
terms already in the gap and also pursue the development of the gap without
new assumptions. Fullest investigation of the possibilities comes if we include



at least one term from each alias set. We will call this rule Securing a Term
(ST).
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Fig. 7.8.1-2. Developing a derivation at stage n by securing a compound
term μ; the terms σ, τ, …, υ include at least one from each current alias set

for the gap other than the one including μ.

Nothing in the statement of this rule requires that the term μ be new, but that is
the only use that we are interested in now.

Although the application of ST would often be quite awkward,  it  makes
short work of the first of the examples from 7.7.3 .

│∀x Rx(fx) a:1
├─

1 UI│Ra(fa)
│
││fa = a a—fa
│├─
││○ Ra(fa), fa = a ⊭ ⊥
│├─
││⊥ 2
│
││(unfinished)
│├─
││⊥ 2
├─

2 ST│⊥

 

①
a, f1

R

Having introduced the term fa through the instantiation at stage 1, we have the
alias sets {a} and {fa}. We consider securing fa by identifying it with the term
a. The first gap has then reached a dead end because the universal has already
been exploited for a member of its single alias set. There is a second unfinished
gap that merely represents the continuation of the gap after stage 1 with no
added assumption about the identity of the term fa. The structure described by
the dead-end gap is one whose range has a single member named by the term
a, which stands in the relation R to itself. The single reference value of this
structure is the only possible input and output for the functor f.
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7.8.2. The failure of decisiveness
The rules  UG+ and ST are designed to uncover  finite  structures  whenever
possible. We will not prove that they do this; instead we will see why finite
structures are not always there to be uncovered.

For example, consider the following pair of sentences:

∀x ∀y ∀z ((Rxy ∧ Ryz) → Rxz)
∀x ¬ Rxx

The first says that the relation expressed by R obeys a law of transitivity, and
the second says that nothing is related to itself by R, which is to say that R is
irreflexive.

What must a structure be like to make these sentences true? Thinking in
terms of the diagrams of 6.4.2 , the claim of irreflexivity tells us that there
cannot  be any looped arrows.  The claim of transitivity tells  us that  arrows
linked head to tail running from object a to object b and from object b to object
c can be spanned by an arrow running directly from a to c (see Figure 7.8.2-1).

a b c

Fig. 7.8.2-1. The arrow spanning two linked arrows that is implied by
transitivity.

Now, if we had a circuit of arrows leading from some object back to itself by
way of other objects, transitivity would imply that there was a loop leading
from the object directly back to itself. Figure 7.8.2-2 illustrates this in a case
where we have Rab, Rbc, Rcd, and Rda. Transitivity made be applied three
times, first to show that Rac (because Rab and Rbc), then to show that Rad
(because Rac and Rcd), and finally to show that Raa (because Rad and Rda).

a

b

c

d 1
2
3

Fig. 7.8.2-2. A circuit from a to a reduced to a looped arrow in three steps
by spanning linked arrows.

Irreflexivity would rule out the truth of Raa, so irreflexivity can hold along
with transitivity only if there are no loops or circuits of arrows like the one
illustrated.

Finally, let us add to the statements of transitivity and irreflexivity either of
the sentences ∀x ¬ ∀y ¬ Rxy and ∀x Rx(fx) that we considered in 7.8.1 . Each
of the latter sentences tells us, in its own way, that every object is at the tail of
some arrow. A little thought (and attempts at diagrams) will show that there is
no  way  to  manage  this  with  a  finite  number  of  objects  unless  there  is
somewhere a loop or a circuit of arrows. So, although the sentences ∀x ¬ ∀y
¬ Rxy and ∀x Rx(fx)  can each be made true in a  structure with only one
reference value if we consider them by themselves, they cannot be true along
with claims of transitivity and irreflexivity in any structure with only a finite
number of values.

Nevertheless ∀x ¬ ∀y ¬ Rxy and ∀x Rx(fx) are consistent with claims of
transitivity and irreflexivity. For example, let us take the positive integers as
our referential range and let R express the relation < of one number being less
than  another.  The  relation  <  is  transitive  and  irreflexive.  Moreover,  each
positive  integer  is  less  than  some  positive  integer,  so  there  is  no  positive
integer that has the property of being less than no positive integer—and that is
what  ∀x  ¬  ∀y  ¬  Rxy says  on  this  interpretation.  And,  if  we  interpret  the
functor  f  by any function whose output  is  always larger  than its  input,  ∀x
Rx(fx) will also be true.

So there are sets of sentences that are consistent but whose members cannot
all be true with only a finite range of reference values. This means that, even if
a revised system of derivations using UG+ and ST always succeeds in locating
finite structures,  it  cannot always provide an answer to our questions about
entailment. If the entailment holds, it will say so. If the entailment fails and
can  be  shown  to  fail  using  a  finite  structure,  it  will  say  so.  But,  if  the
entailment  fails  and  can  only  be  shown  to  fail  only  by  using  an  infinite
structure,  it  will  give  no  answer  because  it  will  never  finish  describing  a
structure of the required sort.

Of course, it is possible to describe an infinite structure in a finite space (as
we  did  informally  above),  so  we  might  hope  that  a  more  substantial
modification of our system might lead us to descriptions of infinite structures
after  finitely  many  stages.  But  here  we  must  recall  the  result  of  Church
mentioned in 7.7.1 : although an improved system might provide answers to
some further  questions  about  entailment,  no system could answer  them all
correctly. In terms of the present discussion, this implies that no matter what
method we choose for describing structures, there are bound to be structures
among those we need to describe that our method would not lead us to.
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7.8.s. Summary
Our  system  is  not  decisive  in  part  because  we  always  look  to  new
independent  terms  as  possible  counterexamples  to  a  generalization  and
assume that terms are not co-aliases unless our resources tell us otherwise.
But, while we must consider new terms as possible counterexamples and we
must allow for the possibility that terms that have not been made co-aliases
refer to different things, we may also consider alternatives that point toward
smaller structures. The rule Supplemented Universal Generalization (UG+)
leads us to consider instances for old as well as new terms when planning
for a generalization. And we can secure  new compound terms as co-aliases
of terms already present by using the rule Securing a Term (ST) .

Even  with  these  rules,  we  cannot  always  reach  dead-end  gaps  when
derivations fail because dead-end gaps describe finite structures, and invalid
arguments are not always divided by finite structures. That is, there are some
sets of sentences whose members can be made all true only with an infinite
range of reference values. One example consists of sentences saying that a
predicate R expresses a relation that is irreflexive  and transitive and is such
that each reference value stands in this relation to some reference value. No
system like ours could drive a gap to a dead end in such cases and, while a
very different system might do better in some of them, it has been shown
that no system could do so in all such cases.
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7.8.x. Exercise questions
Use  the  system  of  derivations  to  find  structures  dividing  premises  from
conclusions in the cases below. You will need to use the rule UG+.
1. ∀x ¬ ∀y ¬ Rxy / ∀x ¬ Rxx
2. ∀x ¬ ∀y Rxy / ¬ ∀x Rxa
3. ∀x ¬ ∀y Rxy / ∀x ¬ Rax

The exercise machine doesn’t incorporate the rule UG+, so derivations for
arguments where it is needed will never end.

Glen Helman 03 Aug 2010



7.8.xa. Exercise answers
1. │∀x ¬ ∀y ¬ Rxy a:3

├─
│ⓐ
│││Raa
││├─

3 UI │││¬ ∀y ¬ Ray 4
│││
││││││Raa
│││││├─
││││││○ Raa ⊭ ⊥
│││││├─
││││││⊥ 6
││││├─

6 RAA│││││¬ Raa 5
││││
││││ⓑ
│││││(unfinished)
││││├─
│││││¬ Rab 5
│││├─

5 UG+││││∀y ¬ Ray 4
││├─

4 CR │││⊥ 2
│├─

2 RAA││¬ Raa 1
├─

1 UG │∀x ¬ Rxx

 

①
a

R

from the 1st open gap
(the 2nd is not fully developed)

2. │∀x ¬ ∀y Rxy a:2, b:8
├─
││∀x Rxa a:3, b:9
│├─

2 UI ││¬ ∀y Ray 4
3 UI ││Raa (6)

││
││││●
│││├─

6 QED ││││Raa 5
│││
│││ⓑ
│││││¬ Rab
││││├─

8 UI │││││¬ ∀y Rby 10
9 UI │││││Rba (12)

│││││
│││││││●
││││││├─

12 QED│││││││Rba 11
││││││
││││││││¬ Rbb
│││││││├─
││││││││○ Raa,¬ Rab,Rba,¬ Rbb ⊭ ⊥
│││││││├─
││││││││⊥ 13
││││││├─

13 IP │││││││Rbb 11
││││││
││││││ⓒ
│││││││(unfinished)
││││││├─
│││││││Rbc 11
│││││├─

11 UG+││││││∀y Rby 10
││││├─

10 CR │││││⊥ 7
│││├─

7 IP ││││Rab 5
││├─

5 UG+ │││∀y Ray 4
│├─

4 CR ││⊥ 1
├─

1 RAA │¬ ∀x Rxa

①
a

②
b

R
from the 1st open

gap
(the 2nd is not

fully developed)



3. │∀x ¬ ∀y Rxy a:3, c:8
├─
│││Raa (6)
││├─

3 UI │││¬ ∀y Ray 4
│││
│││││●
││││├─

6 QED │││││Raa 5
││││
││││ⓒ
││││││¬ Rac
│││││├─

8 UI ││││││¬ ∀y Rcy 9
││││││
│││││││││¬ Rca
││││││││├─
│││││││││○ Raa,¬ Rac,¬ Rca ⊭ ⊥
││││││││├─
│││││││││⊥ 11
│││││││├─

11 IP ││││││││Rca 10
│││││││
│││││││││¬ Rcc
││││││││├─
│││││││││○ Raa,¬ Rac,¬ Rcc ⊭ ⊥
││││││││├─
│││││││││⊥ 12
│││││││├─

12 IP ││││││││Rcc 10
│││││││
│││││││ⓓ
││││││││(unfinished)
│││││││├─
││││││││Rcd 10
││││││├─

10 UG+│││││││∀y Rcy 9
│││││├─

9 CR ││││││⊥ 7
││││├─

7 IP │││││Rac 5
│││├─

5 UG+ ││││∀y Ray 4
││├─

4 CR │││⊥ 2
│├─

2 RAA ││¬ Raa 1
│
│ⓑ
││(unfinished)
│├─
││¬ Rab 1
├─

1 UG+ │∀x ¬ Rax

①
a

②
c

R
from the 1st and 2nd

open gaps
(the 3rd and 4th are
not fully developed)
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