
6. Predications
6.1. Naming and describing
6.1.0. Overview
We will now begin to study a wider variety of logical forms in which we
identify components of sentences that are not also sentences.

6.1.1. A richer grammar
A variety of grammatical categories can be defined using the idea of an
individual term, an expression whose function is to name an individual
object.

6.1.2. Logical predicates
When the subject is removed from a sentence, a grammatical predicate is
left behind; a logical predicate is what is left when any number of individual
terms are removed.

6.1.3. Extensionality
The truth value of a sentence in which a predicate is applied depends only
on the reference values of the terms the predicate is applied to, so the
meaning of predicate is a function from reference values to truth values.

6.1.4. Identity
We will study the special logical properties of only one predicate, the one
expressed by the equals sign and by certain uses of the English word is.

6.1.5. Analyzing predications
When the analysis of truth-functional structure is complete, we may go on to
analyze atomic sentences as the applications of predicates to individual
terms.

6.1.6. Individual terms
While individual terms are not limited to proper names, they do not include
all noun phrases, only ones whose function is like that of proper names.

6.1.7. Functors
Individual terms can be formed from other individual terms by operations
analogous to predicates.

6.1.8. Examples and problems
These operations enable us to continue the analysis of sentences beyond the
analysis of predications by analyzing individual terms themselves.

Glen Helman 11 Oct 2010

6.1.1. A richer grammar
While there are more truth-functional connectives that we might study and
more questions we might ask about those we have studied, we will now move
on from truth-functional logic. The logical forms we will turn to involve ways
sentences may be constructed out of expressions that are not yet sentences.
Although the kinds of expressions we will identify do not correspond directly
to any of the usual parts of speech, our analyses will be comparable in detail to
grammatical analyses of short sentences into words.

The simplest case of this sort of analysis is related to, but not identical with,
the traditional grammatical analysis into subject and predicate. You might find
a grammar text of an old-fashioned sort defining subject and predicate
correlatively as the part of the sentence that is being spoken of and the part
that says something about it. Of course, in saying that the subject is being
spoken of, there would be no intention to say that the predicate is used to say
something about words. So the text might go on to say that a subject contains a
word that names the “person, place, thing, or idea” (to quote one of my high
school grammar texts) about which something is being said. Thus we have the
situation shown in Figure 6.1.1-1.

speaks of

subject predicate

names

person, place, thing, or idea

Fig. 6.1.1-1. The traditional picture of grammatical subjects and predicates.

This picture is really not adequate for either grammar or logic, but
grammarians and logicians part company in the ways they refine it.
Grammarians look for more satisfactory definitions of subject and predicate
that still capture, at least roughly, the expressions that have been traditionally
labeled in this way. Logicians, on the other hand, accept something like the
definitions above and look for expressions that really have the functions they
describe, whether or not these expressions would traditionally be labeled
subjects and predicates.

“Subjects” and “predicates” in the logical sense provide, along with
sentences and connectives, examples of two broad syntactic categories,
complete expressions and operations. Sentences are examples of complete
expressions and connectives are examples of operations. Like connectives,
operations in general can be thought of as expressions with blanks, expressions

that are incomplete in the sense that they are waiting for input. We can classify
operations according to the number and kinds of inputs they are waiting for
and the kind of output they yield when they receive this input. In the case of
connectives, both the input and the output consists of sentences.

A “subject” in the logical sense will be a kind of complete expression, an
individual term. This is a type of expression whose function is to refer to
something; it is an expression which can be described, roughly, as naming a
“person, place, thing, or idea.” In 6.1.6 , we will consider the full range of
expressions that count as individual terms but, for now, it will be enough to
have in mind two basic kinds of example—proper names (such as Socrates,
Indianapolis, Hurricane Isabel, or 3) and simple definite descriptions
formed from the definite article the and a common noun (such as the winner,
the U.S. president, the park, the book, or the answer).

In the simplest case, a “predicate” in the logical sense—and this is what we
will use the term predicate to speak of—is an expression that can be used to
say something about the object referred to by an individual term. It is an
operation whose input is an individual term and whose output is a sentence
expressing what is said. Thus a logical predicate amounts to a sentence with a
blank waiting to be filled by an individual term. In 6.1.2 , we will move beyond
this simple case to include predicates that require multiple inputs (i.e., that
have several blanks to be filled). Such predicates are certainly not predicates in
the grammatical sense; nonetheless a logical predicate will contain the main
verb of any sentence it yields as output, so many of the simplest examples of
predicates will correspond to verbs or verb phrases.

The categories of expressions we are working with now include the ones
listed below (with simple examples in the style of some popular early
elementary school readers from the mid-20 century):

Complete expressions
expression examples
sentence Jane ran, Spot barked, Jane ran and Spot barked

individual term Jane, Spot

Operations
operation input output examples
connective sentence(s) sentence _ and _

predicate individual term(s) sentence _ ran, _ barked

Since we now have a number of kinds of expression that might be input or
output of an operation, there are many more sorts of operations that can be

th

distinguished according to their input and output, and we will go on to
consider some of them. For example, in 6.1.7 , we will add a kind of operation
which yields individual terms as output (for individual terms as input). The
input and output of operations need not be limited to complete expressions,
and in later chapters, we will add operations that take predicates as input.

Glen Helman 03 Aug 2010

6.1.2. Logical predicates
We derived the concept of an individual term from a traditional description of
the grammatical subject of a sentence by focusing on the semantic idea of
naming. As we will see in 6.1.6, the idea of an individual term is much
narrower than the idea of a grammatical subject: not every phrase that could
serve as the subject of a sentence counts as an individual term. We have seen
that the opposite is true of our concept of a predicate: it includes grammatical
predicates but many other expressions, too.

Like the definition of an individual term, the definition of a logical predicate
is semantic: a predicate says something about the about whatever objects are
named by the individual terms to which it is applied. The simplest example of
this is a grammatical predicate that says something about an object named by
an individual term. But consider a sentence that has not only a subject but also
a direct object—Ann met Bill for example. This says something about Ann,
but it also says something about Bill. From a logical point of view, we could
equally well divide the sentence into the subject Ann on the one hand and the
predicate met Bill on other or into the subject-plus-verb Ann met and the
direct object Bill. And we will be most in the spirit of the idea that predicates
are used to say something about individuals if we divide the sentence into the
two individual terms Ann and Bill on the one hand and the verb met on the
other. The subject and object both are names, and the verb says something
about the people they name. That is why we define a predicate as an operation
that forms a sentence when applied to one or more terms. We will speak of the
application of this operation as predication and speak of a sentence that results
as a predication.

We can present predicates in this sense graphically by considering sentences
containing any number of blanks. For example, the predication Jane called
Spot might be depicted as follows:

Individual terms: Jane called Spot
Predicate: Jane called Spot

The number of different terms to which a predicate may be applied is its
number of places, so the predicate [_ called _] has 2 places while predicates,
like [_ ran] and [_ barked], that are also predicates in the grammatical sense
will have one place. We will discuss our notation for predicates more in 6.2.1 ,
but we will often (as has been done here) indicate a predicate by surrounding
with brackets the English sentence-with-blanks that expresses it.

In the example above, the two-place predicate is a transitive verb and the

second individual term functions as its direct object in the resulting sentence.
The individual terms that serve as input to predicates may also appear as
indirect objects or as the objects of prepositional phrases that modify a
verb—as in the following examples:

Individual terms: Jane threw Spot the ball
Predicate: Jane threw Spot the ball

Individual terms: the ball went through the window into the fishbowl
Predicate: the ball went through the window into the fishbowl

Other examples of many-place predicates are provided by sentences
containing comparative constructions or relative terms. Even conjoined
subjects can indicate a many-place predicate when and is used to indicate the
terms of a relation rather than to state a conjunction:

Individual terms: Jane is older than Sally
Predicate: Jane is older than Sally

Individual terms: 2 < 5
Predicate: 2 < 5

Individual terms: Jane is a sister of Sally
Predicate: Jane is a sister of Sally

Individual terms: Jane and Sally are sisters
Predicate: Jane and Sally are sisters

Although you will rarely run into predicates with more than three or four
places, it is not hard make up examples of predicates with arbitrarily large
numbers of places. For example, imagine the predicate you would get by
analyzing a sentence that begins Sam travelled from New York to Los
Angeles via Newark, Easton, Bethlehem, …. and goes on to state the full
itinerary of a trans-continental bus trip.

The places of a many-place predicate come in a particular order. For
example, the sentences Jane is older than Sally and Sally is older than
Jane are certainly not equivalent, so it matters which of Jane and Sally is in
the first place and which in the second when we identify them as the inputs of
the predicate [_ is older than _]. Even when the result of reordering
individual terms is equivalent to the original sentence, we will count the places
as having a definite order and treat any reordering of the terms filling them as a
different sentence. So Dick is the same age as Jane and Jane is the same
age as Dick will count as different sentences even though [_ is the same age
as _] is symmetric in the sense that

σ is the same age as τ ≃ τ is the same age as σ
for any terms σ and τ.

Glen Helman 03 Aug 2010

6.1.3. Extensionality
The only restriction on an analysis of a sentence into a predicate and individual
terms is that the contribution of an individual term to the truth value of a
sentence must lie only in its reference value. That is, all that matters is what a
term names if it names something; and, if it names nothing and thus has the nil
reference value mentioned in 1.3.7 , that is all that matters. Both truth values
and reference values are extensions in the sense introduced in 2.18 , so the
predicates we will consider are like truth-functional connectives in being
extensional operations: the extension of their output depends only on the
extensions of their inputs.

In the specific case of predicates, this requirement is sometimes spoken of as
a requirement of referential transparency. When it is satisfied, we can look
through individual terms and pay attention only to their reference values when
judging whether a sentence is true or false; in other cases, we might need to
pay attention to the terms themselves or to the ways in which they refer to their
values in order to judge the truth value. For example, in deciding the truth of
The U. S. president is over 40, all that matters about the individual term
the U. S. president is who it refers to. On the other hand, the sentence For
the past two centuries, the U. S. president has been over 35 is true
while the sentence For the past two centuries, Barack Obama has been
over 35 is false—even when the terms the U. S. president and Barack
Obama refer to the same person. So, in this second case, we must pay attention
to differences between terms that have the same reference value. When this is
so the occurrences of these terms are said to be referentially opaque; that is, we
cannot look through them to their reference values. The restriction on the
analysis of sentences into predicates and individual terms is then that we can
separate an individual term from a predicate and count it as filling a place of
the predicate only when that occurrence is referentially transparent.
Occurrences that are referential opaque cannot be separated from the predicate
and must remain part of it.

Hints of idea of a predicate as an incomplete expression can be found in the
Middle Ages, but it was first developed explicitly by Gottlob Frege in the late
19th century. Frege applied the idea of an incomplete expression not only to
predicates but also to mathematical expressions for functions. Indeed, Frege
spoke of predicates as signs for a kind of function, a function whose value is
not a number but rather a truth value. That is, just as a function like + takes
numbers as input and issues a number as output, a predicate is a sign for a
function that takes the possible references of individual terms as input and

issues a truth value as output by saying something true or false about the input.
We will speak of the truth-valued function associated with a 1-place

predicate as a property and speak of the function associated with a predicate of
two or more places as a relation. Thus a predicate is a sign for a property or
relation in the way a truth-functional connective is a sign for a truth function.

Just as a truth-functional connective can be given a truth table, the
extensionality of predicates means that a table can capture the way the truth
values of the their output sentences depend on the reference values of their
input. For example, consider the predicate __ divides __ (evenly). Just as
there can be addition or multiplication tables displaying the output of
arithmetic functions for a limited range of input, we can give a table indicating
some of the output of the relation expressed by this predicate. For the first half
dozen positive integers, we would have the table shown below. Here the input
for the first place of the predicate is shown by the row labels at the left and the
input for the second place by the column labels at the top. The first row of the
table then shows that 1 divides all six integers evenly, the second row shows
that 2 divides only 2, 4, and 6 evenly, and the final column shows that each of
1, 2, 3, and 6 divides 6 evenly.

 _ divides _ 1 2 3 4 5 6
1 T T T T T T
2 F T F T F T
3 F F T F F T
4 F F F T F F
5 F F F F T F
6 F F F F F T

Of course, this table does not give a complete account of the meaning of the
predicate; and, for many predicates, no finite table could. But such tables like
this will still be of interest to us because we will consider cases where there are
a limited number of reference values and, in such cases, tables can give full
accounts of predicates.

As was noted in 1.3.7 , we assume that sentences have truth values even
when they contain terms that do not refer to anything. This means that we must
assume that predicates yield a truth value as output even the nil value is part of
their input; that is, we assume that predicates are total. The truth value that is
issued as output when the input includes the nil value is usually not settled by
the ordinary meaning of an English predicate. It is analogous to the
supplements to contexts of use suggested in 1.3.6 as a way of handling cases
of vagueness. As in that case, we try to avoid making anything depend on the

particular output in cases of undefined input but instead look at relations
among sentences that hold no matter how such output is stipulated.

Glen Helman 03 Aug 2010

6.1.4. Identity
We used special notation for all the connectives that figured in our analyses of
logical form, and they all had logical properties that we studied. However, only
one predicate will count as logical vocabulary in this sense. Other predicates
and all unanalyzed individual terms will be, like unanalyzed component
sentences, part of the non-logical vocabulary, and they will be assigned
meanings only when we specify an interpretation of this vocabulary.

The one predicate that is part of our logical vocabulary will be referred to as
identity. It is illustrated in the following sentences:

Barack Obama is the U.S. president

The winner was Funny Cide

n = 3

The morning star and the evening star are the same thing.

Sentences like these are equations. Equations are thus a special kind of
predication.

In our symbolic notation, we will follow the third example and use the sign
= to mark identity. As English notation, we will use the word is. We will
represent unanalyzed individual terms by lower case letters, so we can analyze
the sentences above as follows:

Barack Obama is the U.S. president
Barack Obama = the U.S. president

o = p
o is p

o: Barack Obama; p: the U.S. president

The winner was Funny Cide
the winner = Funny Cide

w = f
w is f

f: Funny Cide; w: the winner

n = 3

n = t
n is t

n: n; t: 3

The morning star and the evening star are the same thing
the morning star = the evening star

m = e
m is e

m: the morning star; e: the evening star

Once in symbolic form, these equations are very simple. The greater
complexity found in most interesting mathematical equations is due to the
complexity of the individual terms they contain. To exhibit that complexity in
our analyses, we will need to analyze individual terms, something we will
begin to do in 6.1.7 .

Glen Helman 03 Aug 2010

6.1.5. Analyzing predications
Apart from the special case of equations, our symbolic notation for
predications will identify the predicate first followed by a list of the individual
terms that are its input. This is a departure from English word order in most
cases, but we can present analyses in this way even before we introduce
symbols. The example below presents the analysis of a predication into a
predicate and individual terms as a series of steps.

 Bill introduced himself to Ann
Identify (referentially transparent) occurrences
of individual terms within the sentence, making
sure they are all independent by replacing
pronouns by their antecedents

Bill introduced Bill to Ann

Separate the terms from the rest of the sentence
Bill introduced Bill to Ann
Bill introduced Bill to Ann

Preserve the order of the terms, and form a
predicate from the remainder of the sentence

[_ introduced _ to _] Bill Bill Ann
[_ introduced _ to _] Bill Bill Ann

Write the terms in the places of the predicate [_ introduced _ to _] Bill Bill Ann

Underlining will often be used, as it is here, to mark the places of predicates
when they are filled by English expressions. In examples and answers to
exercises, we will move directly from the second of these steps to the last, so
the process can be thought of as one of removing terms, placing them (in order
and with any repetitions) after the sentence they are removed from, and
enclosing sentence-with-blanks in brackets.

In general, an application of an n-place predicate θ to a series of n individual
terms τ , …, τ takes the form

θτ …τ
and our English notation is this:

θ fits (series) τ , …, əәn τ
The use of the verb fit here is somewhat artificial. It provides a short verb that
enables θτ …τ to be read as a sentence, and it is not too hard to understand it
as saying that θ is true of τ , …, τ . Another artificial aspect of this notation is
the unemphasized form əәn of and, which is designed to distinguish the use of
and here to join the terms of a relation from its use as a truth-functional
connective. The role of the term series, which will rarely be needed, is
discussed in 6.1.7 . We will use the general notation θτ …τ when we wish to
speak of all predications, so we will take it to apply to equations, too, even
though the predicate = is written between the two terms to which it is applied.

1 n

1 n

1 n

1 n

1 n

1 n

In our fully symbolic analyses, unanalyzed non-logical predicates will be
abbreviated by capital letters. This is consistent with our use of capital letters
for unanalyzed sentences since predicates have sentences as their output. When
we add non-logical operations that yield individual terms as output, they will
be abbreviated by lower case letters just as unanalyzed individual terms are.

As was done in the display above, we will use the Greek letters θ, π, μ, and ρ
to refer to stand for any predicates, so they may stand for single letters and for
=. The may also stand for complex predicates whose internal structure has
been analyzed, something we will go on to consider in 6.2.1 . We will also go
on to consider compound terms, and we will use the Greek letters τ, σ, and υ
to stand for any terms, simple or compound.

If we complete the analysis of Bill introduced himself to Ann, carrying it
into fully symbolic form and restating it in English notation, we would get the
following:

Bill introduced himself to Ann
Bill introduced Bill to Ann

[_ introduced _ to _] Bill Bill Ann

Tbba
T fits b, b, əәn a

T: [_ introduced _ to _]; a: Ann; b: Bill

Notice that the bracketed English sentence-with-blanks does not appear in the
final analysis, but it does appear in the key.

When sentences contain truth-functional structure, that structure should be
analyzed first; an analysis into predicates and individual terms should begin
only when no further analysis by connectives is possible. Here is an example:

If either Ann or Bill was at the meeting, then Carol has seen the report
and will call you about it

Either Ann or Bill was at the meeting → Carol has seen the report and will
call you about it

(Ann was at the meeting ∨ Bill was at the meeting)
→ (Carol has seen the report ∧ Carol will call you about the report)

([_ was at _] Ann the meeting ∨ [_ was at _] Bill the meeting)
→ ([_ has seen _] Carol the report ∧ [_ will call _ about _] Carol you the
report)

(Aam ∨ Abm) → (Scr ∧ Lcor)
if either A fits a əәn m or A fits b əәn m then both S fits c əәn r and L fits c, o, əәn r

A: [_ was at _]; L: [_ will call _ about _]; S: [_ has seen _]; a: Ann; b: Bill; c:

Carol; m: the meeting; o: you; r: the report

When analyzing atomic sentences into predicates and terms, be sure to watch
for repetitions of predicates from one atomic sentence to another—such as that
of [_ was at _] in this example. Such repetitions are an important part of the
logical structure of the sentence.

Since the notation for identity is different from that used for non-logical
predicates, you need to watch for atomic sentences that count as equations.
These will usually, but not always, be marked by some form of the verb to be
but, of course, forms of to be have other uses, too. Consider the following
example:

If Tom was told of the nomination, then if he was the winner he
wasn’t surprised

Tom was told of the nomination → if Tom was the winner he wasn’t
surprised

Tom was told of the nomination → (Tom was the winner → Tom
wasn’t surprised)

Tom was told of the nomination → (Tom was the winner → ¬ Tom
was surprised)

[_ was told of _] Tom the nomination
→ (Tom = the winner → ¬ [_ was surprised] Tom)

Ltn → (t = r → ¬ St)
if L fits t əәn n then if t is r then not S fits t

L: [_ was told of _]; S: [_ was surprised]; t: Tom; n: the nomination

It is fairly safe to assume that a form of to be joining two individual terms
indicates an equation, but it is wise to always think about what is being said:
an equation is a sentence that says its component individual terms have the
same reference value. A use of to be joining noun phrases will indicate an
equation only when these noun phrases are individual terms; the conditions
under which that is so are discussed in the next subsection. Finally, notice that
no identity predicate should appear in the key to the analysis. That is because it
is part of the logical vocabulary; as such, it is like the connectives, which also
do not appear in keys.

Glen Helman 03 Aug 2010

6.1.6. Individual terms
The chief examples of individual terms are proper names, for the central
function of a proper name is to refer to the bearer of the name. But a proper
name is not the only sort of expression that refers to an individual; a phrase
like the first U. S. president serves as well as the name George
Washington. In general, descriptive phrases coupled with the definite article
the at least purport to refer of individuals. These phrases are the definite
descriptions discussed briefly in 1.3.7 , and we have been counting them as
individual terms. Still other examples of individual terms can be found in
nouns and noun phrases modified by possessives—for example, Mt. Vernon’s
most famous owner. Indeed, expressions of this sort can generally be
paraphrased by definite descriptions (such as the most famous owner of Mt.
Vernon). A final group of examples are demonstrative pronouns this and that
and other pronouns whose references are determined by the context of
use—such as I, you, and certain uses of third person pronouns. On the other
hand, while anaphoric pronouns—i.e., pronouns that have other noun phrases
as their antecedents—count grammatically as individual terms, they do not
have independent reference values and will be treated differently in our
analyses. We will look at their role more closely in 6.2.3 ; for now, it is enough
to note that they raise issues for the analysis of predications that are analogous
to the issues they raise for the analysis of truth-function compounds.

There is no traditional grammatical category or part of speech that includes
individual terms but no other expressions. In particular, the class of nouns and
noun phrases is too broad because it includes simple common nouns, such as
president, as well as quantifier phrases—such as no president, every
president, or a president. And neither common nouns nor quantifier phrases
make the kind of reference that is required for an individual term.

Even before we look further at the reasons why this is so, we can distinguish
individual terms from other nouns and noun phrases by thinking of them as
answers to a which question. If you are asked Which person, place, thing, or
idea are you referring to? and you reply with any of the individual terms,
you have answered the question directly. On the other hand, a common noun
by itself is ungrammatical as an answer, and a quantifier phrase does not
provide a direct answer. While a president, no president, and every
president are grammatical replies to the question Which person are you
referring to?, the first two provide only an incomplete or evasive answers,
and the third indicates that the question cannot be answered as asked.

The following table collects the examples we have just seen on both sides of
the line between individual terms and other noun phrases:

Individual terms Not individual terms
proper names

George Washington

definite descriptions
the first U. S. president

noun phrases with possessive modifiers
Mt. Vernon’s most famous owner

non-anaphoric pronouns
this, you

anaphoric pronouns
he, she, it

common nouns
president

quantifier phrases
no president, every president,

a president

Perhaps the most that can be done in general by way of defining the idea of
an individual term is to give the following rough semantic description: an
individual term is

an expression that refers (or purports to refer)
to a single object in a definite way

At any rate, this formula can be elaborated to explain the reasons for rejecting
the noun phrases at the right of the table above.

The formula is intended as a somewhat more precise statement of the idea
that an individual term “names a person, place, thing or idea.” It uses object
in place of the list person, place, thing, or idea partly for compactness and
partly because that list is incomplete. Indeed it would be hard to ever list all the
kinds of things that might be referred to by individual terms. If the term object
and other terms like entity, individual, and thing are used in a broad abstract
sense, they can apply to anything that an individual term might refer to. In
particular, in this sort of usage, these terms apply to people. The main force of
the formula above then lies in the ideas of referring to a single thing and
referring in a definite way.

The requirement that reference be to a single thing rules out most of noun
phrases on the right of the table above. First of all, if a common noun by itself
can be said to refer at all, it refers not to a single thing but to a class, such as
the class of all presidents. Now this class can be thought of as a single thing
and can be referred to by the definite description just used—i.e., the class of

all presidents—but the common noun president “refers” to this class in a
different way. Common nouns are sometimes labeled general terms and
distinguished from singular terms, an alternative label for individual terms.
The function of a general term is to indicate a general kind (e.g., dogs) from
which individual things may be picked out rather than to pick out a single
thing of that kind (e.g., Spot), as an individual term does. Thus the individual
term the first U. S. president picks out an individual within the class
indicated by the common noun president; and the class of all presidents
picks out an individual within the class indicated by the common noun class.
That is, a general term indicates a range of objects from which a particular
object might be chosen while an individual term picks out a particular object.
Although there is much that might be said about the role of general terms in
deductive reasoning, we will never identify them as separate components in
our analyses of logical form, and the word term without qualification will be
used as an abbreviated alternative to individual term.

The remaining noun phrases at the right of the table are like individual
terms in making use of a common noun’s indication of a class of objects.
However, they do not do this to pick out a single member of the class but
instead to help make claims about the class as a whole. The claims to which
they contribute say something about the number of members of a class that
have or lack a certain property, and that is the reason for describing them as
“quantifier” phrases.

It’s probably clear that the phrases every president and no president,
even though they are grammatically singular, do not serve the function of
picking out a single object. But that may be less clear in the case of a
president. Sentences containing quantifier phrases like a president and some
president share with those containing definite descriptions, such as the
president, the feature that they can be true because of a fact about a single
object. For example, The first U. S. president wore false teeth and A
president wore false teeth can be said to both be true because of a fact
about Washington. The difference between the two sorts of expression can be
seen by considering what might make such sentences false. If Washington had
not worn false teeth, The first U. S. president wore false teeth would be
false but A president wore false teeth might still be true. That’s because
the second could be true because of facts about many different presidents (in
many different countries), so its truth is not tied to facts about any one of them.
If the expression a president is thought of as referring at all, its reference is
an indefinite one. That is one reason for adding the qualification definite to

the formula for individual terms given above, but this qualification also serves
as a reminder that the presence of a definite article is a mark of an individual
term while an indefinite article indicates a quantifier phrase.

Glen Helman 11 Oct 2010

6.1.7. Functors
Truth-functional connectives express truth-valued functions of truth values,
and predicates express truth-valued functions of reference values. A third sort
of function not only takes reference values as input but also issues them as
output. We will refer to this sort of function as a reference function or, in
contexts where we do not need a more general concept, simply as a function.
We will refer to expressions that are signs for these functions as functors and
refer to the operation of applying a functor as function application. We can
speak of the result of a function application as a compound term.

Functors are incomplete expressions that stand to individual terms as
connectives stand to sentences, so we can extend the table of operations in
6.1.1 as follows:

operation input output
connective sentence(s) sentence
predicate individual term(s) sentence
functor individual term(s) individual term

We will add further incomplete expressions to this list in later chapters when
we consider operations that take predicates as input.

Signs for mathematical functions provide examples of functors. The
expression 7 + 5 can be analyzed as

Individual terms: 7 + 5
Functor: 2 + 6

But functors are not limited to mathematical vocabulary. Any individual term
that contains one or more individual terms can be seen as the result of applying
a functor to those component terms. Thus the oldest child of Ann and Bill
can be analyzed as

Individual terms: the oldest child of Ann and Bill
Functor: the oldest child of Ann and Bill

And the more complex individual term the book that Ann’s father
mentioned has the following analysis:

Individual term: the book that Ann’s father mentioned
Functors: the book that Ann’s father mentioned

the book that Ann’s father mentioned

Possessives and prepositional phrases often give rise to functors but all that is
needed to have a functor is an individual term that contains an individual term.

Our notation for functors will be analogous to that for predicates. Functors
can be represented in semi-symbolic notation by individual-terms-with-blanks
surrounded by brackets. Using this notation, the first two examples above
could be given the analyses:

[_ + _] 7 5
[the oldest child of _ and _] Ann Bill

In the case of the third example, we will use parentheses to show grouping

[the book that _ mentioned] ([_’s father] Ann)

In fact, there is no danger of ambiguity here; but the structure is clearer with
parentheses, and, in the full symbolic notation, compound terms should be
enclosed in parentheses when they fill a place of a functor or predicate.

In that notation, unanalyzed functors will be represented by lower case
letters and will be written before the individual terms filling their places. The
general form of a compound term is this

ζτ …τ

and our English notation will be

ζ of (series) τ , …, əәn τ

or

ζ applied to (series) τ , …, əәn τ

both of which are in keeping with the usual way of reading a function
application, but one or the other will work better in certain contexts. When we
need a general variable for functors we will use ζ or ξ.

Using this symbolic and English notation, we can express the final analyses
of the examples above as follows:

symbolic
notation

English
notation

key

psf p of s əәn f p: [_ + _]; f: 5; s: 7
oab o of a əәn b o: [the oldest child of _ and _]; a: Ann; b: Bill
b(fa) b of f of a b: [the book that _ mentioned]; f: [_’s father];

a: Ann

The symbolic notation for functors that is used here is designed to minimize
parentheses and commas and is fairly common in work on logic, but it is
different from the most common mathematical notation for function
applications. The general rule for interpreting it is this: (i) after a predicate
—i.e., after a capital letter—each unparenthesized letter and each parenthetical

1 n

1 n

1 n

unit occupies one place of the predicate and (ii) within a parenthetical unit the
first letter is a functor and each following unparenthesized letter and each
parenthetical unit occupies one place of this functor.

Here are some examples for comparison

common
mathematical
notation

symbolic
notation
used here

English notation

f(a) fa f of a
f(a, b) fab f of a əәn b
f(g(a)) f(ga) f of g of a
f(a, g(b)) fa(gb) f of a əәn g of b
f(g(a), b) f(ga)b f of series g of a əәn b
f(g(a, b)) f(gab) f of g of series a əәn b

The last two examples above show the role of the optional term series in
avoiding ambiguity. Because the letters used to represent functors and
non-logical predicates do not have a fixed number of places associated with
them, when a single əәn follows two occurrences of of, it can be unclear where
the series of terms marked by əәn actually began. There are other ways of
handling this ambiguity. Parentheses suffice in written notation and
parentheses, like other punctuation, can be reflected in speech. For example, it
is natural to mark the difference between f of (g of a) əәn b and f of (g of a əәn b),
respectively, by varying the speed with which they are spoken in ways that
might be indicated by “f of g-of-a əәn b” and “f of g of a-əәn-b”.

In the presence of functors, the potential for undefined terms increases
considerably. Even if the cat on the mat has a non-nil reference value, the
cat on the refrigerator may not—to say nothing of the cat on the house
of Ann’s father’s best friend or the cat on 6. That is, functors accept a
large variety of inputs and can be expected to issue output with undefined
reference for some of them. This problem can be reduced (though not
eliminated) by limiting functors to input of certain sorts. That is usually done
by assigning individual terms to various types and allowing only individual
terms of certain types to serve as inputs to a given functor. For example, the
functor [_ + _] might be restricted to numerical input. We will not follow this
approach (which complicates the description of logical forms considerably),
but it does capture a number of features, both syntactic and semantic, of a
natural language like English.

Glen Helman 03 Aug 2010

6.1.8. Examples and problems
We will begin with a couple of extended but straightforward examples.

If Dan is the winner and Portugal is the place he would most like to
visit, he will visit there before long

Dan is the winner and Portugal is the place he would most like to visit
→ Dan will visit Portugal before long

(Dan is the winner ∧ Portugal is the place Dan would most like to visit)
→ Dan will visit Portugal before long

(Dan is the winner ∧ Portugal is the place Dan would most like to visit)
→ Dan will visit Portugal before long

(Dan = the winner ∧ Portugal = the place Dan would most like to visit)
→ [_ will visit _ before long] Dan Portugal

(d = n ∧ p = [the place _ would most like to visit] Dan) → Vdp

(d = n ∧ p = ld) → Vdp
if both d is n and p is l of d then V fits d əәn p

V: [_ will visit _ before long]; l: [the place _ would most like to visit]; d:
Dan; n: the winner; p: Portugal

Al won’t sign the contract Barb’s lawyer made out without speaking to
his lawyer

¬ Al will sign the contract Barb’s lawyer made out without speaking to
his lawyer

¬ (Al will sign the contract Barb’s lawyer made out ∧ ¬ Al will speak to
his lawyer)

¬ (Al will sign the contract Barb’s lawyer made out ∧ ¬ Al will speak to
Al’s lawyer)

¬ ([_ will sign _] Al the contract Barb’s lawyer made out ∧ ¬ [_ will
speak to _] Al Al’s lawyer)

¬ (S a (the contract Barb’s lawyer made out) ∧ ¬ P a (Al’s lawyer))
¬ (S a ([the contract _ made out] Barb’s lawyer) ∧ ¬ P a ([_’s lawyer]

Al))
¬ (S a (c ([_’s lawyer] Barb)) ∧ ¬ Pa(la))

¬ (Sa(c(lb)) ∧ ¬ Pa(la))
not both S fits a əәn c of l of b and not P fits a əәn l of a

P: [_ will speak to _]; S: [_ will sign _]; c: [the contract _ made out];
l: [_’s lawyer]; a: Al; b: Barb

When analyzing either a predication or an individual term, make sure that
you remove all the largest individual terms it contains. That is, if you identify a
component individual term, make sure that it is not part of a compound term
that is itself a component of the sentence or term you are analyzing. To analyze
Al will speak to his lawyer as [_ will speak to _’s lawyer] Al Al would be
to ignore an important aspect of its structure. Of course, when applying this
maxim, it is important to distinguish individual terms from other noun phrases.
For example, although Dan is the winner of the contest can be analyzed
initially as Dan = the winner of the contest, the grammatically similar
sentence Dan is a winner of the contest should be analyzed as [_ is a
winner of _] Dan the contest because a winner of the contest is not an
individual term.

Also, when you locate a definite description, make sure that you have
identified the whole of it. What you are most likely to miss are modifiers,
usually prepositional phrases or relative clauses, that follow the main common
noun of the definite description. For example, although the place might be an
individual term in its own right in other cases, in the example above is it only
part of the term the place Dan would most like to visit. Similarly, the
contract is only the beginning of the individual term the contract Barb’s
lawyer made out. In both of the these cases, the rest of the definite
description is a relative clause with a suppressed relative pronoun; that is, they
might have been stated more fully as the place that Dan would most like to
visit and the contract that Barb’s lawyer made out, respectively. It might
help here to think of prepositional phrases and relative clauses as modifying a
common noun before the definite article is attached. That is, the phrases above
have the form the (place Dan would most like to visit) and the (contract
Barb’s lawyer made out), so any component of these sentences containing
the initial the must also contain the whole of the following parenthesized
expressions.

There are some cases where a prepositional phrase or relative clause
following a common noun should not be counted as part of a definite
description. Some prepositional phrases can modify both nouns and verbs, and
a prepositional phrase following a noun within a grammatical predicate might
be understood to modify either it or the main verb. The sentence The dog
chased the cat on the mat is ambiguous in this way since the mat might be
understood to be either the location of the chase or the location of the cat, who
might have been chased elsewhere. This sort of ambiguity can be clarified by
converting the prepositional phrase into a relative clause, which can only

modify a noun; if this transformation—e.g.,

The dog chased the cat that is on the mat

—preserves meaning, then the prepositional phrase is part of the definite
description. On the other hand, since anaphoric pronouns cannot accept
modifiers, replacing a possible noun phrase by a pronoun will produce a
sentence in which a prepositional phrase unambiguously modifies the verb.
This can be done by moving the noun phrase to the front of the sentence,
joining it to the remaining sentence-with-a-blank by the phrase is such that,
and filling the blank with an appropriate pronoun (he, she, or it). In this
example, that would give us

The cat is such that the dog chased it on the mat

So, the prepositional phrase on the mat should be taken to modify cat or
chased depending on whether the first or second of the displayed sentences
best captures the meaning of the original. Of course, when a potentially
ambiguous sentence is taken out of context, it may not be clear which of two
alternatives does best capture the original meaning; in such a case, either
analysis is a possible interpretation and the difference between them shows
what further information is needed in order to determine what was meant.

Not all relative clauses contribute to determining reference. Those that do
are restrictive clauses, and it is these that should be included in definite
descriptions. Other relative clauses are non-restrictive. Non-restrictive clauses
cannot use the word that and, when punctuated, are marked off by commas.
Restrictive clauses are not marked off by commas in standard English
punctuation and may use that (but are not limited to this relative pronoun),
and they can in some cases be expressed without a relative pronoun. It is
easiest to tell what sort of relative clause you are faced with when more than
one of these differences is exhibited. For example, the relative clause The cat
that the dog had chased was asleep or The cat the dog had chased was
asleep is clearly restrictive while the one in The cat, who the dog had
chased, was asleep is clearly non-restrictive. This means that the relative
clause in the first is part of the definite description the cat that the dog had
chased. The relative clause in the second would instead be analyzed as a
separate conjunct to give the dog had chased the cat ∧ the cat was asleep
as the initial step of the analysis.

Another indication of the difference between the two sorts or relative clause
is that a non-restrictive clause can modify a proper name—as in Puff, who
the dog had chased, was asleep. And, since neither prepositional phrases

nor restrictive relative clauses can modify a proper name, putting a proper
name in a blank that was left when you removed an apparent individual term
can show whether you really removed the whole of the term. For example,
Puff on the mat was asleep and Puff that the dog had chased was
asleep are both ungrammatical.

Glen Helman 03 Aug 2010

1

2

3

4

5

6

6.1.s. Summary
We move beyond truth-functional logic by recognizing
complete expressions other than sentences and operations other than
connectives. Our additions are motivated by a traditional description of
grammatical subjects and predicates . The new complete expressions are
individual terms , whose function is to name. Given this idea, we can define
a predicate as an operation that forms a sentence from one or more
individual terms.

A predicate corresponds to an English sentence with blanks that might be
filled by terms. These blanks are the predicate’s places and the operation of
filling them is predication .

We will maintain something analogous to truth-functionality by requiring
that predicates be extensional . This means that all places of a predicate
must be referentially transparent (rather than referentially opaque): when
judging the truth value of a sentence formed by the predicate, we must be
able see through the terms filling these places to what those terms refer to.
Thus, just as a connective expresses a truth function, a predicate expresses a
function that takes reference values as input and issues truth values as
output. Such a function may be called a property if it has one place and a
relation if it has 2 or more. In symbolic notation, it takes the form σ = τ
and, in English notation, it takes the form σ is τ.

While recognizing quite a variety of non-logical vocabulary in our analyses,
we recognize only one new item of logical vocabulary , the predicate
identity . This is a 2-place predicate that forms an equation , which is true
when its component terms have the same reference value.

In our symbolic notation, we use lower case letters to stand for unanalyzed
individual terms, the equal sign for identity, and capital letters to stand for
non-logical predicates. Non-logical predicates, both capital letters and
predicate abstracts are written in front of the terms they apply to (with a
predicate abstract enclosed in brackets), and = is written between the terms
to which it applies. In English notation, predications other than equations
are written as θ fits τ or θ fits (series) τ , …, əәn τ .

In addition to proper names, the individual terms include
definite descriptions and various non-anaphoric pronouns . They do not
include certain other noun phrases, quantifier phrases in particular. We will
speak of the “person, place, thing, or idea” referred to by an individual term

1 n

7

8

by using such words as object, entity, individual, and thing ,
understanding these to apply to anything that might be named. Common
nouns are also not individual terms. Indeed, they may be labeled
general terms to distinguish their function of indicating a class of objects
from the function of individual terms, also called singular terms , which is to
refer to a single individual in a definite way. The word term will often be
used as shorthand for individual term.

A functor is an operation that takes one or more individual terms as input
and yields an individual term as output. Just like other operations, it
expresses a function, in this case a reference function , which yields
reference values when applied to reference values. Although a reference
function is a particular sort of function , so the latter term is more general,
we will use it term primarily for reference functions. The operation of
combining a functor with input is application , and the individual term that
is the output is a compound term, for which we use the symbolic notation
ζτ …τ and the English notation ζ of τ or ζ of (series) τ , …, əәn τ . (The
phrase applied to is sometimes a more convenient alternative to of.) For any
functor, there will almost always be some terms for which the application of
the functor yields an undefined term. Although this problem can be reduced
by limiting the input of functors to objects of certain types , we will not
include this complication in our account of logical forms.

It can be difficult to recognize the individual terms that fill the places of a
predicate or a functor. It is important in include in a definite description all
the modifiers that are part of it. Some of these may be prepositional phrases
or relative clauses which follow the common noun. In some cases, a
prepositional phrase in this position might either be part of a definite
description or modify a verb; but such an ambiguity cannot arise with
relative clauses so a prepositional phrase can be made into a relative clause
in order to test what it modifies. Relative clauses must therefore be part of
the definite description when they are restrictive ; on the other hand,
non-restrictive clauses (the sort set off by commas) are analyzed using
conjunction.

Glen Helman 03 Aug 2010

1 n 1 n

6.1.x. Exercise questions

1. Analyze each of the following sentences in as much detail as possible.

 a. Ann introduced Bill to Carol.

 b. Ann gave the book to either Bill or Carol.

 c. Ann gave the book to Bill and he gave it to Carol.

 d. Tom had the package sent to Sue, but it was returned to
him.

 e. Georgia will see Ed if she gets to Denver before Saturday.

 f. If the murderer is either the butler or the nephew, then
I’m Sherlock Holmes.

 g. Neither Ann nor Bill saw Tom speak to either Mike or
Nancy.

 h. Tom will agree if each of Ann, Bill, and Carol asks him.

i. Reagan’s vice president was the 41st president.

 j. Tom found a fly in his soup and he called the waiter.

 k. Tom found the book everyone had talked to him about and
he bought a copy of it.

l. Wabash College is located in Crawfordsville, which is the
seat of Montgomery County.

m. Sue and Tom set the date of their wedding but didn’t
decide on its location.

2. Synthesize idiomatic English sentences that express the propositions
associated with the logical forms below by the intensional
interpretations that follow them.

 a. Wci ∧ Scl
S: [_ is south of _]; W: [_ is west of _]; c: Crawfordsville; i:
Indianapolis; l: Lafayette

 b. Mab → Mba
M: [_ has met _]; a: Ann; b: Bill

 c. Iacb ∧ Iadb
I: [_ introduced _ to _]; a: Alice; b: Boris; c: Clarice; d: Doris

 d. Wab ∧ Kabab
K: [_ asked _ to write _ about _]; W: [_ wrote to _];
a: Alice; b: Boris

 e. g = c → (f = s ∧ p = t)
c: the city; f: football; g: Green Bay; p: the Packers; s: the
sport; t: the team

 f. (Sab ∧ ¬ Sa(fc)) → ¬ b = fc
S: [_ has spoken to _]; f: [_’s father]; a: Ann; b: Bill; c: Carol

g. (B(fa)(mb) ∨ S(ma)(fb)) → Cab
B: [_ is a brother of _]; C: [_ and _ are cross-cousins];
S: [_ is a sister of _]; f: [_’s father]; m: [_’s mother]; a:
Ann; b: Bill

h. Pab(m(sb)(sc)) ∧ Pac(m(sb)(sc))
P: [_ persuaded _ to accept _]; m: [the best compromise
between _ and _]; s: [_ ’s proposal]; a: Ann; b: Bill; c: Carol

Glen Helman 11 Oct 2010

6.1.xa. Exercise answers
1. a. Ann introduced Bill to Carol

[_ introduced _ to _] Ann Bill Carol
Iabc

I fits a, b, əәn c
I: [_ introduced _ to _]; a: Ann; b: Bill; c: Carol

 b. Ann gave the book to either Bill or Carol
Ann gave the book to Bill ∨ Ann gave the book to Carol
[_ gave _ to _] Ann the book Bill ∨ [_ gave _ to _] Ann the book Carol

Gakb ∨ Gakc
either G fits a, k, əәn b or G fits a, k, əәn c

G: [_ gave _ to _]; a: Ann; b: Bill; c: Carol; k: the book
 c. Ann gave the book to Bill and he gave it to Carol

Ann gave the book to Bill ∧ Bill gave the book to Carol
[_ gave _ to _] Ann the book Bill ∧ [_ gave _ to _] Bill the book Carol

Gakb ∧ Gbkc
both G fits a, k, əәn b and G fits b, k, əәn c

G: [_ gave _ to _]; a: Ann; b: Bill; c: Carol; k: the book
 d. Tom had the package sent to Sue, but it was returned to him

Tom had the package sent to Sue ∧ the package was returned to Tom
[_ had _ sent to _] Tom the package Sue ∧ [_ was returned to _] the

package Tom
Htps ∧ Rpt

both H fits t, p, əәn s and R fits p əәn t
H: [_ had _ sent to _]; R: [_ was returned to _]; p: the package; s:
Sue; t: Tom

 e. Georgia will see Ed if she gets to Denver before Saturday
Georgia will see Ed ← Georgia will get to Denver before Saturday
[_ will see _] Georgia Ed ← [_ will get to _ before _] Georgia Denver

Saturday
Sge ← Ggds
Ggds → Sge

if G fits g, d, əәn s then S fits g əәn e
G: [_ will get to _ before _]; S: [_ will see _]; d: Denver; e: Ed; g:
Georgia; s: Saturday

 f. If the murderer is either the butler or the nephew, then I’m
Sherlock Holmes

the murderer is either the butler or the nephew → I’m Sherlock
Holmes

(the murderer is the butler ∨ the murderer is the nephew) → I =
Sherlock Holmes

(the murderer = the butler ∨ the murderer = the nephew) → i = s
(m = b ∨ m = n) → i = s

if either m is b or m is n then i is s
b: the butler; i: I; m: the murderer; n: the nephew; s: Sherlock Holmes

 g. Neither Ann nor Bill saw Tom speak to either Mike or Nancy
¬ (Ann saw Tom speak to either Mike or Nancy ∨ Bill saw Tom speak

to either Mike or Nancy)
¬ ((Ann saw Tom speak to Mike ∨ Ann saw Tom speak to Nancy) ∨ (Bill

saw Tom speak to Mike ∨ Bill saw Tom speak to Nancy))
¬ (([_ saw _ speak to _] Ann Tom Mike ∨ [_ saw _ speak to _] Ann

Tom Nancy) ∨ ([_ saw _ speak to _] Bill Tom Mike ∨ [_ saw _ speak
to _] Bill Tom Nancy))

¬ ((Satm ∨ Satn) ∨ (Sbtm ∨ Sbtn))
not either either S fits a, t, əәn m or S fits a,t, əәn n or either S fits b,t, əәn m or S

fits b,t, əәn n
S: [_ saw _ speak to _]; a: Ann; b: Bill; m: Mike; n: Nancy; t: Tom

 h. Tom will agree if each of Ann, Bill, and Carol asks him
Tom will agree ← each of Ann, Bill, and Carol will ask Tom
Tom will agree ← ((Ann will ask Tom ∧ Bill will ask Tom) ∧ Carol will

ask Tom)
[_ will agree] Tom ← (([_ will ask _] Ann Tom ∧ [_ will ask _] Bill

Tom) ∧ [_ will ask _] Carol Tom)
Gt ← ((Aat ∧ Abt) ∧ Act)
((Aat ∧ Abt) ∧ Act) → Gt

if both both A fits a əәn t and A fits b əәn t and A fits c əәn t then G fits t
A: [_ will ask _]; G: [_ will agree]; a: Ann; b: Bill; c: Carol; t: Tom
The function of each here is to indicate a group of two-place predication
rather than a single four-place predicate [_, _, and _ will ask _], which is
what would be required in order to express instead the idea of Ann, Bill, and
Carol making the request as a group.

 i. Reagan’s vice president was the 41st president.
Reagan’s vice president = the 41st president
[_’s vice president] Reagan = [the _th president] 41

vr = pf

v of r is p of f
p: [the _th president]; v: [_ ’s vice president]; f: 41; r: Reagan

 j. Tom found a fly in his soup and he called the waiter
Tom found a fly in his soup ∧ Tom called the waiter
Tom found a fly in Tom’s soup ∧ Tom called the waiter
[_ found a fly in _] Tom Tom’s soup ∧ [_ called _] Tom the waiter
Ft(Tom’s soup) ∧ Ctr
Ft([_’s soup] Tom) ∧ Ctr

Ft(st) ∧ Ctr
both F fits t əәn s of t and C fits t əәn r

C: [_ called _]; F: [_ found a fly in _]; s: [_’s soup]; r: the waiter; t:
Tom

 k. Tom found the book everyone had talked to him about and he bought
a copy of it

Tom found the book everyone had talked to him about ∧ Tom bought
a copy of the book everyone had talked to him about

Tom found the book everyone had talked to Tom about ∧ Tom bought
a copy of the book everyone had talked to Tom about

[_ found _] Tom the book everyone had talked to Tom about ∧ [_
bought a copy of _] Tom the book everyone had talked to Tom
about

Ft(the book everyone had talked to Tom about) ∧ Bt(the book everyone had
talked to Tom about)

Ft([the book everyone had talked to _ about] Tom) ∧ Bt([the book
everyone had talked to _ about] Tom)

Ft(bt) ∧ Bt(bt)
both F fits t əәn b of t and B fits t əәn b of t

B: [_ bought a copy of _]; F: [_ found _]; b: [the book everyone had
talked to _ about]; t: Tom

 l. Wabash College is located in Crawfordsville, which is the seat of
Montgomery County

Wabash College is located in Crawfordsville ∧ Crawfordsville is the
seat of Montgomery County

[_ is located in _] Wabash College Crawfordsville ∧ Crawfordsville =
the seat of Montgomery County

Lbc ∧ c = [the seat of _] Montgomery County
Lbc ∧ c = sm

both L fits b əәn c and c is s of m

L: [_ is located in _]; s: [the seat of _]; b: Wabash; c: Crawfordsville;
m: Montgomery County

 m. Sue and Tom set the date of their wedding but didn’t decide on its
location

Sue and Tom set the date of their wedding
∧ Sue and Tom didn’t decide on the location of their wedding

Sue and Tom set the date of Sue and Tom’s wedding
∧ ¬ Sue and Tom decided on the location of Sue and Tom’s wedding

[_ and _ set _] Sue Tom the date of Sue and Tom’s wedding
∧ ¬ [_ and _ decided on _] Sue Tom the location of Sue and Tom’s
wedding

Sst(the date of Sue and Tom’s wedding)
∧ ¬ Dst(the location of Sue and Tom’s wedding)

Sst([the date of _] Sue and Tom’s wedding)
∧ ¬ Dst([the location of _] Sue and Tom’s wedding)

Sst(d(Sue and Tom’s wedding)) ∧ ¬ Dst(l(Sue and Tom’s wedding))
Sst(d([_ and _’s wedding] Sue Tom))

∧ ¬ Dst(l([_ and _’s wedding] Sue Tom))
Sst(d(wst)) ∧ ¬ Dst(l(wst))

both S fits s, t, əәn d of (w of s əәn t) and not D fits s, t, əәn l of (w of s əәn t)
D: [_ and _ decided on _]; S: [_ and _ set _]; d: [the date of _];
l: [the location of _]; w: [_ and _ ’s wedding]; s: Sue; t: Tom

2. a. [_ is west of _] Crawfordsville Indianapolis
∧ [_ is south of _] Crawfordsville Lafayette

Crawfordsville is west of Indianapolis ∧ Crawfordsville is south of
Lafayette

Crawfordsville is west of Indianapolis and south of Lafayette
 b. [_ has met _] Ann Bill → [_ has met _] Bill Ann

Ann has met Bill → Bill has met Ann
If Ann has met Bill then he has met her

 c. [_ introduced _ to _] Alice Clarice Boris
∧ [_ introduced _ to _] Alice Doris Boris

Alice introduced Clarice to Boris ∧ Alice introduced Doris to Boris
Alice introduced Clarice and Doris to Boris

 d. [_ wrote to _] Alice Boris
∧ [_ asked _ to write _ about _] Alice Boris Alice Boris

Alice wrote to Boris ∧ Alice asked Boris to write Alice about Boris

Alice wrote to Boris ∧ Alice asked Boris to write her about himself
Alice wrote to Boris and asked him to write her about himself

 e. g = c → (f = s ∧ p = t)
Green Bay = the city → (football = the sport ∧ the Packers = the

team)
Green Bay is the city → (football is the sport ∧ the Packers are the

team)
Green Bay is the city → football is the sport and the Packers are the

team
If Green Bay is the city, then football is the sport and the Packers

are the team
 f. ([_ has spoken to _] Ann Bill ∧ ¬ [_ has spoken to _] Ann ([_’s

father] Carol)) → ¬ Bill = [_’s father] Carol
(Ann has spoken to Bill ∧ ¬ [_ has spoken to _] Ann Carol’s father) →

¬ Bill = Carol’s father
(Ann has spoken to Bill ∧ ¬ Ann has spoken to Carol’s father) → ¬ Bill

is Carol’s father
(Ann has spoken to Bill ∧ Ann hasn’t spoken to Carol’s father) → Bill

isn’t Carol’s father
Ann has spoken to Bill but not to Carol’s father → Bill isn’t Carol’s

father
If Ann has spoken to Bill but not to Carol’s father, then Bill isn’t

Carol’s father
 g. (B([_’s father] Ann)([_’s mother] Bill) ∨ S([_’s mother] Ann)([_’s

father] Bill)) → [_ and _ are cross-cousins] Ann Bill
([_ is a brother of _] Ann’s father Bill’s mother ∨ [_ is a sister of _]

Ann’s mother Bill’s father) → Ann and Bill are cross-cousins
(Ann’s father is a brother of Bill’s mother ∨ Ann’s mother is a sister

of Bill’s father) → Ann and Bill are cross-cousins
Ann’s father is a brother of Bill’s mother or Ann’s mother is a sister

of Bill’s father → Ann and Bill are cross-cousins
If Ann’s father is a brother of Bill’s mother or Ann’s mother is a

sister of Bill’s father, then Ann and Bill are cross-cousins
 h. Pab(m([_’s proposal] Bill)([_’s proposal] Carol))

∧ Pac(m([_’s proposal] Bill)([_’s proposal] Carol))
Pab([the best compromise between _ and _] Bill’s proposal Carol’s

proposal)
∧ Pac([the best compromise between _ and _] Bill’s proposal Carol’s

proposal)
[_ persuaded _ to accept _] Ann Bill the best compromise between

Bill’s proposal and Carol’s proposal
∧ [_ persuaded _ to accept _] Ann Carol the best compromise
between Bill’s proposal and Carol’s proposal

Ann persuaded Bill to accept the best compromise between his and
Carol’s proposals
∧ Ann persuaded Carol to accept the best compromise between
Bill’s proposal and hers

Ann persuaded each of Bill and Carol to accept the best compromise
between their proposals

Glen Helman 03 Aug 2010

6.2. Predicates and pronouns
6.2.0. Overview

6.2.1. Abstracts
A predicate has a certain number of places in a given order, and abstracts
are a notation for associating these places with blanks in a sentence.

6.2.2. Bound variables
The ties between places and blanks are made via variables filling the blanks,
but it is the association with places that matters, not the specific variables
used to make it.

6.2.3. Variables and pronouns
The role of variables in abstracts is in many ways similar to the role of
anaphoric pronouns in English, and abstracts can be used to represent the
patterns of co-reference exhibited by pronouns.

6.2.4. Expanded and reduced forms
The possibility of replacing pronouns by their antecedents corresponds to
the possibility of replacing an analysis using an abstract by one without the
abstract.

Glen Helman 03 Aug 2010

6.2.1. Abstracts
In our analyses so far, we have identified the places of a predicate with the
blanks remaining when all largest individual terms have been removed. But,
while this way of identifying the places of a predicate is best for a full analysis,
it is not required by the concept of a predicate. For the greatest flexibility in
identifying predicates, we need a notation that will allow us to specify an order
for the places of a predicate that is different from the order of blanks in the
English and that will allow us to associate a given place with more than one
blank. What we will use is an extension of the ordinary algebraic use of
variables. It is a simple idea that was used by Frege but it was first studied
extensively by the American logician Alonzo Church (1903-1995) in the
1930s.

The usual form of definition for a function—of a polynomial, for example,

f(x, y) = x + 3xy + 1

gives a name to the function and uses a variable or variables to indicate the
input values, with the output specified by some sort of formula. An alternative
notation represents the input and output more graphically

f: x, y ↦ x + 3xy + 1

The latter definition might be read

f is the function which, when given input x and y, yields the output x +
3xy + 1

Church’s notation, the notation of lambda abstraction, provides a symbolic
version of the sort of definite description that appears in the English version of
the definition. Using this notation, the symbolic definition could be written as

f = λxy (x + 3xy + 1)

That is, the expression “λxy (x + 3xy + 1)” can be read as the function
which, when given input x and y, yields the output x + 3xy + 1.

When we define a function by a formula, whether we use the traditional
notation or Church’s, we are interested in the way the meaning of the formula
varies with changes in the reference of certain individual terms. This “way” is
more abstract than any particular value the formula has when the reference of
these terms is fixed, so the move from the formula to the function is reasonably
described as “abstraction.” The notation of lambda abstraction identifies a
function without immediately introducing a name for it. This idea has been
important in the development of computer programming languages and, in that
context, the right-hand side of the second equation above would now often be

2

2

2

2

2

2

described as an “anonymous function.” So, when a defining equation is
expressed in the notation of lambda abstraction, it abstracts a function
anonymously by using the expression “λxy (x + 3xy + 1)” and then assigns it
the name “f.”

Since predicates express functions, the same idea can be applied to them,
and it will provide the sort of flexibility we need in identifying predicates.
However, our notation for abstraction will be a little different from Church’s.
We will write the variables that follow the lambda in Church’s notation as
subscripts on brackets. For example, for the function defined above, we can
write

[x + 3xy + 1]

something that might be read as x + 3xy + 1 as a function of x and y.
As an example of a predicate in this notation, consider the following:

[x introduced x to y]

If we give this the input Bill and Ann, it will generate an output sentence by
putting Bill in place of x and Ann in place of y. The output will then have Bill
in the first and second blanks of the sentence-with-blanks _ introduced _ to
_, and it will have Ann in the third blank. So we will get as output the sentence
Bill introduced Bill to Ann—or, more idiomatically, Bill introduced himself
to Ann.

That is, the expression,

[x introduced x to y] Bill Ann

provides an alternative analysis of the first example of 6.1.5 in which use a
two-place predicate instead the three-place predice [_ introduced _ to _].
The chief application of this sort of flexibility in analysis will be in later
chapters; but this example shows that it captures some aspects of English
predications better than the analysis we will most often use. In particular, like
the English sentence, this analysis indicates a double reference to Bill without
repeating his name. We will look at this aspect of abstraction further in 6.2.3 .

We will call an expression formed with these subscripted brackets an
abstract. We will speak of a predicate abstract when the brackets enclose a
sentence-with-variables and of a functor abstract when they enclose an
individual-term-with-blanks. The general form of an abstract with n places is

[---]
 body abstractor

It has two parts, a body, which specifies the output of the expression, and an

2

2
xy

2

xy

xy

x … x1 n

abstractor, consisting of the brackets and subcripted list of variables. The
variables listed in the abstractor may appear in the body in any order and may
occur several times.

And they need not occur in the body at all. To get the effect of a definition
like f(x) = 2, we use an abtract like [2] to indicate a function whose output is
2 for any input. Abraction like this is said to be vacuous.

The predicate abstract [x introduced x to y] might be read as

what “x introduced x to y” says about x and y

and we will take as our English notation for predicate abstracts an abbreviated
form of this reading:

what --- says of x … x

so the English notation for this predicate would be

what x introduced x to y says of x əәn y

(again using the contraction əәn to distinguish this use of and from its use in
conjunction). The predication that applies this predicate to Ann and Bill then
takes the form

what x introduced x to y says of x əәn y fits Bill əәn Ann

Our English notation for functor abstracts is simply

--- for x … x

which is a compact version of a reading suggested earlier. The application of
[x + 3xy + 1] 2 3 could be written in this notation as

x + 3xy + 1 for x əәn y applied to 2 əәn 3

This is a case where the alternative English notation applied to for compound
functors reads better than the simpler of.

Glen Helman 03 Aug 2010

x

xy

1 n

1 n

2
xy

2

6.2.2. Bound variables
If a variable in an abstractor appears in the body of an abstract, its occurrences
in the body are said to be bound to the abstractor. So any occurrence of x , …,
x in the body --- of the following abstract is bound to the abstractor x …x :

[---]

If a variable is in the scope of more than one abstractor containing it, it is
bound to the one with narrowest scope. So the first occurrence of x and the
occurrence of y are bound to the abstractor xy in the following while the other
occurrences of x (outside the abstractors) and the occurrence of z are bound to
the abstractor xz:

[[y introduced x to z] xx]

A variable that is not bound to any abstractor is said to be free. So z is free in
[y introduced x to z] , and when an expression like “x + 3xy + 1” or “x
introduced x to y” is considered by itself outside the context of an abstract,
all variables in it are free.

Variables have the grammatical status of individual terms but have no
definite reference values. In the context of a formula like “x + 3xy + 1,” free
variables are naturally thought of as variable quantities (hence their name)
since, when they vary in their reference, the value of the formula varies as a
result. When variables are bound in an abstract like [x + 3xy + 1] , there is
no longer this sort of variation. The abstract makes a reference to a
mathematical object, a polynomial function, that incorporates the variation but
does not itself vary. Because of this, an older terminology referred to bound
variables as “apparent” variables.

The notation for predicates and functors used in 6.1 can be thought of as a
variation on the notation for abstracts that deals with the “apparent” character
of bound variables by removing them entirely. We will understand a bracketed
sentence- or individual-term-with-blanks to represent an abstract in which each
of the blanks is filled with a different variable and the variables appear in the
same order in the body and the abstactor. So [_ introduced _ to _] would
come to the same thing as the abstract

[x introduced y to z]

Because the blanks in the English expression correspond one for one and in the
same order to the places of the predicate or functor, there is no need for bound
variables to indicate the relation between the two.

Bracketing alone is not sufficient in cases where the places of a predicate do

1

n 1 n

x …x1 n

xy xz

xy
2

2

2
xy

xyz

not correspond one for one to the blanks. However, we might supplement it by
lines showing how places correspond to blanks.

[__ introduced __ to __]

This is clearer than the corresponding use of bound variables

[x introduced x to y]

but it is significantly less convenient. Still, it is worth bearing in mind, even
when bound variables are used, since the lines in the graphical notation depict
the pattern of binding of variables by the abstractor.

Because bound variables only mark a correspondence between locations in
the body of the abstract and the abstactor, the bound variables of different
abstracts have no connection with one another. This means that, for example,
the following abstracts express the same predicate:

[x introduced x to y]
[y introduced y to z]

Each says that for any input terms τ and υ (in that order), the output sentence
should be τ introduced τ to υ, and pattern of binding in each would be
depicted in the same way in the graphical notation.

Expressions, like these, that use different variables to indicate the same
correspondence between blanks in the body and places for input will be
referred to as alphabetic variants. Notice that alphabetic variants can use a
given variable in different ways. For example, although the variable y appears
in both of the abstracts above, it would be replaced by a different one of the
input terms in each case.

The body of a predicate abstract is grammatically like a sentence even
though it may contain free variables. It is standard to speak of an expression as
closed if any variables it contains are bound within it and call an expression
open if one or more of its variables is free. Logicians typically use the term
formula for any expression that is grammatically like a sentence whether it is
open or closed, and reserve the term sentence for closed formulas. Since all
formulas are grammatically like sentences, the grammatical vocabulary
applied to sentences in previous chapters applies to all formulas. In particular,
formulas can be built from formulas by use of connectives, so formulas can be
compound and have components.

The distinction between open and closed expressions applies to term-like
expressions also, but the terminology is handled differently. Both open and

xy

xy

yz

closed expressions are classified as (individual) terms with closed expressions
distinguished simply as closed terms.

It is time to update our notion of atomic sentences or, more generally, atomic
formulas. Now that we analyze sentences and other formulas into components
like predicates and individual terms, the atomic formulas will no longer be
simply the unanalyzed sentences (though any sentences that go unanalyzed
will still count as atomic). We will now also count as atomic any predication.
Predications are compound and can even have formulas as components (albeit
not immediate components), but the role of predications in derivations is
sufficiently analogous to that of unanalyzed sentences for it to make sense to
put them both in the same category. This analogy lies behind our use of capital
letters for predicates, and it can be built into our syntactic categories: an
unanalyzed sentence can be thought of as a zero-place predicate, one that
requires no input to yield a sentence as output.

Glen Helman 03 Aug 2010

6.2.3. Variables and pronouns
English has devices which function like bound variables. The force of the
abstract

[_ introduced _ to _]

or the equivalent

[x introduced x to x]

can be captured in English by the expression

what is said about three people by saying that (the first introduced
the second to the third)

which uses expressions like the first, the second, and so on, instead of
subscripted variables. (Parentheses were used in the English displayed above
simply to mark the portion corresponding to the body of the abstract.) No
particular group of people is in question here, and the expressions the first,
etc., do not refer to anything outside the sentence. Instead, these expressions
function here much like pronouns that have three people as their antecedant.
The word order differs from that used in the English notation for abstracts, but
that was done merely to put the phrase “three people” before the “pronouns”
that refer to it.

In the case of a one-place predicate abstract, the corresponding English can
be stated with a genuine pronoun:

[Tom bought x]
what is said about a thing when it is said that (Tom bought it)

The blank that is marked by x in the body of the symbolic abstract is filled in
the English with the pronoun it, which has a thing as its antecedent. Since a
thing makes no definite reference, neither does the pronoun; the pronoun
“refers back” to its antecedent only in the sense that their references are linked
in their indefiniteness and cannot be indefinite in independent ways. The
general moral is that the variables used in the bodies of abstracts are like
pronouns, and the ones in abstractors are like their antecedents. One
consequence of this reiterates a point made in the last subsection: you should
not expect variables bound to different abstractors to be linked in their
reference any more than you would expect this of pronouns that have different
antecedents.

We can also move in the other direction and use abstracts to represent the
contribution of pronouns to the logical form of a sentence. We can get a hint of

1 2 3 x x x1 2 3

x

how they might do this by looking at a particular English rendering of the
sample predicate abstract discussed in 6.2.1

[x introduced x to y]
what is said about two people when it is said that (the former

introduced the former to the latter)

where we use another common pronoun-like device. Now consider the
following restatement:

what is said about two people when it is said that (the former
introduced him- or herself to the latter)

The reflexive pronoun in this expression corresponds to the repeated variable
in the symbolic abstract.

Of course this English expression was a rather artificial one constructed to
correspond to an abstract, but there are ways to apply abstracts more broadly.
To see how, let us look at three further English expressions corresponding to
the abstracts we have been considering. This time the English expressions are
predicates (rather than noun phrases that refer to the contents of predicates):

___, ___, and ___ are such that (the first introduced the second to the
third)

___ is such that (Tom bought it)
___ and ___ are such that (the former introduced the former to the

latter)

Of course, these predicates themselves are also artificial, but they employ a
device, the various forms of the phrase is such that, that is sometimes
unavoidable. And, while there are usually better ways of saying what may be
said using it, it can be easily understood and may be applied to virtually any
English sentence to restate it (in English) in a way that corresponds to the use
of an abstract.

Because the first element of a sentence often indicates the topic under
discussion, languages have many devices for restating sentences with various
elements at the front. One common device in English is the use of passive
voice. If we wish to say who wrote a book but focus attention on the book
rather than its author, we might say something like Moby Dick was written
by Melville. Here we take the direct object of Melville wrote Moby Dick and
move it to the front of the sentence by changing the verb from active to passive
voice. Passive voice can be used similarly to move more than direct objects to
the front, but it has limitations, as do many of the other devices English has for
making noun phrases into subjects. The use of is such that—which we will

xy

call expansion—enables us to make a great variety and arbitrary number of
noun phrases into the subject of a sentence. This phrase is written after the
subject and is itself followed by the result of replacing the noun phrases in the
original sentence by pronouns or pronoun-like devices. For example, Melville
wrote Moby Dick can be converted into any of

Moby Dick is such that (Melville wrote it)
Melville is such that (he wrote Moby Dick)

Melville and Moby Dick are such that (the former wrote the latter)

The result of expansion is an expanded form, and we will often write it, as has
been done here, with the residue of the original sentence in parentheses. When
we need to distinguish among alternative ways of expanding a sentence, we
will speak of expanding on a particular noun phrase. The opposite of
expansion is reduction, and we will describe the original sentence as being in
reduced form relative to that expansion. The idea of reduced form is relative
because, in principle, expansion can be applied more than once, and a reduced
form may be reduced still further. For example, the first expanded form above
is also the result of reducing Moby Dick is such that (Melville is such that
(he wrote it)).

Expansion will serve us in a number of different ways in the rest of the
course. For now, the fact that it uses pronouns and is analogous to the use of
abstracts will help in using abstracts to analyze the role of pronouns in a
sentence. To see how, let us analyze the sentence Bill told Ann his name in a
way that employs a predicate abstract to reflect the use of a pronoun.

Bill told Ann his name
Bill is such that (he told Ann his name)

[x told Ann x’s name] Bill
[[_ told _ _] x Ann x’s name] Bill

[Txa([_’s name]x)] Bill

[Txa(nx)] b

T: [_ told _ _]; n: [_’s name]; a: Ann; b: Bill

Once the sentence as a whole has been analyzed as the predication of an
abstract, the formula x told Ann x’s name that is the body of the abstract is
analyzed in the same way as Bill told Ann Bill’s name would be. The final
analysis departs from the original sentence in having the equivalents of two
pronouns instead of one (as does Bill is such that (he hold Ann his name),
but it is like the original in having only a single occurrence of Bill. So, in this

x

x

x

x

respect, it is closer to the English than the alternative analysis as Tna(nb),
which is what we would get if we analyzed the sentence, Bill told Ann Bill’s
name, that is the result of replacing the pronoun his by its antecedent. It is in
this way that expansion and analysis by abstracts reflects the use of pronouns.

We might also have expanded on both Bill and Ann to get Bill and Ann are
such that he told her his name, with the analysis

[Txy(nx)] ba

That would have added no enlightenment in the case of this sentence, but
consider the following ambiguous sentence, given with abbreviated analyses of
two interpretations of it. (Imagine that the second concerns a case of amnesia.)

Bill told Al his name
Bill and Al are such that (the
former told the latter the

former’s name)
[x told y x’s name] Bill Al

[Txy(nx)] bl

Bill told Al his name
Bill and Al are such that (the

former told the latter the latter’s
name)

[x told y y’s name] Bill Al

[Txy(ny)] bl

T: [_ told _ _]; n: [_’s name]; b: Bill; l: Al

In each of these analyses, the names Bill and Al are separated completely from
the abstracts, which use variables to show any patterns of coreference. The
advantage of this sort of analysis is that it gives us an account of the ambiguity
of this sentence that enables us to point to the same ambiguity in other
sentences, such as Barb told Ann her name.

Glen Helman 03 Aug 2010

xy

xy

xy

xy

xy

6.2.4. Expanded and reduced forms
We will use the ideas of expansion and reduction and of expanded and reduced
form in connection with symbolic analyses as well as English sentences. (The
context will usually indicate which use of the terms is intended but, if
necessary, we can speak of symbolic expansion on the one hand or expansion
using such that on the other.) As it applies to symbolic analyses, expansion is
the process of restating an analysis using an abstract as we did when we moved
from the analysis Tbab of Bill told Ann his name to [Txa(nx)] b.

From one point of view, there is no need to use expansion to study the
ambiguity of Bill told Al his name. A pair of simple reduced forms like
Tba(nb) and Tba(na) is quite sufficient. And even the point that Barb told Ann
her name shares the same ambiguity can be captured by referring to a pair of
logical forms Tτυ(nτ) and Tτυ(nυ) that are exhibited by each of the two pairs.

Of course, this simpler approach would ignore the fact that the ambiguity
lies in the pattern of coreference marked by anaphoric pronouns. Abstracts
capture this, but in a rather crude way since they introduce extra pronouns to
do so. While the English sentence Bill told Al his name has a single pronoun,
our analyses each had three bound variables. The notation could be modified to
be more subtle if our main interest was in anaphoric pronouns with individual
terms as antecedents. However, the prime application of abstracts will be in
later chapters where we will use abstracts in connection with our analysis of
quantifier phrases.

In order to analyze a sentence as a truth-functional compound, we must be
able to identify components that function independently. In particular, a
pronoun in one component cannot have its antecedent in another. The approach
we took before employing abstracts was to simply replace a pronoun by its
antecedent when this was possible and avoid analysis when it was not. The
prime example of a pronoun we could not replace is one whose antecedent is a
quantifier phrase. The sort of analysis we will eventually use in this case
employs abstracts behind the scenes, and the use of abstracts for cases where
pronouns have individual terms as antecedents brings those cases closer to our
handling of cases where the antecedents are quantifier phrases.

Still, one of the key points to be made about abstracts with regard to
individual terms is the very fact that they are dispensible, so let us look more
closely at how to dispense with them once we have used them in an analysis.
For example, consider the sentence Ann visited the class and she spoke to
Davie. If we use an abstract to capture the coreference of she and Ann, we can
analyze this as follows:

x

Ann visited the class and she spoke to Davie
Ann is such that (she visited the class and she spoke to Davie)

[_ is such that (she visited the class and she spoke to Davie)] Ann
[x visited the class and x spoke to Davie] Ann
[x visited the class ∧ x spoke to Davie] Ann

[[_ visited _] x the class ∧ [_ spoke to _] x Davie] Ann

[Vxc ∧ Sxd] a
what both Vxc and Sxd says of x fits a

S: [_ spoke to _]; V: [_ visited _]; a: Ann; c: the class; d: Davie

The formula x visited the class and x spoke to Davie can be analyzed as a
truth-functional compound because the two occurences of the variable x are
independent of each other (though each is bound to the abstractor).

The approach we used earlier would have led us to analyze the sentence as
the compound Ann visited the class ∧ Ann spoke to Davie in which she is
replaced by Ann, and this sentence would receive a symbolic analysis of the
form Vac ∧ Sad. Now, if we compare the symbolic analyses

[Vxc ∧ Sxd] a Vac ∧ Sad

we can see that the second is the result of putting the term a in place of the
variable x in the body of the abstract in the first. That is, the second is the
reduced form of the first.

When we reduce the predication of an abstract, we take the body of the
abstract and put the term of which it is predicated in the blanks marked by the
variable. An analogous description applies to the reduction of compound terms
formed by applying functor abstracts, and the description can be extended to
apply to abstracts on any number of variables. Schematically, the general
pattern is as follows:

[---x ---…---x ---] τ …τ ---τ ---…---τ ---

When interpreting the schema, remember that the variables of the abstractor
can appear in the body in any order and may each appear any number of times
(including not at all). The expression on the right is the result of using each
term τ to replace all occurrences of the corresponding variable.

Special care is needed when performing a reduction if the body contains
abstracts and a term to be substituted contains free variables. The short
account of this sort of case is that no free variable should become bound as a
result of reduction and that abstracts should be replaced by alphabetic variants
as necessary to avoid this happening. The easiest way to insure this is to

x

x

x

x

x

1 n x …x1 n 1 n 1 n

i

choose bound variables so that they are all different from each other and from
any free variables. However, our use of abstracts will be limited to much
simpler situations, so a detailed rule is not important. Moreover, we will regard
reduced and expanded expressions as two ways of writing the same formula or
term, so no rule at all is needed as part of our rules for derivations, where
sentences will be written only in fully reduced form.

Let us now return to the issue of pronouns and truth-functional connectives.
From our present point of view, the fact that pronouns can always be replaced
by individual term antecedents can be seen as the result of the fact the
reduction is always possible. The analyses of sentences involving quantifier
phrases that we will go on to develop in the next couple of chapters will
employ predicate abstracts but not by way of predication, so nothing analogous
to reduction will be in question. That can be cited as the reason a pronoun
often cannot be replaced by a quantifier phrase antecedent—as in A mother
visited the class and she spoke to Davie, which is not equivalent to A
mother visited the class and a mother spoke to Davie. In cases where
replacement by a quantifier phrase antencedent is possible without changing
the meaning—as in A mother visited the class or she spoke to Davie on
the phone—this will be due to special interactions between the quantifier
phrase and other logical constants in the sentence.

Finally, although our focus has been on pronouns, much of what we have
seen applies also to sentences containing compound predicates and other
compound phrases. The sentence Ann visited the class and spoke to Davie
can also be analyzed as [Vxc ∧ Sxd] a. While this analysis introduces the
symbolic analogues pronouns that do not appear in the English, it does capture
the form of the English in one respect: it treats it as a predication whose
predicate contains the connective. And the possibility of restating the sentence
as Ann visited the class and Ann spoke to Davie can be seen as due to the
reduction of this form to Vac ∧ Sad.

Glen Helman 03 Aug 2010

x

1

2

3

4

6.2.s. Summary

We adapt the notation of lambda abstraction to provide a flexible way of
linking the places of a predicate to blanks in an English sentence. An
expression formed using our notation—which will have the general form […
x … x …] —is an abstract (in this use, a predicate abstract); it
consists of a abstractor applied to a parenthesized body . In English
notation, a predicate abstract takes the form what … x … x … says of x
… x , and a functor abstract takes the form … x … x … for x … x .
(Variables in an abstractor that do not appear in the body are cases of
vacuous abstraction.)

A variable in the body of an abstract that appears in an abstractor is bound
to it, provided it is not already bound to one with narrower scope. Bound
variables may be thought of as pronouns whose antecedents are in the
abstractor. Expressions that establish the same patterns of binding using
different variables are alphabetic variants . A expression that has variables
not bound to any abstractor (such as the body of an abstract considered by
itself) is open; otherwise, it is closed . A sentence-like expression that is
open is not a sentence in the strict sense, but it does count as a formula .
Formulas have many of the syntactic properties of sentences; in particular,
they can be built from other formulas using connectives. And we can
distinguish as atomic formulas not only unanalyzed sentences but all
formulas that are predictions. (Indeed, unanalyzed sentences can be thought
of as predications of zero-place predicates .)

Many pronouns in English function like the bound variables of the symbolic
notation for abstracts, and the phrase is such that can be used to expand an
English sentence by introducing them. The resulting expanded form is
analogous to the predication of an abstract and can be reduced to a sentence
in which the pronouns introduced by expansion are replaced by their
antecedents. Because of the analogy between variables and anaphoric
pronouns, abstracts can be used to represent
the contribution of such pronouns to logical form.

Processes analogous to the expansion and reduction of English sentences
apply to symbolic forms. In the simplest case, the application of an abstract
can be reduced by replacing variables bound to it by the terms filling the
corresponding places of the predicates. And a symbolic form may be
expanded to introduce the predication of an abstract. Both operations help

1 n x … x1 n

1 n 1

n 1 n 1 n

in comparing sentences in reduced form to logical forms studied in later
chapters in which abstracts appear in contexts other than predication.

Glen Helman 03 Aug 2010

6.2.x. Exercise questions

1. Expand each of the following in two different ways, (i) on a single
occurrence of a single individual term, and (ii) on all terms together. In
each case express the expanded form in English using is such that and
in a partially symbolic way, as in

[x wrote Moby Dick] Melville

 a. Romney is north of Linden.

 b. Mike gave the package to Nancy.

 c. Tom spoke of Ed to Sue.

 d. Sam traveled to Atlanta by way of Chicago.

2. Analyze each of the following in a way that uses abstracts and variables
to represent pronouns instead of replacing them by their antecedents.
Since you will not replace pronouns by their antecedents, you should
end up with as many occurrences of each individual term in your result
as in the original sentence. Also, restate your symbolic analysis in
reduced form.

 a. Ann nominated herself

 b. Ralph tried the motor, and it started

 c. If the alarm is touched, it will go off

 d. Ralph fixed Sam’s car, and he drove it back to him

 e. Ann and Bill each left a message for the other

3. Each of the following sentences exhibits an ambiguity (in pronoun
reference) between meanings that can be indicated by alternative
analyses using abstracts. Use abstracts to give two complete analyses of
each sentence that express different interpretations of it. You will find it
easier to distinguish interpretations if you expand for all terms involved
in the ambiguity whether or not all have pronouns referring to them on
each interpretation (see the last example of 6.2.3).

In c, the word so serves to apply the same predicate to Bill as was
applied to Al, so each of your analyses of it should have a repeated
abstract.

 a. Al called Bill, and he called Carol.

 b. Sam gave the book to Tom, but he didn’t read it.

x

 c. Al washed his car, and so did Bill.

4. For each of the following abstracts (i) diagram the pattern of binding
using lines rather than variables (in the manner shown in 6.2.2) and (ii)
give an alphabetic variant (i.e., abstract which indicates the same
pattern of binding using different variables).

In the case of e, remember that, as noted in 6.2.2 , a bracketed
sentence-with-blanks amounts to an abstract whose body has a different
variable in each blank and whose abstractor lists the variables in the
same order. Also, the lower-case f in c means that it is a functor rather
than a predicate; but that won’t make for any differences in the way you
handle it.

 a. [Fx]
 b. [Fz → Gz]
 c. [Tyxy]
 d. [fyz]
 e. [S _ _ _]
 f. [[Rxy] a ∧ Rby]
 g. [[Rcy] a ∧ Rby]

Glen Helman 03 Aug 2010

x

z

xy

zy

x y

y y

6.2.xa. Exercise answers
1. In each case, the English restatement appears first, followed by the partial

symbolization.
 a. i. Romney is such that (it is north of Linden)

[x is north of Linden] Romney
 or Linden is such that (Romney is north of it)

[Romney is north of x] Linden
 ii. Romney and Linden are such that (the former is north of the latter)

[x is north of y] Romney Linden
 b. i. Mike is such that (he gave the package to Nancy)

[x gave the package to Nancy] Mike
 or the package is such that (Mike gave it to Nancy)

[Mike gave x to Nancy] the package
 or Nancy is such that (Mike gave the package to her)

[Mike gave the package to x] Nancy
 ii. Mike, the package, and Nancy are such that (the first gave the second to

the third)
[x gave y to z] Mike the package Nancy

 c. i. Tom is such that (he spoke of Ed to Sue)
[x spoke of Ed to Sue] Tom

 or Ed is such that (Tom spoke of him to Sue)
[Tom spoke of x to Sue] Ed

 or Sue is such that (Tom spoke of Ed to her)
[Tom spoke of Ed to x] Sue

 ii. Tom, Ed, and Sue are such that (the first spoke of the second to the
third)

[x spoke of y to z] Tom Ed Sue
 d. i. Sam is such that (he traveled to Atlanta by way of Chicago)

[x traveled to Atlanta by way of Chicago] Sam
 or Atlanta is such that (Sam traveled to it by way of Chicago)

[Sam traveled to x by way of Chicago] Atlanta
 or Chicago is such that (Sam traveled to Atlanta by way of it)

[Sam traveled to Atlanta by way of x] Chicago
 ii. Sam, Atlanta, and Chicago are such that (the first traveled to the second

by way of the third)
[x traveled to y by way of z] Sam Atlanta Chicago

2. a. Ann nominated herself
Ann is such that (she nominated herself)
[x nominated x] Ann

[Nxx] a
reduced form: Naa

N: [_ nominated _]; a: Ann

x

x

xy

x

x

x

xyz

x

x

x

xyz

x

x

x

xyz

x

x

 b. Ralph tried the motor, and it started
the motor is such that (Ralph tried it, and it started)
[Ralph tried x and x started] the motor
[Ralph tried x ∧ x started] m

[Trx ∧ Sx] m
reduced form: Trm ∧ Sm

S: [_ started]; T: [_ tried _]; m: the motor; r: Ralph
The analysis [Txy ∧ Sy] rm is also correct, but a 2-place abstract is not
needed in order to analyze pronouns since only the motor has a pronoun
referring to it.

 c. If the alarm is touched, it will go off
the alarm is such that (if it is touched, it will go off)
[if x is touched, x will go off] the alarm
[x will be touched → x will go off] a

[Tx → Gx] a
reduced form: Ta → Ga

T: [_ will be touched]; G: [_ will go off]; a: the alarm
 d. Ralph fixed Sam’s car, and he drove it back to him

Ralph and Sam are such that (the former fixed the latters’s
car, and he drove it back to him)

[x fixed y’s car, and x drove y’s car back to y] Ralph Sam
[x fixed y’s car ∧ x drove y’s car back to y] rs
[Fx(y’s car) ∧ Dx(y’s car)y] rs

[Fx(cy) ∧ Dx(cy)y] rs
reduced form: Fr(cs) ∧ Dr(cs)s

D: [_ drove _ back to _]; F: [_ fixed _]; c: [_’s car]; r: Ralph; s:
Sam

 e. Ann and Bill each left a message for the other
Ann and Bill are such that (they each left a message for the

other)
[x and y each left a message for the other] Ann Bill
[x left a message for y ∧ y left a message for x] ab

[Mxy ∧ Myx] ab
reduced form: Mab ∧ Mba

M: [_ left a message for _]; a: Ann; b: Bill

The noun phrase a message is a quantifier phrase rather than an individual
term so it must be left unanalyzed.

3. a. i. Al called Bill, and he called Carol

x

x

x

xy

x

x

x

xy

xy

xy

xy

xy

xy

xy

Al and Bill are such that (the former called the latter,
and the former called Carol)

[x called y, and x called Carol] Al Bill
[x called y ∧ x called Carol] ab

[Cxy ∧ Cxc] ab
 ii. Al called Bill, and he called Carol

Al and Bill are such that (the former called the latter,
and the latter called Carol)

[x called y, and y called Carol] Al Bill
[x called y ∧ y called Carol] ab

[Cxy ∧ Cyc] ab
C: [_ called _]; a: Al; b: Bill; c: Carol
The second interpretation can be indicated in spoken English by
emphasizing the pronoun. The first interpretation could be indicated
unambiguously by adding too to the end of the sentence.

 b. i. Sam gave the book to Tom, but he didn’t read it
Sam, the book and Tom are such that (the first gave the

second to the third, but the first didn’t read the
second)

[x gave y to z, but x didn’t read y] Sam the book Tom
[x gave y to z ∧ ¬ x read y] sbt

[Gxyz ∧ ¬ Rxy] sbt
 ii. Sam gave the book to Tom, but he didn’t read it

Sam, the book and Tom are such that (the first gave the
second to the third, but the third didn’t read the
second)

[x gave y to z, but z didn’t read y] Sam the book Tom
[x gave y to z ∧ ¬ z read y] sbt

[Gxyz ∧ ¬ Rzy] sbt
G: [_ gave _ to _]; R: [_ read _]; b: the book; s: Sam; t:
Tom
It is hard to avoid this ambiguity in English without some rewording
—e.g., by resorting to the former or the latter instead of he or by
repeating one of the names.

xy

xy

xy

xy

xy

xy

xyz

xyz

xyz

xyz

xyz

xyz

 c. i. Al washed his car, and so did Bill.
Al and Bill are such that (the former washed his car, and

so did the latter).
[x washed his car, and so did y] Al Bill
[x is such that (he washed his car) ∧ y is such that (he

washed his car)] ab
[[z washed z’s car] x ∧ [z washed z’s car] y] ab
[[Wz(z’s car)] x ∧ [Wz(z’s car)] y] ab

[[Wz(cz)] x ∧ [Wz(cz)] y] ab
 ii. Al washed his car, and so did Bill.

Al and Bill are such that (the former washed his car, and
so did the latter).

[x washed his car, and so did y] Al Bill
[x is such that (he washed x’s car) ∧ y is such that (he

washed x’s car)] ab
[[z washed x’s car] x ∧ [z washed x’s car] y] ab
[[Wz(x’s car)] x ∧ [Wz(x’s car)] y] ab

[[Wz(cx)] x ∧ [Wz(cx)] y] ab
W: [_ washed _]; c: [_’s car]; a: Al; b: Bill
The abstracts here serve two different purposes. The one with largest
scope is used to analyze the patterns of co-reference while the two
inside its body are designed to capture the function of so did. The
ambiguity in the sentence arises because the sameness claimed for Al’s
and Bill’s actions might suggest washing a car related to the washer in
the same way (the first interpretation) or, indeed, washing the very
same car (the second interpretation). In particular, it’s the difference
between the idea of washing one’s own car—i.e., [Wz(cz)] —and
washing the car of someone, x—i.e., [Wz(cx)] —someone who, in this
case, is the first person to whom the predicate is applied. It is the
function of the abstract with wider scope to capture this idea of a
reference to the first person to whom the predicate is applied.

4. Since each abstract has many (indeed, infinitely many) alphabetic
variants, the answers (ii) below are only examples.

 a. i. [F __] ii. [Fy]

 b. i. [F __ → G __] ii. [Fx → Gx]

 c. i.
[T __ __ __] ii. [Txyx]

 d. i.
[f __ __] ii. [fzx]

xy

xy

z z xy

z z xy

z z xy

xy

xy

z z xy

z z xy

z z xy

z
z

y

x

yx

xz

 e. i.

[S __ __ __] ii. [Sxyz]

 f. i.
[[R __ __] a ∧ Rb __] ii. [[Ryx] a ∧ Rbx]

 g. i. [[Rc __] a ∧ Rb __] ii. [[Rcx] a ∧ Rbz]

 In the original abstract for (g), [[Rcy] a ∧ Rby] , the variable y in Rcy falls in the
scope of two abstractors for y. It is bound to the one with narrower scope, so the
one with wider scope binds only the y in Rby. The pattern in (i) shows that the
variable in the first abstract is thoroughly “apparent” from the point of the
abstractor with wider scope: since the latter binds no variables in the first abstract,
it does not matter whether that abstract uses the same variable as it does or a
different one. In (f), on the other hand, the two abstractors must use different
variables since one binds variables in the scope of the other.

Glen Helman 19 Oct 2010

xyz

y x

x z

y y

6.3. Arguments involving equations
6.3.0. Overview
The basic principles of entailment for identity are among the most familiar of
logical principles; but, because equations do not have sentential components,
they will play a role in derivations that is quite different from other logical
forms we study.

6.3.1. Logical properties of identity
For our purposes, identity amounts to sameness in all respects, a sameness
that implies interchangeability as input for any predicate or functor.

6.3.2. A law for aliases
Many of the valid conclusions from a group of equations can be captured by
rules telling when terms count as “co-aliases”—i.e., aliases for the same
thing.

6.3.3. Derivations for identity
The key rules for identity are rules for closing gaps, but all rules can be
extended to reflect the interchangeability of co-aliases.

Glen Helman 03 Aug 2010

6.3.1. Logical properties of identity
The logical properties of identity come from two sources. One is the kind of
extension we have stipulated for this relation, the pairs of reference values we
say it is true of. The other is the requirement that predicates and functors be
extensional, that the compounds they form be transparent to the reference
values of their component terms. Properties deriving from this second source
are equally properties of the operations of predication and functional
application; but since they are not properties of any particular predicate or
functor, it is easiest to ascribe them, along with properties of the first sort, to
the logical constant =. We will turn first to the properties of identity alone.

What do we know when we know that an equation τ = υ is true? Well, we
know that the terms τ and υ have the same reference value; loosely speaking,
we know that they name the same thing. (This is loose speech, first, because
the terms may not be names but rather definite descriptions and, second,
because the reference value of the terms may be nil, in which case neither
names anything.) So we might say that τ and υ are each “aliases” of their
common reference value in the sense that each is another name for it. It will be
convenient to have a way of speaking of such terms in relation to each other
rather than in relation to their value, so let us say that they are aliases in
relation to each other—or, more briefly, that they are co-aliases.

This leads us immediately to a property of identity. For the relation of
having the same reference value, of being co-aliases, is symmetric. It does not
order the two terms in any way; if we can assert it of them taken in one order,
we can equally we assert it of them the other way around. This gives us our
first principle for =:

LAW OF SYMMETRY FOR IDENTITY. τ = υ ⊨ υ = τ (for any terms τ and υ).

This principle is stated as an entailment, but it implies that the two equations
are equivalent since it licenses reversals of equations and we can undo a
reversal by reversing again.

Now suppose that we know not only that a term σ is a co-alias of a term τ
but also that τ is a co-alias of a term υ. All three terms must then have the
same reference value, so we could say that υ is an alias for σ. Putting this more
formally, we have a second principle:

LAW OF TRANSITIVITY FOR IDENTITY. σ = τ, τ = υ ⊨ σ = υ (for any terms σ,
τ, and υ).

Again, there is a more symmetric principle lurking in the background
—namely, that any two of these three equations entails the third. But this

principle is harder to state compactly, and a fuller investigation of it would
show that it also relies on the law of symmetry.

The two laws we have stated tell us that certain equations are true if others
are, but they do not commit us categorically to the truth of any equations at all.
How do we know there are any true equations? Well, what would it take for
there to be none. Perhaps this would be so if were no aliases in the ordinary
sense and every reference value was the extension of at most one term. We do
not want to rule this out, for our laws are supposed to be very general and
should not make any assumptions about the richness of our non-logical
vocabulary. But even in a case like this, if there is any term at all in our
language, we can form an equation with this term taken twice and the equation
will be true. And that is one way of stating a third principle for identity:

LAW OF REFLEXIVITY FOR IDENTITY. ⊨ τ = τ (for any term τ).

So there will be true equations if there are any equations at all.
We have found three properties of identity that derive from the kind of

extension we have stipulated for =. Collecting them, we have:

REFLEXIVITY. ⊨ τ = τ.
SYMMETRY. τ = υ ⊨ υ = τ.
TRANSITIVITY. σ = τ, τ = υ ⊨ σ = υ.

Identity is not the only predicate that has these properties. For example, the
predicate [_ has the same shape as _] obeys analogous laws; and that
example should suggest many others. As was noted in 1.2.3 , a relation for
which laws of reflexivity, symmetry, and transitivity hold is said to be an
equivalence relation.

An extreme example of an equivalence relation is the relation that holds
between any pair of reference values (including any reference value and itself).
Since this relation never fails to hold there is no way for it to violate any of the
three laws, and it must be an equivalence relation. The extension of the identity
predicate is at the other extreme of equivalence relations. If we represent the
two in tabular form as truth-valued functions of reference values, we have
something like this.

0 1 2 3 ⋯
0 T T T T ⋯
1 T T T T ⋯
2 T T T T ⋯
3 T T T T ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

= 0 1 2 3 ⋯
0 T F F F ⋯
1 F T F F ⋯
2 F F T F ⋯
3 F F F T
⋮ ⋮ ⋮ ⋮ ⋱

The first relation has T everywhere while the extension of = has T only along
the diagonal from the upper left to the lower right. Identity holds in the fewest
cases possible for an equivalence relation because, if any of the pairs along the
diagonal were dropped, the law of reflexivity would not hold. Since identity
thus expresses the narrowest equivalence relation, we might think of it as
expressing sameness in all respects.

Although the status of identity as the narrowest equivalence relation derives
from the extension we have stipulated for =, this does not provide a property
that we can express in laws for = alone. Our ability to express the idea of
sameness in all respects depends on the predicates and functors we have
available to express a variety of “respects.” What we can say is that identity
implies sameness with regard to each predicate and functor, and we can find
further properties of identity by exploiting the consequences of this idea. First
consider a one-place predicate—say [_ is red]. Two things are the same with
respect to redness if both are red or neither is. Hence, to say that identity
implies sameness with respect to this predicate is say that an equation τ = υ
implies that τ is red and υ is red have the same truth value. Although we
cannot express this sort of relation among three sentences directly, the
symmetry of = means that it is enough to say that τ = υ and τ is red together
entail υ is red. Generalizing this to any one-place predicate F leads us to
assert the law

τ = υ, Fτ ⊨ Fυ.

This is as at least part of what is involved in saying that identity implies
sameness in all respects. In fact, if we put θ in place of F and thus allow the
predicate to be an abstract, this law says it all. But, for the moment, we will
consider only predicates that are not abstracts and say that an equivalence
relation that supports a law of this form for a given predicate F is a congruence
for F. An equivalence relation that implies sameness with respect to redness
(e.g., the extension of [_ has the same color as _]) is thus a congruence for
[_ is red]. (The source of the term congruence is the geometrical relation of
congruence, which implies sameness with respect to size and shape though not
with respect to location.)

The form of this law ought to suggest something that is familiar from
elementary algebra, the use of an equation to replace one expression by
another. Now, in algebra, we can equally well use more than one equation to
make several replacements simultaneously, and congruence principles can take
a similar form. Consider sameness with respect to the relation expressed by a
2-place predicate such as [_ is younger than _]. Things that are the same in

this respect should be younger than the same things and have the same things
younger than them. We can express this idea compactly by the following:

τ = υ , τ = υ , τ is younger than τ ⊨ υ is younger than υ

And we can claim this holds for 2-place predicates generally by stating the law

τ = υ , τ = υ , Rτ τ ⊨ Rυ υ .

In these statements, we have economized by speaking of both places of the
predicate in a single law. Since τ and υ could be the same term and so could
τ and υ , the law covers also cases where a change is made in only one of the
two places of R. An equivalence relation that supports a law like this one for
identity is said to be a congruence for the predicate R. The relation of having
the same age will be a congruence in this sense for the relation expressed by
[_ is younger than _].

Now it should be clear that we might state a law like these two that applies
to identity and a predicate P with any number of places:

CONGRUENCE FOR P. τ = υ , …, τ = υ , Pτ …τ ⊨ Pυ …υ (for any
terms τ , …, τ , υ , …, υ and any predicate P with n places).

A large part of what we mean by saying that identity implies sameness in all
respects can be captured by saying that it is a congruence for all predicates.

A large part, but not all. We have not yet said anything about functors. Here
we can make the story short because the law we want is more familiar. It is
this:

CONGRUENCE FOR f. τ = υ , …, τ = υ ⊨ fτ …τ = fυ …υ (for any
terms τ , …, τ , υ , …, υ and any functor f with n places).

This says that an equation between compound terms fτ …τ and fυ …υ
follows from equations between their corresponding components. We can have
laws like this for equivalence relations besides identity; and, when we have
such a law for an equivalence relation, the relation is said to be a congruence
for the functor f. The relation that holds between numbers when they have the
same absolute value (i.e., of being equal or differing only in sign) is a
congruence for a functor expressing the squaring function (or the cosine
function). In the case of identity, we can claim congruence for all functors.

Have we now captured the properties of identity by saying that it is a
congruence for all predicates and all functors? The laws we have stated suffice
to capture all true general principles of entailment involving identity, and that
was our aim. We might still ask whether a relation could obey these laws
without being a relation of sameness in all respects. The question comes to

1 1 2 2 1 2 1 2

1 1 2 2 1 2 1 2

1 1

2 2

1 1 n n 1 n 1 n

1 n 1 n

1 1 n n 1 n 1 n

1 n 1 n

1 n 1 n

something like this: are the features of a thing that are expressible by
predicates and functors sufficient to pin down its identity, to distinguish it from
all other things? This is a puzzling question. While any given collection of
predicates and functors can certainly fail to express differences among things,
it is hard to pin down the claim that there could be such differences that are
expressible by no predicates or functors whatsoever, for any attempt to say
what such differences might be would begin to undercut the claim that they are
inexpressible. In any case, asserting the laws above for all predicates and
functors suffices to establish all general principles of entailment concerning
identity that we can express using our analysis of logical form.

In saying that identity is a congruence for predicates and functors, we say
that predicates and functors are extensional operations and, in particular, that
they form referentially transparent compounds. For example, if we were to
count the sentence-with-a-gap For the past two centuries, ___ has been
over 35 as a predicate, we could not say that identity is a congruence for all
predicates because to assert congruence for this incomplete expression would
be to assert the validity of the argument

For the past two centuries, the U. S. president has been over 35
The U. S. president = Barack Obama

For the past two centuries, Barack Obama has been over 35

and, as was noted in 6.1.3 , this is naturally understood to have true premises
and a false conclusion.

This raises a wider philosophical and logical issue. Could we at least say
that this sentence-with-a-blank has an extension that is a function? Such a
function would have to yield truth values as output based on something beyond
the reference values of the terms to which it was applied, and we might speak
of it as an intensional property (as distinct from as a property in intension,
which is merely the way the extensional property expressed by an ordinary
predicate varies from world to world). So one part of the question we have just
asked is whether there are intensional properties.

The other part is whether there is anything for an intensional property to be
a property of. It cannot be a property of an object thought of as a reference
value because it depends on distinctions that are ignored when we say what
reference value a term has. One way of putting this side of the issue is to ask
whether there is any sense of thing in which the terms the U. S. president
and Barack Obama could be said to signify different things. Perhaps we could
say that one signifies a public official and the other signifies a person and say
that one and the same public official could be identical with different people at

different times. The oddity of this talk suggests that nasty problems might lurk
here, so we will not open this door any wider. Suffice it to say that logicians
and philosophers have adopted a full range of positions on this issue. Some
happily accept intensional entities (such as public officials as distinct from the
people who happen to hold offices) while others reject all talk of intensions,
not only of intensional entities and intensional properties but even of the
intensions of ordinary extensional predicates.

Glen Helman 03 Aug 2010

6.3.2. A law for aliases
We have seen that identity satisfies laws of reflexivity, symmetry, and
transitivity and that it is a congruence for all predicates and functors. It is also
possible to describe the logical properties of identity using a smaller set of
fundamental laws. For example, if we include identity itself among the
predicates and functors for which identity obeys laws of congruence, the
reflexivity of identity will insure that it is an equivalence relation—that is, any
reflexive relation that is a congruence for itself will be symmetric and
transitive also. Moreover, if identity is a reflexive relation and a congruence for
all one-place predicates, simple and complex (i.e., including abstracts), it is a
congruence for all predicates and functors whatsoever. These simpler ways of
describing the logical properties of identity are often used; but, when
identifying law to implement in derivation rules, it will be most convenient to
group those properties together in yet a different way.

We will have two principles, one of which will be the law asserting that
identity is a congruence for all simple predicates of any number of places. The
other will be a single law that groups reflexivity, symmetry, and transitivity
together with the law of congruence for functors.

We arrived at the laws of symmetry and transitivity by understanding an
equation τ = υ to say that the two terms τ and υ are co-aliases, and we might
have arrived at the law of reflexivity in the same way since in the usage of
alias we have adopted here each term is a co-alias of itself. We can extend
these same ideas more generally by speaking of terms τ and υ as being
co-aliases given a set Δ of equations or as being made co-aliases by Δ. Our
intention is that this relation capture the conditions under which equations are
entailed by other equations.

Clearly a set Δ of equations will imply that an equation τ = υ is true if either
an equation between τ and υ (in either order) appears in Δ or one term can be
reached from the other via a series of terms, each of which is linked to the next
(in either order) by an equation in Δ. For example, if the equations shown in
Figure 6.3.2-1 are in a set Δ, the terms a and e are co-aliases given Δ, as are
any other pair of terms appearing in the list.

a = b

b = c

d = c

d = e
Fig. 6.3.2-1. A chain of equations making terms a and e co-aliases.

We may also count each term as an alias for itself given any set of equations.
Then, although we have not yet stipulated all the conditions under which we
will count terms as co-aliases, we have said enough to summarize the laws of
reflexivity, symmetry, and transitivity—and more besides—by stating the
following general principle:

LAW FOR ALIASES: Γ ⊨ τ = υ if τ and υ are co-aliases given the set of
equations in Γ (for any set Γ and terms τ and υ).

Like the law for a premise as a conclusion and a number of other principles we
have used, the law for aliases gives sufficient but not necessary conditions for
an entailment to hold, so it is stated with if rather than if and only if. To see
why an equation can be a valid conclusion without its component terms being
made co-aliases by the premises, note that, while an equation will be entailed
by a set of equations only if it equates terms made co-aliases by that set, an
equation can be entailed by a set of sentences without being entailed by the
equations in the set. (For example, t = u is entailed by the premises A → t = u
and A, and that set of premises contains no equations at all, only a conditional
and an unanalyzed sentence.)

Linking a pair of terms by a chain of equations is not the only way a set
might imply that they have the same extension. Recall the law of congruence
for an n-place functor f

τ = υ , …, τ = υ ⊨ fτ …τ = fυ …υ

This tells us that the terms fτ …τ and fυ …υ must have the same extension
whenever this is true of their corresponding components (i.e., τ and υ , τ and
υ , and so on). To incorporate this principle into the law for aliases, we will
want to say that two applications of a given functor are made co-aliases
whenever their corresponding components are made co-aliases, and we will
want to allow this sort of connection between terms to figure as a link in a
chain by which further terms are made co-aliases.

Putting all this together, we can give a fuller definition of the idea of
co-aliases in the following way.

The co-aliases given a set Δ of equations include pairs of terms of all of the
following kinds:

(i) a term paired with itself;
(ii) a pair of terms equated (in either order) by a member of Δ;

(iii) a pair of terms connected by a chain of terms linked as co-aliases given
Δ;

(iv) a pair of applications of the same functor whose corresponding
components are co-aliases given Δ.

1 1 n n 1 n 1 n

1 n 1 n

1 1 2

2

Notice that the third and fourth classes are described in terms of the relation
we are defining. A definition like this can be thought as a series of instructions
for building the extension of the relation it defines. We first put in all the pairs
covered by instructions (i) and (ii). Then we gradually add more pairs as we
are directed to by instructions (iii) and (iv), replacing the phrase “co-aliases
given Δ” by “pairs already in the extension.” A pair of terms then count as
co-aliases given Δ if and only if they are added at some stage in this process.
And, since this process of building an extension for a two-place predicate can
be described without using the term co-alias, we really have explained the
meaning of that term.

In the simple examples we will usually consider, it will be easy to see which
terms are co-aliases given a set of equations. But it may help in understanding
the idea to think of the sort of “calculation” we might perform to apply the
definition in a more complex example. When checking to see whether a pair of
terms τ and υ are co-aliases given a set Δ of equations, let us collect all terms
appearing as components in τ, υ, and Δ. Figure 6.3-2 shows these terms for a
case where the set Δ consists of the equations a = b, fb = c, fb = fc, d = gca,
and g(fa)b = e and we are checking to see whether the terms a and fd are
co-aliases.

fa

fb

fc

fd

a

b

c

d

e

gca

g(fa)b

Fig. 6.3.2-2. A work space for finding co-aliases.

Notice that we include fa because it is a component of g(fa)b; however, there is
no need to include fe or other more complex terms that could be formed from
this vocabulary. (The arrangement of the terms is not significant; the one used
here is designed simply to make later steps easier to depict.)

Now let us accumulate links between co-aliases. We will represent them as
lines between terms. At the initial stage (which we will label 0), we put in links
corresponding to equations in the set Δ. We can follow instruction (iii) after
this and after each succeeding stage by considering terms to be co-aliases
when they are linked either directly or by a chain, so there is no need to draw
additional lines. At each of the stages from 1 on, we will consider all functors
appearing among the terms and add any links we are directed to by instruction

(iv); this will usually require new lines. We may need to do this several times
over, but if we add no new links at any stage we can stop because there will be
nothing to add thereafter. And, with a finite number of terms, this must happen
at some point because there are only a finite number of links we might add.

Figure 6.3.2-3 shows such a process for the example of Figure 6.3.2-2, using
labels on links to record the order in which they are entered. The new links at
each stage are emphasized along with any older links that lead to the new
entry. At stage 1, we check the applications of the functors f and g to see
whether we can add any links by instruction (iv). Since a and b were already
linked at stage 0, we add a link between fa and fb. We add no other links
between the applications of f because d is not linked to a, b, or c. One pair of
corresponding component terms from gca and g(fa)b (viz., a and b) were
connected at stage 0 but the other pair (i.e., c and fa) were not, so the link
between the two applications of g is entered only at stage 2 after c and fa have
also been connected (by the link between fa and fb we enter at stage 1). Even
at stage 2 the group including d is not linked to either the groups in which a, b,
and c appear, so there are no further links between applications of f and the
process is complete. The terms a and fd we were checking do not prove to be
co-aliases at the end, but many other pairs of terms were shown to be
co-aliases.

fa

fb
0

fc

fd

a
0

b
0

c

d
0

e
0

gca

g(fa)b

Stage 0

fa
1
fb

0

fc

fd

a
0

b
0

c

d
0

e
0

gca

g(fa)b

Stage 1

fa
1
fb

0

fc

fd

a
0

b
0

c

d
0

e
0

gca
2

g(fa)b

Stage 2

Fig. 6.3.2-3. Terms classified as co-aliases in a series of stages.

The links connect the terms in groups shown in Figure 6.3.2-4. The members
of any group are co-aliases of one another but not of any other terms.

fa

fb

fc

fd

a

b

c

d

e

gca

g(fa)b

Fig. 6.3.2-4. Linked terms grouped in alias sets.

Some terms, like fd in the diagram, may be groups unto themselves; but,
because they are co-aliases of themselves, we can still say that any pair made
from such a group is a pair of co-aliases. If the terms had been written down
more randomly, the links between them might have crossed and the groups of
connected terms would no longer stand out; but they would still be there, and
any diagram can be disentangled so that they appear. (This is a distinguishing
feature of equivalence relations; any such relation divides a range of values
into non-overlapping equivalence classes.) We will refer to each such group of
connected terms as an alias set.

Now we are ready to justify our law of aliases, which claims that Γ ⊨ τ = υ
whenever τ and υ are co-aliases given the equations in Γ. We can do this by
showing how this law summarizes earlier ones. Each of the instructions (i)-(iv)
for building connections between terms implements one or more of laws of
entailment:

 instruction law(s)
(i) enter all terms appearing as

components in τ, υ, and the set Δ of
equations appearing in Γ

law of reflexivity (since entering the term
establishes a link with itself)

(ii) link each pair of terms equated (in
either order) by a member of Δ

law for a premise as a conclusion and the
law of symmetry (since a link amounts
to an equation in both directions)

(iii) count as linked any pair of terms
connected by a chain of links

law of transitivity

(iv) link any pair of applications of the
same functor whose corresponding
components are linked

law of congruence for functors

We combine several laws in (ii) and combine more by carrying out the
instructions in a series of stages. This combination of laws can be justified by
the law for lemmas because we can think of the process of adding links as a
process of adding further equations as lemmas.

Glen Helman 21 Oct 2010

6.3.3. Derivations for identity
We are now in a position to state the derivation rules for identity that will be
part of our basic system. We will have four rules for closing gaps. Each of
them extends one of the rules QED and Nc, with each of those rules being
extended in two ways. One sort of extension is based on the law for co-aliases
alone and the other also rests on the law of congruence for predicates.

The first pair of extensions of QED and Nc—Equated Co-aliases (EC) and
Distinguished Co-aliases (DC)—are shown in Figures 6.3.3-1 and 6.3.3-2.

│⋯
│[τ and υ
│ are co-aliases]
│⋯
││⋯
││
│├─
││τ = υ
│⋯

→

│⋯
│[τ and υ
│ are co-aliases]
│⋯
││⋯
││●
│├─

n EC││τ = υ
│⋯

Fig. 6.3.3-1. Closing a gap whose goal is an equation between terms that
are co-aliases with respect to the available resources.

│⋯
│[τ and υ
│ are co-aliases]
│⋯
│¬ τ = υ
│⋯
││⋯
││
│├─
││⊥
│⋯

→

│⋯
│[τ and υ
│ are co-aliases]
│⋯
│¬ τ = υ (n)
│⋯
││⋯
││●
│├─

n DC││⊥
│⋯

Fig. 6.3.3-2. Closing a gap of a reductio argument one of whose resources
negates an equation between terms that are co-aliases with respect to the

available resources.

The bracketed remark concerning τ and υ stipulates that there be enough
equations among the available resources to make the terms τ and υ co-aliases.
The law for aliases then tells us that the resources entail the equation τ = υ.
So, if this equation is our goal, we may count the gap closed; and, if its denial
is among our resources, we have the inconsistency required to close the gap of
a reductio argument. An important special case of these rules is one where τ
and υ are the same term. In this case, τ = υ is τ = τ (which is also υ = υ) and,
since a term is a co-alias of itself with respect to any set—even with respect to
a set in which it does not appear—any gap with a self-equation as its goal may
be closed, as may the gap of a reductio argument with a negated self-equation

among its resources. Notice that the general form of these rules differs from
the special case for self-equations only by exchanging terms that are co-aliases.

Some abbreviated terminology will help in stating the second pair of rules
for identity. Let us say that two series of terms τ …τ and υ …υ are co-alias
series when they have the same length and their corresponding members are
co-aliases—that is, when τ and υ are co-aliases for each i from 1 to n, where
n is the length of the two series. Then the second pair of rules for identity are
shown in Figures 6.3.3-3 and 6.3.3-4. These are Quod Erat Demonstrandum
Given Equations (QED=) and Non-contradiction Given Equations (Nc=).

│⋯
│[τ …τ and υ …υ
│ are co-alias series]
│⋯
│Pτ …τ
│⋯
││⋯
││
│├─
││Pυ …υ
│⋯

→

│⋯
│[τ …τ and υ …υ
│ are co-alias series]
│⋯
│Pτ …τ (n)
│⋯
││⋯
││●
│├─

n QED=││Pυ …υ
│⋯

Fig. 6.3.3-3. Closing a gap one of whose resources differs from its goal only
by terms that are co-aliases.

│⋯
│[τ …τ and υ …υ
│ are co-alias series]
│⋯
│¬ Pτ …τ
│⋯
│Pυ …υ
│⋯
││⋯
││
│├─
││⊥
│⋯

→

│⋯
│[τ …τ and υ …υ
│ are co-alias series]
│⋯
│¬ Pτ …τ (n)
│⋯
│Pυ …υ (n)
│⋯
││⋯
││●
│├─

n Nc=││⊥
│⋯

Fig. 6.3.3-4. Closing a gap of a reductio argument one of whose resources
differs from the negation of another only by terms that are co-aliases.

Here a bracketed remark stipulates that the available resources contain enough
equations to make corresponding component terms of Pτ …τ and Pυ …υ
co-aliases and thus to entail identities between these terms. The law of
congruence for P then tells us that Pυ …υ is entailed by available resources.
If it is our goal, we may close the gap, and we may do so also if the gap is in a
reductio argument and our resources contain its denial ¬ Pυ …υ .

1 n 1 n

i i

1 n 1 n

1 n

1 n

1 n 1 n

1 n

1 n

1 n 1 n

1 n

1 n

1 n 1 n

1 n

1 n

1 n 1 n

1 n

1 n

The sentences Pτ …τ and Pυ …υ that figure in the last two rules have
been described as applications of the same predicate whose corresponding
component terms are co-aliases. A little thought will show that we can
describe such expressions equally well as atomic sentences that differ only by
components that are co-aliases. This makes the similarity of this rule to QED
and Nc a little more apparent. Instead of saying that we can close a gap when
our goal is among our resources and when one resource negates another (as we
do in QED and Nc), we say here that we can close a gap if a resource differs
from the goal or from the negation of another resource only by co-aliases. This
way of describing these rules leads to the question whether we really need to
limit them to predications. The answer is that we do not although that is the
only case where we really need to use the rule.

Other rules can be extended in the way QED and Nc are extended in QED=
and Nc=: if the illustration of the rule displays two occurrences of a sentence,
these may be sentences that are different but that differ only by terms that are
co-aliases given the available resources. (As was noted above, even our first
two rules for identity could be seen as the result of extending in this way rules
that say that we can close a gap whose goal is a self-equation and a reductio
gap whose resources contain the denial of a self-equation.) When a rule is
extended in this way, its label should be followed by the equals sign, as in the
labels for QED= and Nc=. We will call the result an extension of the rule for
equations; and, as with QED= and Nc=, the equals sign added to the name
may be read “given equations.”

Below are two derivations that illustrate these ideas and also show how we
will keep track of co-aliases. The first derivation uses the rule of Figure 6.3.3-3
to close the gap after stage 2. The second uses an extended version of modus
ponens; the resource Rc(fa) and the antecedent of Rcc → Gc differ only by
terms (fa and c) that are co-aliases given the equations fa = b and b = c. (If the
extended form of modus ponens was not used in the second derivation, we
would need to set up an indirect proof to reach the goal Qc and exploit Rcc →
Qc using the rule RC for exploiting conditionals in reductio arguments. Both
gaps of the derivation would then close using the identity rules for closing
gaps.)

1 n 1 n

│Fb ∧ a = b 1
├─

1 Ext │Fb (3)
1 Ext │a = b a—b, d

│
││a = d a—b—d
│├─
││●
│├─

3 QED=││Fd 2
├─

2 CP │a = d → Fd

│Rc(fa) ∧ fa = b 1
│Rcc → Qc 3
├─

1 Ext │Rc(fa) (3)
1 Ext │fa = b a, fa—b, c

│
││b = c a, fa—b—c
│├─

3 MPP=││Qc (4)
││●
│├─

4 QED ││Qc 2
├─

2 CP │b = c → Qc

At each stage when an equation is added to the resources, the resulting alias
sets are indicated at the right. This is done by listing the members of each alias
set with dashes between, separating the members of different alias sets by
commas. This may be written to the right of the last equation added at a given
stage. There is no need record the alias sets until the first stage when an
equation appears as a resource since up to that point each term is in an alias set
by itself.

The point of listing alias sets to the right of equations is to sum up the
co-aliases at at each stage when they change. Although it is usually by adding
equations that the alias sets will change, this is not the only possible way.
When a term is added, either in a new resource or in a new goal, it must be
accommodated in the co-alias sets. Although new terms will be introduced
regularly in later chapters, they could be introduced now only if attachment
rules or the rule LFR were used to introduce sentences that are not already
components of sentences in the derivation. Since that is not a use of such rules
that we have been considering, we will not consider examples, but a general
guideline for listing alias sets can be stated that will include such cases: at the
initial stage of a derivation if it has equations as resources and at any stage
thereafter at which the alias sets of a gap have changed, list the alias sets at the
right near the top of the gap. When several resources are added, the alias sets
can be added after the last new resource that figures in the change. If no new
resources are added (and the alias sets change only because of vocabulary
added in a new goal), the alias sets may be listed at the right of the top of the
scope line of the gap.

It is sometimes useful to be able to enter an equation between co-aliases as a
further resource. Since this does not change the alias sets, it does bring a gap
near an end and it is not automatically progressive. Therefore, we will count it
as an attachment rule. We will call this rule Co-alias equation (CE):

│⋯
│[τ and υ
│ are co-aliases]
│⋯
││⋯
││
││
│├─
││φ
│⋯

→

│⋯
│[τ and υ
│ are co-aliases]
│⋯
││⋯

n CE││τ = υ X
││
│├─
││φ
│⋯

Fig. 6.3.3-5. At stage n, adding an equation between terms that are
co-aliases with respect to the available resources.

Equations are never exploited, so the X at the right does not mark the added
equation as already exploited; instead it indicates that the equation leads to no
change in the alias sets since its component terms are already co-aliases. Since
any use of such an equation to close a gap is already covered by other rules,
this rule will serve primarily to provide auxiliary resources for detachment
rules (and available resources for use in other attachment rules). Here is a
simple example.

│a = b
│b = c a—b—c, fa—fc, d
│(fa = fc ∧ d = d) → Ga 4
├─

1 CE │fa = fc X,(3)
2 CE │d = d X,(3)
3 Adj │fa = fc ∧ d = d X,(4)
4 MPP│Ga (5)

│●
├─

5 QED│Ga

In order to construct a derivation using only basic rules, we would need to
resort to a reductio argument and the rule RC.

The rule CE is really only needed when no co-alias of the terms being
equated appears as a term of an equation. The rule would not have been
necessary in the example above if the conditional’s antecedent had been
something like a = c ∧ b = b because this sentence could be added by the
extended attachment rule Adj= since it differs from a conjunction of the first
two premises only by co-aliases. In general, if our resources contain any
equation between co-aliases of the terms that we want to join in the new
equation, we have an equation differing from the one we want only by
co-aliases and we can use the extended form of whatever rule we might apply
to the new equation.

Finally, we will add an attachment rule that allows a resource to be added
when it differs from an available resource only by co-aliases. Such resources

can be represented as θτ …τ and θυ …υ where τ …τ and υ …υ are
co-alias series. That is, it is understood that the differences between the
resources are limited to the displayed series of terms so the resources amount
to predications to the two series τ …τ and υ …υ of an abstract θ that takes
the form [… x … x …] , where x …x is a series of distinct variables
with the same length as τ …τ and υ …υ . The name of the rule is
Congruence (Cng).

│⋯
│[τ …τ and υ …υ
│ are co-alias series]
│⋯
│θτ …τ
│⋯
││⋯
││
││
│├─
││φ
│⋯

→

│⋯
│[τ …τ and υ …υ
│ are co-alias series]
│⋯
│θτ …τ (n)
│⋯
││⋯

n Cng││θυ …υ X
││
│├─
││φ
│⋯

Fig. 6.3.3-6. At stage n, that differs from an available resource only by the
occurrence of terms that are co-aliases.

The resource that is added by this rule is marked as exploited because any
exploitation of the earlier resource will be enough to take account of it. The
rule Cng offers the following alternative to an earlier derivation.

│Rc(fa) ∧ fa = b 1
│Rcc → Qc 4
├─

1 Ext │Rc(fa) (3)
1 Ext │fa = b a, fa—b, c

│
││b = c a, fa—b—c
│├─

3 Cng ││Rcc X,(4)
4 MPP││Qc (5)

││●
│├─

5 QED││Qc 2
├─

2 CP │b = c → Qc
Notice that the ordinary form of MPP is used here rather than the extended
form MPP= used earlier, and Cng can always be avoided by using the
extended forms of other rules. The point of using Cng is only to add a step to a
derivation that may make it easier to follow.

Glen Helman 21 Oct 2010

1 n 1 n 1 n 1 n

1 n 1 n

1 n x …x1 n 1 n

1 n 1 n

1 n 1 n

1 n

1 n 1 n

1 n

1 n

1

2

3

6.3.s. Summary
The logical properties of identity have two sources, the extension stipulated
for = and the requirement that all predicates and functors be extensional. We
will approach these properties by speaking of the terms equated by a true
equation as co-aliases . Some thought about this idea shows us that identity
obeys laws of reflexivity , symmetry , and transitivity , so it is an
equivalence relation. Identity is distinguished as holding in the fewest cases
of any equivalence relation; it implies sameness in respect to all predicates
and functors. That is, identity is a congruence for each predicate and
functor . To say that identity is a congruence for a predicate or functor is to
say that it is an extensional operation. A predicate that did not satisfy this
requirement would be an intensional property (as distinct from a
property in intension , which is the meaning of an ordinary extensional
predicate) and the things of which it was true or false would be
intensional entities . Whether these ideas are needed to account for aspects
of deductive reasoning (or are even coherent) has been a matter of
controversy, but we will consider only extensional operations.

A different way of organizing the laws for identity is useful in stating
derivation rules. We say that terms are co-aliases given a set Δ of equations
if an equation between the terms follows from Δ. A set Δ of equations
serves to divide a collection of terms into alias sets , groups of terms whose
members are mutual co-aliases; these are examples of the
equivalence classes associated with any equivalence relation. The alias sets
determined by a given set of equations can be found by a process of
making links between terms , following rules that implement the laws for
identity. As a result, identity obeys a law for aliases that says that an
equation τ = υ is entailed by a set of premises if the terms τ and υ are
co-aliases given the equations among those premises.

The law for aliases and the law of congruence for predicates provide us with
the basic derivation rules for =, each of which is a rule for closing gaps. The
rules employ the idea of terms being co-aliases given the equations among
the resources of a gap. One rule, Equated Co-aliases (EC) , says a gap may
be closed if its goal is an equation between co-aliases, and another,
Distinguished Co-aliases (DC) , says a reductio gap may be closed if its
resources include a denial of such an equation. A second pair concern
predications of the same predicate to series of terms whose corresponding
members are co-aliases. One of these, QED Given Equations (QED=) says

that a gap may be closed if its goal is a predication that differs from another
predication among the resources only by co-aliases and another,
Nc Given Equations (Nc=) says that a reductio gap may be closed if one of
its resources differs from what another denies only by co-aliases. The
statements of these rules use the idea of co-alias series of terms, two series
of the same length whose corresponding terms are co-aliases. The idea
behind this second pair of rules can be carried further and we may extend
any rule by counting as identical, for the purposes of applying the rule, any
sentences that differ only by terms that are co-aliases. There are two
attachment rules for identity that may be convenient. One,
Co-alias Equation (CE) , allows us to add to the resources any equation
between co-aliases and the other, Congruence (Cng) , allows us to add a
predication that differs only by co-aliases from one already among the
available resources.

Glen Helman 03 Aug 2010

6.3.x. Exercise questions

Use the system of derivations to establish each of the following:
1. Fa → Ga, Fa, a = b ⊨ Gb
2. Fa → Ga, Fb, a = b ⊨ Ga
3. Fa ∧ a = gb ⊨ ¬ F(gc) → ¬ b = c
4. Fa → G(fa), G(fb) → Hb, a = b ⊨ Fb → Ha
5. fa = b, fc = d ⊨ (a = c ∨ b = d) → fa = d
6. The vice president is Joe Biden

Barack Obama is the president
The vice president is not from Illinois

If Barack Obama is from Illinois, then Joe Biden is not the
president

For more exercises, use the exercise machine .

Glen Helman 03 Aug 2010

6.3.xa. Exercise answers
Some of the derivations below are given twice, once using only the basic
identity rules EC, DC, QED=, and Nc= and a second time using MPP= and
similar extensions for equations of other rules (see 6.3.3); either approach is
entirely acceptable.
1. │Fa → Ga 1

│Fa (1)
│a = b a—b
├─

1 MPP │Ga (2)
│●
├─

2 QED=│Gb
2. │Fa → Ga 2

│Fb (3)
│a = b a—b
├─
││¬ Ga (2)
│├─

2 MTT││¬ Fa (3)
││●
│├─

3 Nc= ││⊥ 1
├─

1 IP │Ga

 │Fa → Ga 1
│Fb (1)
│a = b a—b
├─

1 MPP=│Ga (2)
│●
├─

2 QED │Ga

3. │Fa ∧ a = gb 1
├─

1 Ext │Fa (4)
1 Ext │a = gb a—gb, b, c, gc

│
││¬ F(gc) (4)
│├─
│││b = c a—gb—gc, b—c
││├─
│││●
││├─

4 Nc= │││⊥ 3
│├─

3 RAA││¬ b = c 2
├─

2 CP │¬ F(gc) → ¬ b = c

4. │Fa → G(fa) 3
│G(fb) → Hb 5
│a = b a—b, fa—fb
├─
││Fb (4)
│├─
│││¬ Ha (7)
││├─
││││●
│││├─

4 QED=││││Fa 3
│││
││││G(fa) 6
│││├─
│││││●
││││├─

6 QED=│││││G(fb) 5
││││
│││││Hb (7)
││││├─
│││││●
││││├─

7 Nc= │││││⊥ 5
│││├─

5 RC ││││⊥ 3
││├─

3 RC │││⊥ 2
│├─

2 IP ││Ha 1
├─

1 CP │Fb → Ha

 │Fa → G(fa) 2
│G(fb) → Hb 3
│a = b a—b, fa—fb
├─
││Fb (2)
│├─

2 MPP=││G(fa) (3)
3 MPP=││Hb (4)

││●
│├─

4 QED=││Ha 1
├─

1 CP │Fb → Ha

5. │fa = b
│fc = d a, b—fa, c, d—fc
├─
││a = c ∨ b = d 2
│├─
│││a = c a—c, b—fa—fc—d
││├─
│││●
││├─

3 EC│││fa = d 2
││
│││b = d a, fa—b—d—fc, c
││├─
│││●
││├─

4 EC│││fa = d 2
│├─

2 CP││fa = d 1
├─

1 CP│(a = c ∨ b = d) → fa = d

6. │v = b
│o = p o—p, b—v
│¬ Fvi (3)
├─
││Foi (3)
│├─
│││b = p o—p—b—v
││├─
│││●
││├─

3 Nc= │││⊥ 2
│├─

2 RAA││¬ b = p 1
├─

1 CP │Foi → ¬ b = p
F: [_ is from _]; v: the vice president; b: Barack Obama; c: Joe
Biden; p: the president; t: Illinois

Glen Helman 03 Aug 2010

6.4. Describing models
6.4.0. Overview
The grammatical variety we have been considering brings with it a greater
variety of semantic values; in particular, the counterexamples to arguments
that are not formally valid are now more than simple assignments of truth
values.

6.4.1. Extensions and ranges
While the extensions of individual terms are (like the extensions of
sentences) single values, the extensions of operations are (like the
extensions of connectives) functions.

6.4.2. Building structures
The extensions of predicates (functions from reference values to truth
values) can be fully specified by telling the input for which they give output
T, and these cases can be presented in diagrams to which the extensions of
other items of non-logical vocabulary can be added.

6.4.3. Structures as counterexamples
Although extensional interpretations are now different, it is still true that a
dead-end open gap specifies the sort of interpretation that divides the gap.

Glen Helman 03 Aug 2010

6.4.1. Extensions and ranges
In this section, we will look at ways of describing the semantic values of the
new sorts of expression we have been considering and ways of using these
values to present counterexamples to derivations that fail. First, let us collect
and sharpen what we know about the semantic values of the several kinds of
expression we are considering. Table 6.4.1-1 gives a basic summary that you
may compare with the tables of grammatical categories given in 6.1.1 and
6.1.7 .

Expression Extension
sentence truth value

term reference value
 input output

connective truth function truth value(s) truth value
predicate property or relation reference value(s) truth value
functor reference function reference value(s) reference value

Table 6.4.1-1. The extensions of 5 kinds of expression.

In each case the intension of an expression is a specification of its extension in
each possible world. For example, the intension of an individual term is
specifies its reference value in each possible world; this is the sort of
intensional entity that was mentioned in 6.3.1 . In particular, while Barack
Obama and the U. S. president have the same extension in the actual world,
they have different intensions because their extensions differ in other possible
worlds.

Since the extensions of the incomplete expressions are functions, they
exhibit generality: each such extension determines an output value for each
input value from some range of such values. In the case of connectives, the
input values are fixed as the two truth values T and F, and the range of
generality of truth functions is thus quite limited. We do not fix the range of
reference values, but this range must be known before we know what functions
are available as extensions of predicates and functors. We will refer to a
specification of the reference values as a referential range or often simply as a
range, and we will use the symbol R for it. (The word domain is often used for
this idea, but we will use that word for another concept.) The referential range
can be any set that is not empty.

Our logical constants have fixed extensions that we stipulate once and for
all. In the case of connectives these are given by their tables. The identity

predicate = has an extension that is settled once the referential range is settled:
this predicate is true of any pair of reference values whose members are the
same but false of any pair of different values. Further basic expressions
—unanalyzed sentences, unanalyzed terms other than variables, unanalyzed
predicates, and unanalyzed functors—form our non-logical vocabulary, and
their extensions are not fixed.

As in truth-functional logic, items of non-logical vocabulary may be
assigned extensions by extensional interpretations or assigned extensions for
all possible worlds by intensional interpretations. The extensions assigned to
predicates and functors by a given interpretation must have a generality that
extends to the same range R, so we will speak of an extensional interpretation
as being an interpretation on a range R. The basic semantic information needed
for the logical forms we are now considering is then a range R and an
extensional interpretation (on that range) of certain items of non-logical
vocabulary; we will refer to this information as a structure for any expressions
that can be formed from this non-logical vocabulary and our logical
vocabulary.

It will be convenient to assume that every reference value in the range of a
structure comes with a label. We will refer to this label as the ID of the value.
The assumption that all reference values have IDs is actually quite a heavy one.
The limitations of decimal notation in capturing irrational numbers like π and
the square root of 2 are essential; no system of finite expressions could name
all real numbers. So if a range includes all real numbers, its members could not
all be labeled by expressions in any ordinary sense. One way around this is to
think of IDs as mathematical abstractions—for example, as ID numbers that
are not merely numerical expressions but genuine numbers. In this way, the
real numbers might be used as their own IDs. But, while these are important
theoretical issues that have had considerable impact on the development of
logic, they will not affect us practically. Our chief interest will be in structures
indicated by the dead end gaps of derivations; and these will all have finite
(and usually very small) ranges, so there will be no problem in using numerals
(even single-digit numerals) as their IDs.

Glen Helman 03 Aug 2010

6.4.2. Building structures
Once a referential range R is specified, the extensions of the various sorts of
non-logical vocabulary can be specified in ways that extend the approach used
in truth-functional logic. Individual terms are merely assigned reference values
from R in the way sentences were assigned truth values. The extensions of
predicates and functors are functions and, as we have already seen, these can
be indicated by tables analogous to truth tables. Below is an example of an
extensional interpretation of the following non-logical vocabulary:

sentences: A, B
individual terms: a, b, c, d, e

predicates: F (1-place), G (1-place), R (2-place)
functors: f (2-place)

We choose (arbitrarily) a referential range with five values whose IDs run from
0 to 4 and assign (again arbitrarily) extensions of the appropriate sorts to the
items of non-logical vocabulary.

R: 0, 1, 2, 3, 4 A B
T F

 a b c d e
3 4 0 2 4

τ Fτ
0 F
1 T
2 T
3 F
4 T

 τ Gτ
0 T
1 F
2 F
3 T
4 T

 R 0 1 2 3 4
0 F F F F F
1 T F T F T
2 F T F F T
3 F T F T F
4 F F F F T

 f 0 1 2 3 4
0 1 2 3 1 4
1 2 4 0 1 3
2 3 1 2 0 1
3 4 1 0 3 0
4 4 3 1 2 4

The truth-table row giving the values of A and B is dwarfed by the other
information in the structure, but the whole of the structure has the same
significance for our present analysis of logical form as did the left side of a
single row of a truth table in truth-functional logic.

Since we build in no assumptions about the size of the range R, we can
consider structures that are quite small, and it is possible to represent small
structures in pictorial diagrams. As in Figure 6.4.2-1, let us depict a range by a
rectangle, with the values of the range shown as circles that enclose numbers,
which will serve as the IDs of the reference values in the range.

0

1

2
3

4

Fig. 6.4.2-1. A range of reference values labeled by their IDs.

The extension of a simple term will be one of these reference values, and we
can show this by writing the term next to that value. Figure 6.4.2-2 shows the
extensions assigned above to the terms a, b, c, d, and e. The terms b and e are
written next to the same value because both were assigned that value as their
extension.

0c

1

2
d

3a

4
b,e

Fig. 6.4.2-2. A range with the extensions of five terms shown; two have the
same extension.

The extension of a one-place predicate is a function that yields a truth value
as output when it is applied to a reference value as input. We will say that it is
true or false of a reference value depending on its output for that value as input.
We can represent this sort of extension by writing the predicate next to the
values it is true of; we will then know that it is false of any other reference
values. Figure 6.4.2-3A does this for the predicates F and G, again using the
extensions originally given in tables.

0G

1F

2F
3G

4F, G

A

F

G
0

1

2
3

4

B

Fig. 6.4.2-3. A range with the extensions of two one-place predicates
indicated by labeling values (A) and enclosing sets of values (B).

This can make the diagram rather cluttered, but we can clean things up a little
by drawing a line around all the values a predicate is true of and labeling the

line rather than the values. This is done in Figure 6.4.2-3B. The second sort of
diagram corresponds fairly directly to what was the original concept of an
extension—the class of things a predicate is true of—and we can say that the
values a predicate is true of are in its extension.

Predicates with more than one place are not true or false of single values but
of pairs, triples, or longer series of values. For example, [_ is the father of
_] is true not of James Mill or of John Stuart Mill (his son) taken individually
but instead of the two taken together and in that order. Such an ordered pair of
values can be represented in our diagrams by an arrow from its first to its
second member. (We could represent longer series of values by adding legs
between the head and tail of the arrow.) The extension of a 2-place predicate
can be thought of as the collection of pairs it is true of. Similarly, the extension
of a 3-place predicate will be a collection of triples, and the extension of a
predicate with some number n of places will be a collection of n-tuples (i.e., of
series with length n).

There are a number of ways a collection of n-tuples can be depicted. We
might draw the arrows that represent its members and label each one as we
initially labeled the values in the extension of a one-place predicate. This
would make for some more clutter, but it would be hard to avoid that by
drawing a line around a group of arrows. We might write the predicate once
and draw a line from it to each of the arrows in its extension, or we might draw
different styles of arrows for different predicates, labeling the style of arrows in
a legend like that of a road map. Each of these three approaches to labeling the
extensions of many-place predicates has its value but we will most often use
legends. Figure 6.4.2-4 shows this latter style of diagram for the extension that
was assigned to the 2-place predicate R. Notice that the predicate is true of the
values 1 and 2 taken in either direction and that it is also true of each of 3 and
4 paired with itself (and look back to see how that information appeared in the
table).

0

1

2
3

4

R

Fig. 6.4.2-4. A range with the extension of a 2-place predicate indicated.

Figure 6.4.2-5A combines the extensions of the three predicates. As was
noted in 6.2.2 , unanalyzed sentences can be thought of as zero-place
predicates. That means that they do not express properties that may or may not

be true of objects or relations that may or may not hold between objects.
Instead sentence express state of affairs that are simply true or false. One way
to indicate that in a diagram is to simply include a true sentence within the
rectangle, understanding any unanalyzed sentence that does not appear there to
be assigned the value F. That addition to the diagram is shown in Figure
6.4.2-5B.

F

G
0c

1

2
d

3a

4
b,e

R

A

F

G
0c

1

2
d

3a

4
b,e

A

R

B

Fig. 6.4.2-5. A range with the extensions of predicates (A) and predicates
together with the indication that a sentence is true (B).

All that is left are the extensions of functors. We could use arrows here, too,
because a reference function establishes a relation between its input and output
values. For example, the squaring function relates 1 to itself, 2 to 4, 3 to 9, and
so on. However, this would make for a lot of arrows. A one-place function
relates each value to some other value (perhaps the nil value), so each value
would be at the tail of an arrow; and things get much worse with functions of
two or more places. We can get a somewhat more compact notation by
adapting the way we indicate the extensions of individual terms. Next to each
output value of a functor, we can write the functor with its places filled by IDs
of the input values for which it yields that output (for example, writing f01
next to the value 2 to say that 2 is the output of f for inputs 0 and 1). Since the
extension of a functor may yield the same output for different input values, we
may need to write the functor next to an ID several times, each time filling its
places with the IDs of different input values. This is manageable for 1-place
functors because, for each such functor, we will need only as many labels as
there are possible input values—i.e., one for each member of the range. But for
a function with two places, the number of labels is the square of the number of
reference values and this number mounts rapidly. In the example we are
considering, we would need to write the 2-place functor f 25 times to indicate
all 25 entries of the table shown earlier. Adding to these only the individual
terms leads to the rather cluttered diagram shown in Figure 6.4.2-6.

0
c, f12, f23,

f32, f34

1
f00, f03, f13, f21

f24, f31, f422
d, f01, f10,

f22, f43
3

a, f02, f14, f21,
f33, f414

b, e, f04, f11,
f30, f40, f44

Fig. 6.4.2-6. A range showing the extensions of a 2-place functor and
several individual terms.

Most of the structures we consider will be quite small, and this approach
will be more feasible with them. Still, it is always possible to supplement a
diagram with one or more tables, and that is the easiest approach for the
example we have been considering. The full interpretation is given in this way
in Figure 6.4.2-7.

F

G
0c

1

2
d

3a

4
b,e

A

R

f 0 1 2 3 4
0 1 2 3 1 4
1 2 4 0 1 3
2 3 1 2 0 1
3 4 1 0 3 0
4 4 3 1 2 4

Fig. 6.4.2-7. A structure for a variety of non-logical vocabulary.

Now let us do something with this structure. Interpretations are assigned in
order to settle the truth values of sentences formed using the vocabulary that is
interpreted. This is analogous to calculating a truth value of a truth-functional
compound given an assignment of truth values to its ultimate components.
Below is the calculation of the truth value given to a sentence by the structure
we have been considering. It is followed by an explanation of the initial steps
in the process; this explanation refers to the way the interpretation is presented
in the diagram and table in Figure 6.4.2-7.

(Ga ∧ Rde) → ((F(fab) ∨ ¬ B) ∧ b = e)
T3 T T24 Ⓣ F 034 T T F T 4 T 4

Ga: a has 3 as its value and this value is in the area representing the
extension of G, so Ga gets T

Rde: d and e have 2 and 4 as their extensions and the arrow for this pair is
in the extension assigned to R, so Rde gets T

F(fab): f yields the value 0 when given the extensions of a and b (the values 3
and 4) as input (as can be seen from the end of the next-to-last row of

the table for F), and 0 is not in the area marked as the extension of F;
thus fab gets 0 and F(fab) gets F

B: B gets the value F since, unlike A, it does not appear within the
rectangle

b = e: b and e both have 4 as their extension, so b = e gets T

The extensions of complete unanalyzed expressions have been written under
these expressions, and the values of compounds are written under signs for the
operations that form them. As in truth-functional logic, the order of calculation
is determined by parentheses. Notice that capital letters always have truth
values under them and lower case letters always have reference values under
them.

Glen Helman 03 Aug 2010

6.4.3. Structures as counterexamples
Since structures provide the information that is now needed to determine truth
values for sentences, we will present counterexamples to derivations that fail
by describing structures. An example of a failed derivation is shown below.

│P(fa)b → Qa(fd) 3
│Qbd → Fb 5
│b = d a, b—d, fa, fd
├─
││P(fd)d ∧ a = d 2
│├─

2 Ext ││P(fd)d (3)
2 Ext ││a = d a—b—d, fa—fd
3 MPP=││Qa(fd)

││
│││¬ Fd (5)
││├─

5 MTT=│││¬ Qbd
│││○ b=d,P(fd)d,a=d,Qa(fd),¬ Fd,¬ Qbd ⊭ ⊥
││├─
│││⊥ 4
│├─

4 IP ││Fd 1
├─

1 CP │(P(fb)d ∧ a = d) → Fd

Stage 3 of the development uses the extended version of modus ponens. At this
point, we have two alias sets, one consisting of a, b, and d and the other
consisting of fa and fd. We do not have the antecedent of the conditional P(fa)b
→ Qa(fb) among our resources but rather a sentence, P(fd)d, that, although
differing from it in two places, differs only by terms that are co-aliases for fa
and b. Stage 5 uses a similarly extended modus tollens. The remaining open
gap cannot be closed because Qa(fd) and ¬ Qbd, the two resources that might
be part of a contradiction, differ in their second place by terms (fd and d) that
have not been made co-aliases.

The active resources of the dead-end gap form the consistent set:

b = d, P(fd)d, a = d, Qa(fd), ¬ Fd, ¬ Qbd

To describe a structure making the members of this set true, we must choose a
range of reference and assign an extension to each of the items of non-logical
vocabulary. The choice of the referential range and the assignment of
extensions to both individual terms and functors is determined by the alias
sets. We choose one reference value for each alias set and assign extensions so
that the terms in the set have that as their reference value.

For this consistent set, we will have two alias sets, one containing a, b, and d
and the other containing fa and fd, so we take the range to consist of two
values, one corresponding to each alias set. We do this by numbering the alias
sets and taking these numbers to be the IDs of the values in the range.

Next we must assign values to non-logical vocabulary appearing in the
terms in such a way that each term has the reference value corresponding to
the number of its alias set. In the case of an unanalyzed term we simply assign
the value of its alias set. In the case of a compound term, we place the
following constraint on the interpretation of its main functor (the one used last
in forming it): the output must be the value associated with the alias set of the
compound when the input consists of the reference values associated with the
alias sets of the component terms. In the example we are looking at, the two
compound terms place the same constraint since they are co-aliases and have
components which are co-aliases. The table below shows the association of ID
numbers with alias sets and the constraints on the structure that follow from
this association:

term ID constraint

a
b
d

1 a: 1
b: 1
d: 1

fa
fd

2 f1: 2
f1: 2

To indicate constraints, we use a variant of the notation used to indicate the
extensions of functors in the diagrammatic presentation of structures. Here
“f1: 2” says that interpretation of f must yield output with ID 2 for input with
ID 1.

We also have three non-logical predicates to consider, the 2-place predicates
P and Q and the 1-place predicate F. Each sentence in the consistent set that
affirms or denies one of these of a series of terms provides a constraint on the
interpretation of that predicate—as is shown in the following table.

resource constraint

P(fd)d
Qa(fd)
¬ Qbd
¬ Fd

P21: T
Q12: T
Q11: F
F1: F

The sentence P(fd)d tells us that P is true of values 2 and 1 (in that order) since
these are the values of fd and d, respectively; but no other sentence says
anything about the extension of P. There are sentences that require that the
predicate Q be true of the pair 1 and 2 and false of the pair 1 and 1, but nothing
is said about other cases. The last sentence requires that F be false of 1 but

requires nothing beyond this.
The tables below incorporate this information about extensions. The values

in grey are not required to make the members of the consistent set true and
may be assigned arbitrarily. In the case of predicates, the value F has been
assigned in such cases to make the extension as small as possible.

R: 1, 2 a b d
1 1 1

τ fτ
1 2
2 1

 τ Fτ
1 F
2 F

 P 1 2
1 F F
2 T F

 Q 1 2
1 F T
2 F F

The upshot of these tables is depicted in Figure 6.3.4-1.

1
a,b,d,f2

P 2 f1

Q

F

Fig. 6.4.3-1. A structure dividing the open gap of the derivation above.

Since the predicates P and Q are each true of only one pair, they are used to
label arrows directly. The emptiness of F’s extension is shown by using F to
label a circle that encloses nothing. This structure is small enough that the
extension of the functor f is also represented in the diagram.

Much of the work here comes in assigning interpretations to individual
terms and functors on the basis of a collection of alias sets. Let us look at
another example of that. The example we worked out in 6.3.2 would arise if
we were to check the entailment

a = b, fb = c, fb = fc, d = gca, g(fa)b = e ⊨ a = fd

The derivation for this is not very interesting. A single use of IP would leave
us with a dead-end open gap which fails to close because

a = b, fb = c, fb = fc, d = gca, g(fa)b = e, ¬ a = fd ⊭ ⊥

The alias sets we found in 6.3.2 are shown below along with the corresponding
constraints on the interpretation of individual terms and functors:

term ID constraint

a
b

1 a: 1
b: 1

c
fa
fb
fc

2 c: 2
f1: 2
f1: 2
f2: 2

fd 3 f4: 3

d
e

gca
g(fa)b

4 d: 4
e: 4

g21: 4
g21: 4

As in the example above, an unanalyzed term is simply assigned the number of
its alias set. For a compound term, we require that the number of the alias set
be the output value corresponding to input(s) that are the numbers of the alias
sets of its immediate components. For example, the term fa appears in set 2, so
we want the table for f to lead us to calculate 2 as the reference value of fa. The
input for the calculation will be the reference value of the term a; but a appears
in set 1, so we want the table for f to yield output 2 for input 1. We derive
exactly the same information from the appearance of the term fb; the output is
the same because it appears in the same alias set as fa, and the input is the
same because the term b appears in the same alias set as the term a. On the
other hand, the appearance of fc in alias set 2, tells us that the table for f should
assign output 2 also for input 2 since 2 is the alias set of the term c. We
respond to the remaining terms in a similar way, the only difference being the
need to note pairs of input values in the case of the 2-place functor g.

When we put constraints in tables assigning extensions to the individual
terms a, b, c, d, and e the functors f and g, we get the following:

R: 1, 2, 3, 4 a b c d e
1 1 2 4 4

 τ fτ
1 2
2 2
3
4 3

 g 1 2 3 4
1
2 4
3
4

Many entries are left unfilled because they did not correspond to any terms in
our alias sets. But, by the same token, we will never use these entries to
calculate the values of terms appearing in the open gap, so they can be filled in

arbitrarily. The value 1 is used in the tables below but any other would do; it is
the other values that are significant.

R: 1, 2, 3, 4 a b c d e
1 1 2 4 4

 τ fτ
1 2
2 2
3 1
4 3

 g 1 2 3 4
1 1 1 1 1
2 4 1 1 1
3 1 1 1 1
4 1 1 1 1

Recall that, in a couple of cases, we have had a single input-output pair
dictated by two different terms. This raises the question whether the procedure
we are using could ever lead to impose incompatible requirements? That is,
could we end up trying to associate two different output values of a functor
with the same series of input values and thus to fill in one entry in two
different ways? For this to happen, there would have to be terms fτ …τ and
fυ …υ with a common functor f that fell into different alias sets (if we were
to have two output values), and the corresponding components of these
compounds (τ and υ for i from 1 to n) would have to fall in the same alias sets
(if we were to have the same input values in the two cases). But the way we
have set up alias sets insures that this cannot happen. Instruction (iv) for
drawing links would have told us to put the two compounds in the same alias
set once their corresponding components were connected. And, indeed, in the
two cases where we have duplicate requirements, the compounds appear in the
same alias set precisely because we followed this instruction when forming the
alias sets of this example. (Although terms whose corresponding components
are co-aliases are bound to appear in the same alias set, they might do so for
other reasons, too; for example, we might have both a = b and fa = fb as
resources of a gap we are trying to divide.)

We have now done enough to settle the truth values of all equations that
appear affirmed or negated among the premises we are trying to make true. Do
these values come out as we would like? That is, do the affirmed equations
come out true and the negated ones false? Well, since the extensions given to
all terms, simple or compound, will correspond to their alias sets, we know
that any equation τ = υ that is affirmed among the premises will be true. For
such an equation will have led us to put the terms τ and υ into the same alias
set, and each term will be assigned the value corresponding to this set as its
extension. And, since they have the same extension, the equation between
them will be true. How about the denial of an equation, a resource of the form
¬ τ = υ? Since the gap cannot be closed, we know that τ and υ are members of
different alias sets. And since the extensions given to these terms correspond to
their alias sets, they will have different reference values and the equation τ = υ

1 n

1 n

i i

will be false, making the resource ¬ τ = υ true—as is the case with ¬ a = fd in
the example above.

We have been focusing on functors and equations since that is all that
matters for the example, but similar considerations apply to non-logical
predicates and predications of them. In the case of such predicates, it is our
rules for closing gaps insure that we can assign interpretations consistently. If
the gap cannot be closed we know that it does not contain both Pτ …τ and
any sentence ¬ Pυ …υ where the corresponding terms are co-aliases. And
this means it never contains both an affirmation and a denial of P of any series
of terms whose corresponding members are in the same alias sets. This means
that we will never be led to require the extension of P to yield two different
outputs for the same input. And the requirements we place on the extensions of
non-logical predicates are designed to insure directly the truth of sentences
affirming or denying the predication of such a predicate, so it is enough to
know that our requirements are consistent to be sure that they will have the
desired result.

The procedure we have been following enables us to find a structure
dividing any dead-end open gap, and the safety of our rules tells us that the
same structure will divide the initial premises and conclusion of the derivation.
Now the existence of a structure dividing premises and conclusion is the test of
formal validity of an argument. That is, if there is a structure that divides an
argument’s premises from its conclusion, then there is an intensional
interpretation of it producing an actual English argument and a possible world
that will divide the premises and conclusion of that argument. This was easy to
see in truth-functional logic, but more needs to be said in the case of the more
complex interpretations we are now considering.

We cannot, as in 2.3.1, simply choose the actual world as the possible world
that divides premises from conclusion because a structure, such as the one in
Figure 6.4.3-1 , may have only a limited number of reference values, while the
actual world has many things in it (infinitely many if numbers are counted).
The easiest approach in the present setting (but one that will no longer work in
the next chapter) is to note that our calculations of extensions for the terms we
are interested in remain the same in the presence of further reference values.
When we chose a referential range, we could have added reference values that
did not correspond to alias sets. Such values would not have played a role in
the constraints on the interpretation of non-logical vocabulary or in the
calculations of the values of components of the premises and conclusion of the
argument we are interested in. So they would have neither contributed to nor
interfered with the task of dividing the premises from the conclusion. The

1 n

1 n

possibility of adding such further reference values means that we can regard a
structure like that of Figure 6.4.3-1 as a depiction of the way things stand for
certain reference values among others. Given this understanding of a structure,
it is not too hard to concoct intensional interpretations of the non-logical
vocabulary that have the right extensions in the actual world. We might, for
example, choose language describing an illustration of the structure. To
capture the structure of 6.4.3.1, the interpretation of the term a could be the
point labeled a and the interpretation of P could be [a P-arrow runs from _
to _]. If we use this sort of interpretation, drawing the structure is a way of
making the actual world divide the argument’s premises from its conclusion.

Glen Helman 03 Aug 2010

1

2

3

6.4.s. Summary
Logical forms (without free variables) may be given semantic values by
assigning values to the non-logical vocabulary they contain; that is, they
can be given extensions (or intensions) by an extensional (or intensional)
interpretation of this vocabulary. The extensions of predicates and functors
are functions that take as input reference values from a referential range R
that must be specified along with an extensional interpretation; the range
and the interpretations of non-logical vocabulary together constitute a
structure for any expressions formed using only the non-logical vocabulary
that is interpreted in the structure. We assume each value of the range is
labeled by an ID.

The extensions of non-logical vocabulary can be represented using tables. In
a more graphic approach, a referential range may be depicted by points in a
plane labeled by their IDs, and further labeling and other devices can depict
extensions of non-logical vocabulary on this range. For example, one-place
predicates may label the points they are true of either individually or by
labeling a line enclosing them. This set of points is one way of representing
the extension of the predicate. If a predicate has more than one place, its
extension must be a set of ordered pairs , triples, or other n-tuples; these
may be represented by arrows (perhaps with legs) that indicate the order of
values in the n-tuple. We may calculate the extensions that structures give to
expressions by using a table analogous to a truth table, with all the
information in a structure providing the basis for the calculation of a single
row.

Structures are now the appropriate counterexamples to claims of validity. To
build a structure that divides a dead-end gap, we take the alias sets of the
gap and choose a range that contains a value corresponding to each alias set.
Then we assign extensions to unanalyzed terms and functors so that the
reference value each compound term will be the value corresponding to the
term’s alias set. Finally, we assign extensions to predicates by seeing what
terms the resources affirm or deny these predicates of. Our new rules for
closing gaps ensure that these instructions are consistent and that a structure
built in this way will divide the dead-end gap. Such a structure can also be
found as at least a part of a possible world.

Glen Helman 03 Aug 2010

6.4.x. Exercise questions
1. Each of a, b, and c gives a structure in one of the two sorts of

presentation described in this section—by a diagram or by tables. Present
each of them in the other way.

 a.

⓪ ①

②

F

G

R

 b. τ Fτ
0 T
1 T
2 F

 τ Gτ
0 F
1 F
2 T

 R 0 1 2
0 T T T
1 F T F
2 F T T

 c. τ Fτ
0 T
1 T
2 F

 τ Gτ
0 F
1 T
2 T

 τ Hτ
0 T
1 F
2 T

 R 0 1 2
0 F T F
1 T F F
2 F T F

2. Calculate a truth value for each of the following sentences on the
structure used as the chief example in this section (see, for example,
Figure 6.4.2-7):

 a. (Fa ∨ Gb) → Rab
 b. R(fca)(fac)
 c. fab = fba
3. Use derivations to check each of the claims below; if a claim of

entailment fails, use either tables or a diagram to present a structure that
divides an open gap.

 a. a = a → Fa ⊨ Fa
 b. ¬ (Fa ∧ Fb) ⊨ ¬ Fa → ¬ Fb
 c. a = b ∨ b = a ⊨ a = b ∧ b = a
 d. Fa → a = b, ga = b, Ra(ga) → Fa, F(ga) ⊨ Raa → R(ga)(ga)
 e. a = b → Rac, ¬ a = b → Rbc ⊨ Rbc

For more exercises, use the exercise machine .

Glen Helman 03 Aug 2010

6.4.xa. Exercise answers
1. a. τ Fτ

0 T
1 T
2 F

 τ Gτ
0 F
1 T
2 T

 R 0 1 2
0 F F F
1 F F T
2 T T T

 b.

⓪ ①

②

F

G

R
 c.

⓪ ①

②

F

GH

R

2. a. (Fa ∨ Gb) → Rab
F3 T T 4 Ⓕ F 34

 b. R(fca)(fac)
Ⓣ 103 430

 c. fab = fba
034 Ⓕ243

3. a. Without attachment rules:
│a = a → Fa 2
├─
││¬ Fa (2)
│├─

2 MTT││¬ a = a (3)
││●
│├─

3 DC ││⊥ 1
├─

1 IP │Fa

 Using attachment rules:
│a = a → Fa 2
├─

1 CE │a = a X,(2)
2 MPP│Fa (3)

│●
├─

3 QED│Fa

 b. │¬ (Fa ∧ Fb) 3
├─
││¬ Fa
│├─
│││Fb (3)
││├─

3 MPT│││¬ Fa
│││○ ¬ Fa,Fb ⊭ ⊥
││├─
│││⊥ 2
│├─

2 RAA││¬ Fb 1
├─

1 CP │¬ Fa → ¬ Fb

 range: 1, 2 a b
1 2

 τ Fτ
1 F
2 T

①
a

②
bF

¬ (Fa ∧ Fb) / ¬ Fa → ¬ Fb
Ⓣ F1 F T2 T F1 Ⓕ F T2

 c. │a = b ∨ b = a 1
├─
││a = b a—b
│├─
│││●
││├─

3 EC│││a = b 2
││
│││●
││├─

4 EC│││b = a 2
│├─

2 Cnj││a = b ∧ b = a 1
│
││b = a a—b
│├─
│││●
││├─

6 EC│││a = b 5
││
│││●
││├─

7 EC│││b = a 5
│├─

5 Cnj││a = b ∧ b = a 1
├─

1 PC │a = b ∧ b = a

 d. │Fa → a = b 3
│ga = b a, b—ga
│Ra(ga) → Fa 5
│F(ga)
├─
││Raa (6)
│├─
│││¬ R(ga)(ga) (6)
││├─
│││││¬ Fa (5)
││││├─

5 MTT│││││¬ Ra(ga)
│││││○ b=ga,F(ga),Raa,¬ R(ga)(ga),¬ Fa,¬ Ra(ga) ⊭ ⊥
││││├─
│││││⊥ 4
│││├─

4 IP ││││Fa 3
│││
││││a = b a—b—ga
│││├─
││││●
│││├─

6 Nc= ││││⊥ 3
││├─

3 RC │││⊥ 2
│├─

2 IP ││R(ga)(ga) 1
├─

1 CP │Raa → R(ga)(ga)

 range: 1, 2 a b
1 2

 τ gτ
1 2
2 1

 τ Fτ
1 F
2 T

 R 1 2
1 T F
2 F F

 ① a, g2
R

② b, g1
F

 Fa → a = b, ga = b, Ra(ga) → Fa, F(ga) / Raa → R(ga)(ga)
F 1 Ⓣ 1 F 2 2 1 Ⓣ 2 F 1 21 Ⓣ F1 Ⓣ 21 T11 Ⓕ F 21 21

 e. │a = b → Rac 3
│¬ a = b → Rbc 2
├─
││¬ Rbc (2),(4)
│├─

2 MTT││a = b a—b, c; (3)
3 MPP││Rac (4)

││●
│├─

4 Nc= ││⊥ 1
├─

1 IP │Rbc

Glen Helman 03 Aug 2010

