
5.3. Conditional proofs: bottling inference
5.3.0. Overview

The use of implies for both the conditional and entailment suggests an analogy
between the two, and this analogy figures in many of the deductive properties
of conditionals.

5.3.1. Conditionalization
The basic grounds for concluding a conditional are the demonstrated ability
to move from its antecedent as an assumption to its consequent as a goal.

5.3.2. Detachment
The chief significance of having a conditional as premise is the power to
move  from  its  antecedent  as  a  resource  to  its  consequent  as  a  further
resource.
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5.3.1. Conditionalization
The truth conditions of the conditional, which count φ → ψ as true except
when  φ  is  T  and  ψ  is  F,  may  have  reminded  you  of  the  definition  of
implication, which says that φ implies ψ if and only if there is no possible
world in which φ is T and ψ is F. Even though similar, the two ideas are not
the same, and the distinction between material implication on the one hand and
logical implication on the other points to the difference between them. Saying
that a conditional φ → ψ is true rules out only the actual occurrence of the
values T for φ and F for ψ while saying that φ logically implies, or entails, ψ
rules out the occurrence of this pattern in any possible world. The forecast It
will  rain  tomorrow  if  the  front  moves  through  does  not  commit  a
meteorologist to the view that It will rain tomorrow is logically implied by
The front will move through tomorrow.

This difference can be brought out in another way. In cases where a relation
of  entailment  holds,  the  corresponding  conditional  is  not  only  true  but
tautologous. For example, because It was hot and humid ⊨ It was hot, the
conditional If it was hot and humid, it was hot  tells us nothing; it  is a
tautology. And we can state this as a general principle: φ entails ψ if and only
if φ → ψ is a tautology—in notation, φ ⊨ ψ if and only if ⊨ φ → ψ. Either
way we are saying that we fail to have φ true and ψ false not merely in the
actual world but in all possible worlds.

Since to be a tautology is to be a valid conclusion from no premises at all,
the principle just stated provides a partial account of when a conditional is a
valid conclusion. To cover cases where there are premises we can use the idea
of  implication  given  a  set  of  additional  premises.  For  example,  a  weather
forecaster might say that the passing of a front “implies” rain, intending to rest
this relation between the passing of the front and rain on certain assumptions
about the conditions of the atmosphere and laws of meteorology. And when a
scientific hypothesis is said to “imply” a certain result for an experimental test,
this  implication is  based on certain  assumptions  about  the  behavior  of  the
experimental set up. In such cases we say that a sentence ψ cannot be false
when a sentence φ is true, provided that certain further assumptions Γ are true
as well.  But this  is  just  to say that  ψ is  entailed by φ taken together with
Γ—i.e., that Γ, φ ⊨ ψ. So conditional implication is really just entailment with
one  premise  singled  out  for  special  attention,  something  that  it  is  quite
reasonable to do when, as in the examples above, the set Γ of further premises
is large or lacks definite boundaries.

Another way of separating one assumption from a group of others is to make



the conclusion conditional upon it. For example, we might say that, based on
certain assumptions about the weather, we can conclude that it will rain if the
front passes or that, based on assumptions about the experimental set up, we
can conclude that an experiment will yield a certain result if our hypothesis is
true. But this way of giving special attention to one of a group of assumptions
is  equivalent  to  making  a  claim  of  conditional  implication—that  is,  a
conditional  is  a  valid  conclusion  from  given  premises  if  and  only  if  its
antecedent implies its conclusion given those premises. And this gives us our
account of conditional conclusions:

LAW FOR THE CONDITIONAL AS A CONCLUSION. Γ ⊨ φ → ψ if and only if Γ,
φ ⊨ ψ (for any set Γ and any sentences φ and ψ).

To see the truth of this law, note that an entailment Γ ⊨ φ → ψ will hold if and
only if there is no possible world in which φ → ψ is false while all members of
Γ are true. But the sort of possible world that this rules out is one in which ψ is
false while φ and the members of Γ are all true—i.e., one which divides the
argument Γ, φ / ψ. And to rule out such a possibility is to say that Γ, φ ⊨ ψ.

Reading the law above from right to left, we move a premise past the sign ⊨,
making  the  conclusion  conditional  on  it.  We  will  use  the  term
conditionalization  for  this  operation.  Any  result  of  the  process  is  a
conditionalization  of  the  argument,  and  we  will  sometimes  say,  more
specifically, that it is a conditionalization on the premise that is moved.

The  law  for  the  conditional  as  a  conclusion  tells  us  that  an  argument
Γ / φ → ψ is valid if and only if the argument Γ, φ / ψ is valid. Moving from
the first argument to the second will lead us to consider the latter argument in
cases where we do not know the premise φ to be true. In such cases, Γ, φ / ψ
will  be  an  argument  concerning  a  hypothetical  situation,  a  hypothetical
argument in the sense introduced in 4.2.2 . Modifying an example used there,
we can see the validity of the argument at the left below by noting the validity
of the one at the right.

Ann and Bill were not both home
without the car being in the
driveway

The car was not in the driveway
 

If Ann was at home, Bill wasn’t

 Ann and Bill were not both home
without the car being in the
driveway

The car was not in the driveway
Ann was at home

Bill wasn’t at home

The first argument is a conditionalization of the second, and the law for the
conditional as a conclusion tells that the first is valid if and only if the second
is. Someone who offers the first argument is unlikely to know whether or not



Ann was at home because there would then be no reason to assert a merely
conditional conclusion. Consequently, Ann was at home describes a situation
the  arguer  will  regard  as  hypothetical,  and  the  second  argument  can  be
described  as  a  hypothetical  argument.  This  means  that  we  establish
conditionals  the  way  we  established  disjunctions  in  the  last  chapter,  as
compounds  that  serve  to  state  categorically  the  upshot  of  a  hypothetical
argument.

In derivations, we can plan for a goal that is a conditional by setting out to
reach  it  by  a  hypothetical  argument.  The  rule  embodying  this  approach,
Conditional Proof (CP), is shown in Figure 5.3.1-1.

│⋯
│
││⋯
││
││
││
││
││
││
│├─
││φ → ψ
│⋯

→

│⋯
│
││⋯
││
│││φ
││├─
│││
││├─
│││ψ n
│├─

n CP││φ → ψ
│⋯

Fig. 5.3.1-1. Developing a derivation by planning for a conditional at stage
n.

When  we  apply  CP,  we  add  the  antecedent  of  the  conditional  goal  as  a
supposition and set its consequent as a new goal. We thus plan to carry out, in
a vertical direction, the transition indicated by the arrow in the conditional.

As an example, here is a derivation for the argument above.
│¬ ((A ∧ B) ∧ ¬ C) 2
│¬ C (2)
├─
││A (3)
│├─

2 MPT││¬ (A ∧ B) 3
3 MPT││¬ B (4)

││●
│├─

4 QED││¬ B 1
├─

1 CP │A → ¬ B
Notice  that  the  proximate  argument  of  the  gap  after  CP  is  applied  is
¬ ((A ∧ B) ∧ ¬ C),  ¬ C,  A /  ¬ B.  That  is,  the ultimate argument  of  the
derivation is a conditionalization on A of the proximate argument that results
from CP. In short, when we apply CP, we plan to put ourselves in a position to
conditionalize.



Of  course,  whenever  we  have  premises,  we  are  in  a  position  to
conditionalize,  and  the  validity  of  the  argument  we  have  just  considered
establishes  the  validity  of  the  result  of  conditionalization  on  its  second
premise: ¬ ((A ∧ B) ∧ ¬ C) / ¬ C → (A → ¬ B). This argument might be put
into English as follows:

Ann and Bill were not both home without the
car being in the driveway

Unless the car was in the driveway, Bill wasn’t
home if Ann was

A derivation for it will incorporate the derivation above, preceded by an initial
use of CP.

│¬ ((A ∧ B) ∧ ¬ C) 3
├─
││¬ C (3)
│├─
│││A (4)
││├─

3 MPT│││¬ (A ∧ B) 4
4 MPT│││¬ B (5)

│││●
││├─

5 QED│││¬ B 2
│├─

2 CP ││A → ¬ B 1
├─

1 CP │¬ C → (A → ¬ B)
After  stage  2,  we are  making two suppositions—that  the  car  is  not  in  the
driveway and that Ann is home—and we are thus considering a situation that
is doubly hypothetical. And, in general, the most natural way of establishing
the validity of a doubly conditional conclusion is by way of such a doubly
hypothetical argument.
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5.3.2. Detachment
The conditional was described by the philosopher Gilbert Ryle (1900-1976) as
an  inference  ticket:  it  confers  the  right  to  travel  from its  antecedent  to  its
consequent  in  an  inference.  It  is  the  ability  to  make  this  trip  that  we
demonstrate when we use a hypothetical argument to show that a conditional
conclusion  is  valid.  It  is  also  true  that,  when  we  have  a  conditional  as  a
resource,  we  have  a  ticket  we  can  use  to  travel  from its  antecedent  to  its
consequent.

The pattern of argument employing the latter idea, traditionally known as
modus  ponens,  is  perhaps  the  most  well-known  logical  principle.  The
following instance of it was used by the Stoics as their standard example:

If it is day, it is light
It is day

It is light

The  hedged  character  of  the  conditional  means  that,  like  disjunctions  and
not-both forms, it has no definite implications concerning the truth value of
either  of  its  components.  Modus  ponens  tells  us  that  if  we  add  to  the
conditional  the  information  that  its  antecedent  is  true,  we  can  detach  the
consequent and assert it categorically.

In  the  traditional  system  of  terminology  we  used  for  other  detachment
principles, this pattern of argument deserves the name modus ponendo ponens,
and the more common form modus ponens is an abbreviated form of this. As
was  the  case  with  disjunction  and  the  not-both  form,  we  have  a  pair  of
detachment principles for the conditional. However, due to the asymmetry of
the conditional,  these two principles take different forms and have different
names:

MODUS PONENDO PONENS. φ → ψ, φ ⊨ ψ (for any sentences φ and ψ).
MODUS TOLLENDO TOLLENS. φ → ψ, ¬  ψ ⊨ ¬  φ (for any sentences φ and
ψ).

The second is most often known by the abbreviated name modus tollens.
Notice that the conditional premise is used in very different ways in these

two arguments. Often people who can agree about the truth of a conditional
will disagree of the truth values of its components and will be ready to follow
the  different  paths  from  the  conditional  that  are  laid  out  by  these  two
principles,  something that  is  reflected in the proverb One person’s modus
ponens is another person’s modus tollens. Ann and Bill may agree that it

± ±



will rain if the front moves through while Ann, who is convinced that the front
will move through, concludes that it will rain and Bill, who is convinced that it
will not rain, concludes that the front will not move through.

Also as was the case with the weak compounds considered in the last two
chapters, there are weakening principles for the conditional; but again we have
two different forms:

WEAKENING: ψ ⊨ φ → ψ and ¬  φ ⊨ φ → ψ (for any sentences φ and ψ).

Although these weakening principles can be used directly as attachment rules
(and we will consider this use in 5.4.2 ), their most important function is to
combine with the detachment principles  for  the conditional  and the law of
lemmas to support the detachment rules Modus Ponendo Ponens (MPP) and
Modus Tollendo Tollens (MTT) shown in Figures 5.3.4-1 and 5.3.4-2.

│φ [available]
│⋯
│φ → ψ
│⋯
│
││⋯
││
││
│├─
││χ
│⋯

→

│φ (n)
│⋯
│φ → ψ n
│⋯
│
││⋯

n MPP││ψ
││
│├─
││χ
│⋯

Fig. 5.3.2-1. Developing a derivation at stage n by exploiting a conditional
whose antecedent is also an active resource.

│¬  ψ [available]
│⋯
│φ → ψ
│⋯
│
││⋯
││
││
│├─
││χ
│⋯

→

│¬  ψ (n)
│⋯
│φ → ψ n
│⋯
│
││⋯

n MTT││¬  φ
││
│├─
││χ
│⋯

Fig. 5.3.2-2. Developing a derivation at stage n by exploiting a conditional
when a sentence negating or de-negating its consequent is also an active

resource.

The following example is typical of the way modus ponens  functions along
with CP.

±

± ±

±



│A → (B → C) 3
│D → B 4
├─
││A (3)
│├─
│││D (4)
││├─

3 MPP│││B → C 5
4 MPP│││B (5)
5 MPP│││C (6)

│││●
││├─

6 QED│││C 2
│├─

2 CP ││D → C 1
├─

1 CP │A → (D → C)

This can be described, very roughly, as a process of cashing in some tickets in
order to get a new one with a different itinerary. One of the respects in which
this  metaphor  works  only  roughly  is  that  the  “point  of  departure”  or
“destination” are sometimes themselves indicated by conditionals—that is, the
“ticket” in question is sometimes more like a voucher for a ticket or some other
sort of more abstract right.
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5.3.s. Summary
The truth conditions of the conditional recall the definition of implication.
Indeed, an implication φ ⊨ ψ will hold if and only if the conditional φ → ψ
is  a  tautology.  We  can  apply  similar  ideas  to  conditionals  that  are
conclusions  from  factual  premises  by  considering  a  notion  of
conditional implication , implication depending on factual information. This
idea appears in our law for the conditional as a conclusion . An entailment
Γ ⊨ φ → ψ holds when Γ, φ ⊨ ψ—i.e., when ψ is implied by φ given the
further premises Γ. The first of these entailments is a conditionalization  of
the second, and the second asserts the validity of a hypothetical argument.
So an argument with a conditional conclusion is valid if  and only if  the
hypothetical argument it conditionalizes is also valid. The derivation rule
implementing this idea is Conditional Proof (CP) .

The  detachment  principles  for  the  conditional  include  the  well-known
modus ponendo ponens  (usually  called  modus ponens ),  which  is
implemented  as  a  rule  Modus Ponendo Ponens (MPP) ,  and  a  second
detachment principle modus tollendo tollens  (usually called modus tollens ),
which  is  implemented  as  a  rule  Modus Tollendo Tollens (MTT) .  Modus
ponens  in particular can be understood as the use of a conditional as an
inference ticket  licensing transitions from its antecedent to its consequent.
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5.3.x. Exercise questions

1. Use derivations to establish each of the following. Notice that several
are  claims  of  equivalence  and  require  two  derivations.  All  these
derivations  are  designed  for  the  use  of  detachment  rules  (especially
MPP and MTT), and a number will be quite long if they are not used.
Attachment rules from previous chapters will  occasionally be useful,
and (since we do not yet have a full set of rules for the conditional) they
are required in one of the derivations for k. Finally, note the leftwards
arrow in the second premise of b. Although rules like MPP are written
using a rightwards arrow they also apply to conditionals written using a
leftwards arrow since a conditional ψ ← φ is just an alternative way of
writing φ → ψ and plays the same role in derivations.

 a. B → C, A → B ⊨ A → C
 b. A → B, C ← B, C → D ⊨ A → D
 c. A → (B → C) ⊨ (A → B) → (A → C)
 d. A → (B → C), A → ¬ C ⊨ B → ¬ A
 e. ¬ A ≃ A → ¬ A
 f. A → B ≃ ¬ B → ¬ A
 g. A → B ≃ ¬ (A ∧ ¬ B)
 h. A → (B → C) ≃ (A ∧ B) → C
 i. (A → B) ∧ (A → C) ≃ A → (B ∧ C)
 j. (A → C) ∧ (B → C) ≃ (A ∨ B) → C
 k. (A → B) ∧ (B → C) ≃ (A ∨ B) → (B ∧ C)

2. Give English sentences illustrating d, f, g, and k of 1. (Notice that k
tells how to restate a particular sort of conjunction of conditionals, one
that might be called a linked conditional.)

The exercise machine is not designed to produce exercises and answers
involving only the limited set of rules you have at this point.
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5.3.xa. Exercise answers
1. a. │B → C 3

│A → B 2
├─
││A (2)
│├─

2 MPP││B (3)
3 MPP││C (4)

││●
│├─

4 QED││C 1
├─

1 PC │A → C

b. │A → B 2
│C ← B 3
│C → D 4
├─
││A (2)
│├─

2 MPP││B (3)
3 MPP││C (4)
4 MPP││D (5)

││●
│├─

5 QED││D 1
├─

1 CP │A → D

 c. │A → (B → C) 3
├─
││A → B 4
│├─
│││A (3),(4)
││├─

3 MPP│││B → C 5
4 MPP│││B (5)
5 MPP│││C (6)

│││●
││├─

6 QED│││C 2
│├─

2 CP ││A → C 1
├─

1 CP │(A → B) → (A → C)

d. │A → (B → C) 3
│A → ¬ C 4
├─
││B (5)
│├─
│││A (3),(4)
││├─

3 MPP│││B → C 5
4 MPP│││¬ C (6)
5 MPP│││C (6)

│││●
││├─

6 Nc │││⊥ 2
│├─

2 RAA││¬ A 1
├─

1 CP │B → ¬ A

 e. │¬ A (2)
├─
││A
│├─
││●
│├─

2 QED││¬ A 1
├─

1 CP │A → ¬ A

 │A → ¬ A 2
├─
││A (2),(3)
│├─

2 MPP││¬ A (3)
││●
│├─

3 Nc ││⊥ 1
├─

1 CP │¬ A

 f. │A → B 2
├─
││¬ B (2)
│├─

2 MTT││¬ A (3)
││●
│├─

3 QED││¬ A 1
├─

1 CP │¬ B → ¬ A

 │¬ B → ¬ A 2
├─
││A (2)
│├─

2 MTT││B (3)
││●
│├─

3 QED││B 1
├─

1 CP │A → B



 g. │A → B 3
├─
││A ∧ ¬ B 2
│├─

2 Ext ││A (3)
2 Ext ││¬ B (4)
3 MPP││B (4)

││●
│├─

4 Nc ││⊥ 1
├─

1 RAA│¬ (A ∧ ¬ B)

 │¬ (A ∧ ¬ B) 2
├─
││A (2)
│├─

2 MPT││B (3)
││●
│├─

3 QED││B 1
├─

1 CP │A → B

 h. │A → (B → C) 3
├─
││A ∧ B 2
│├─

2 Ext ││A (3)
2 Ext ││B (4)
3 MPP││B → C 4
4 MPP││C (5)

││●
│├─

5 QED││C 1
├─

1 CP │(A ∧ B) → C

 │(A ∧ B) → C 4
├─
││A (5)
│├─
│││B (6)
││├─
││││¬ C (4)
│││├─

4 MTT││││¬ (A ∧ B) 5
5 MPT││││¬ B (6)

││││●
│││├─

6 Nc ││││⊥ 3
││├─

3 IP │││C 2
│├─

2 CP ││B → C 1
├─

1 CP │A → (B → C)

 i. │(A → B) ∧ (A → C) 1
├─

1 Ext │A → B 3
1 Ext │A → C 4

│
││A (3),(4)
│├─

3 MPP││B (6)
4 MPP││C (7)

││
│││●
││├─

6 QED│││B 5
││
│││●
││├─

7 QED│││C 5
│├─

5 Cnj ││B ∧ C 2
├─

2 CP │A → (B ∧ C)

 │A → (B ∧ C) 3,7
├─
│││A (3)
││├─

3 MPP│││B ∧ C 4
4 Ext │││B (5)
4 Ext │││C

│││●
││├─

5 QED│││B 2
│├─

2 CP ││A → B 1
│
│││A
││├─

7 MPP│││B ∧ C 8
8 Ext │││B
8 Ext │││C (9)

│││●
││├─

9 QED│││C 6
│├─

6 QED││A → C 1
├─

1 Cnj │(A → B) ∧ (A → C)



 j. Stages 3-5 and 7-11 in the derivation at the right could have taken analogous
forms; they are varied here to show two approaches, one using attachment
rules and the other without them.

  │(A → C) ∧ (B → C) 1
├─

1 Ext │A → C 4
1 Ext │B → C 6

│
││A ∨ B 3
│├─
│││A (4)
││├─

4 MPP│││C (5)
│││●
││├─

5 QED│││C 3
││
│││B (6)
││├─

6 MPP│││C (7)
│││●
││├─

7 QED│││C 3
│├─

3 PC ││C 2
├─

2 CP │(A ∨ B) → C

 │(A ∨ B) → C 4,8
├─
│││A (3)
││├─

3 Wk │││A ∨ B X,(4)
4 MPP │││C (5)

│││●
││├─

5 QED │││C 2
│├─

2 CP ││A → C 1
│
│││B (11)
││├─
││││¬ C (8)
│││├─

8 MTT ││││¬ (A ∨ B) 9
││││
││││││¬ A
│││││├─
││││││●
│││││├─

11 QED││││││B 10
││││├─

10 PE │││││A ∨ B 9
│││├─

9 CR ││││⊥ 7
││├─

7 IP │││C 6
│├─

6 CP ││B → C 1
├─

1 Cnj │(A → C) ∧ (B → C)



 k. Parallel arguments are again completed differently in the two gaps of each
derivation—in  the  first,  to  show  approaches  with  attachment  rules  and
without them and, in the second, to show two ways of using attachment rules.

  │(A → B) ∧ (B → C) 1
├─

1 Ext │A → B 4
1 Ext │B → C 5,10

│
││A ∨ B 3
│├─
│││A (4)
││├─

4 MPP │││B (5)
5 MPP │││C
6 Adj │││B ∧ C X,(7)

│││●
││├─

7 QED │││B ∧ C 3
││
│││B (9),(10)
││├─
││││●
│││├─

9 QED ││││B 8
│││

10 MPP││││C (11)
││││●
│││├─

11 QED││││C 8
││├─

8 Cnj │││B ∧ C 3
│├─

3 PC ││B ∧ C 2
├─

2 CP │(A ∨ B) → (B ∧ C)

 │(A ∨ B) → (B ∧ C) 4,10
├─
│││A (3)
││├─

3 Wk │││A ∨ B X,(4)
4 MPP │││B ∧ C 5
5 Ext │││B (6)
5 Ext │││C

│││●
││├─

6 QED │││B 2
│├─

2 CP ││A → B 1
│
│││B (11)
││├─
││││¬ C (9)
│││├─

9 Wk ││││¬ (B ∧ C) (10)
10 MTT││││¬ (A ∨ B) (12)
11 Wk ││││A ∨ B (12)

││││●
│││├─

12 Nc ││││ ⊥ 8
││├─

8 IP │││C 7
│├─

7 CP ││B → C 1
├─

1 Cnj │(A → B) ∧ (B → C)

2. d. If Ann was there, then Carol was there if Bill was
Carol wasn’t there if Ann was

Ann wasn’t there if Bill was
 f. If Ann was there, Bill was, too

If Bill wasn’t there, Ann wasn’t either
 g. If Ann was there, Bill was there

Ann wasn’t there without Bill being there
 k. If Ann was there, Bill was there; and if Bill was there, Carol

was there

If either Ann or Bill was there, then both Bill and Carol were
there
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