
4. Disjunctions
4.1. Or: taking common content
4.1.0. Overview
The  third  connective  we  will  study,  disjunction,  might  be  thought  of  as  a
logical mirror image conjunction; more precisely, the relation between them is
another example of duality.

4.1.1. Hedging
While  the  components  of  a  conjunction  contribute  their  content  to  the
whole,  a  disjunction  asserts  only  the  content  its  components  have  in
common.

4.1.2. Inclusive and exclusive disjunction
The  distinction  between  implications  and  implicatures  is  especially
important when assessing the meaning of or in English.

4.1.3. Disjunction in English
Many of the other issues that arise for disjunction are like those that arise for
conjunction;  and  one  of  the  ways  of  expressing  disjunction  in  English
suggests a use of connectives to express certain numerical claims.

4.1.4. Further examples
We  now  have  the  means  to  give  natural  analyses  to  a  wide  variety  of
patterns in English, including a more natural analysis of sentences involving
neither-nor.
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4.1.1. Hedging

Although, as was noted in 3.1.4 , conjunction and negation are, by themselves
enough to give us the effect of any connective for which has a truth table, these
two are not  the only connectives that  are  marked by special  vocabulary in
English. We will introduce special notation for two further connectives. The
first  is  expressed  by  the  English  word  or.  This  word  has  a  range  of
grammatical uses comparable to those of and. It can join words and phrases
with various grammatical functions, and the force of most of these uses can be
captured by a use of or to join sentences. For example,

The weight is at or near the limit

can be paraphrased as

The weight is at the limit or the weight is near the limit

and we will study all uses of or by way of its use to join sentences.
The connective corresponding to or  is called disjunction; we will use the

symbol ∨ (the logical or) for it and represent it also with the English notion
either … or (in which either plays a role like that of both). As in the case of
conjunction we will  sometimes use a special term for the components of a
disjunction: they are disjuncts.

The effect of disjoining a sentence with another is to back off from a definite
claim by leaving open a second alternative.  The sentence above, instead of
asserting  The  weight  is  at  the  limit  in  an  unqualified  way,  adds  the
alternative The weight is near the limit  to leave open a further range of
possibilities. In general, we can regard a sentence φ ∨ ψ as leaving open all
possibilities left open by φ as well as all those left open by ψ. As a result, a
disjunction  φ  ∨  ψ  says  no  more—and  usually  less—than  either  of  the
components φ and ψ, and the difference can be extreme, as in the cowardly
weather forecast It will rain tomorrow, or else it won’t. Since φ ∨ ψ leaves
open as many possibilities as either φ or ψ, it rules out no more and has no
more content. In particular, it rules out only those possibilities that are ruled
out by both φ and ψ; and we can say that the content of φ ∨ ψ is the common
content of φ and ψ, the content shared by the two. For example, the following
sentences are roughly equivalent

The temperature was very hot or very cold
The temperature was extreme

and the second expresses the common content of The temperature was very
hot and The temperature was very cold, the two components of the first.



Disjunction, then, adds the possibilities left open by one component to those
left open by the other and selects as the possibilities ruled out those that are
ruled out by both components.  This is shown in Figure 4.1.1-1 below. The
pictures of dice have the same significance as in Figure 2.1.2-1 : they indicate
regions consisting of the possible worlds in which a certain die shows one or
another number. The proposition shown in 4.1.1-1B is The number shown by
the die is odd ∨ the number shown by the die is less than 4 and 4.1.1-1A
illustrates its two components.

 

A  B

Fig. 4.1.1-1. Propositions expressed by two sentences (A) and their
disjunction (B).

The possibilities ruled out by the components are shown in 4.1.1-1A shaded in
different colors. 4.1.1-1B then shows the reduced set of possibilities ruled out
by the disjunction and the enlarged set that are left open.

We can use these ideas to describe the truth conditions of disjunctions. If
φ ∨ ψ is to leave open all possibilities left open by φ as well as all those left
open by ψ, it must be true in all cases where φ is true and also in all cases
where ψ is true. And if φ ∨ ψ captures the content common to φ and ψ—if it
rules out the possibilities ruled out by both—it must be false whenever both φ
and ψ are false. This is enough to tell us that disjunction is a connective with
the table below. That is, φ ∨ ψ is true whenever at least one of φ and ψ is true
and is false only when both are false.

φ ψ φ∨ ψ
T T T
T F T
F T T
F F F

This table should be compared to the diagram above; the worlds covered by
the four rows of the table appear in 4.1-1A as the four regions at the top left
and right and bottom left and right, respectively when φ rules out world at the
bottom of the rectangle and ψ rules out worlds at the right.

Disjunction  shares  many  of  its  logical  properties  with  conjunction.  In
particular, analogues of the laws stated for conjunction at the end of 2.1.2 hold
for it, too:

COMMUTATIVITY. The order of disjuncts in a disjunction does not affect the
content. That is, φ ∨ ψ ≃ ψ ∨ φ.

ASSOCIATIVITY. When a disjunction is a disjunct of a larger disjunction, the
way  components  are  grouped  does  not  affect  the  content.  That  is,
φ ∨ (ψ ∨ χ) ≃ (φ ∨ ψ) ∨ χ.

IDEMPOTENCE. Disjoining a sentence to itself does not change the content.
That is, φ ∨ φ ≃ φ.

COVARIANCE. A disjunction implies the result of replacing a component with
anything that component implies. That is, if ψ ⊨ χ, then φ ∨ ψ ⊨ φ ∨ χ
and ψ ∨ φ ⊨ χ ∨ φ.

COMPOSITIONALITY.  Disjunctions  are  equivalent  if  their  corresponding
components  are  equivalent.  That  is,  if  φ  ≃  φ′  and  ψ  ≃  ψ′,  then
φ ∨ ψ ≃ φ′ ∨ ψ′.

There  is  nothing  surprising  in  this.  Conjunction  shared  analogues  of  these
properties with both the minimum and the maximum operations on numbers,
and conjunction and disjunction differ in the way the minimum and maximum
operations  do.  In  particular,  a  conjunction  implies  each  of  its  components
while a disjunction is implied by them (just as the minimum of two numbers is
less than or equal to both while their maximum has both less than or equal to
it).
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4.1.2. Inclusive and exclusive disjunction
The fact that the table for φ ∨ ψ gives the value T when both φ and ψ are T
may raise doubts about its correctness as an account of or. For we sometimes
say things like

Al will go to France or Germany, or both;

and  there  are  contexts  where  the  expression  and/or  seems  to  capture  our
meaning better than or. But, if φ or ψ is already true when both φ and ψ are
true, what does the alternative or both add? And, if φ or ψ is already true
when φ and ψ is, why does and/or seem to differ from or?

Considerations  like  these  have  led  logicians,  from  the  Stoics  on,  to  be
interested in a connective with the table below.

φ ψ    
T T F
T F T
F T T
F F F

This is the table of exclusive disjunction—so-called because it  excludes the
possibility  that  both  components  are  true.  The  connective  ∨  is  known  as
inclusive disjunction because it leaves this possibility open. It has often been
suggested that the English word or, in at least some of its uses, is a sign for
exclusive rather than inclusive disjunction. If this were true, it would explain
why we add the phrase or both or resort to and/or when we wish to express
inclusive  disjunction;  for  a  sentence of  the  form Both  φ  and  ψ  is  true  in
exactly the case in which inclusive and exclusive disjunction differ.

But in spite of this apparent evidence for regarding or as a sign of exclusive
disjunction, there are strong reasons for thinking that it is always a sign for
inclusive disjunction. That is,  there are reasons for thinking that φ  or  ψ  in
English does not imply Not both φ and ψ (as it would if it were an exclusive
disjunction of φ and ψ) but instead has the not-both claim an implicature in
some contexts.  The arguments we will  look at touch on three features of a
sentence that help to distinguish its implications among its implicatures: the
effect of denying the sentence, yes-no questions concerning its truth, and the
possibility of canceling implicatures.

Let  us  first  look at  the denial  of  the sentence Al will  go to France or
Germany. The most straightforward denial of this is Al will not go to France
or Germany, but we could just as well say this:

Al will go to neither France nor Germany.

And we can paraphrase the latter as

Al will not go to France, and he will not go to Germany.

Now, we have seen that this sort of sentence can be analyzed as a not-and-not
form, specifically, as ¬ F ∧ ¬ G (F: Al will go to France; G: Al will go to
Germany). And, it seems reasonable to suppose that the denial of φ or ψ can
always be expressed as Neither φ nor ψ or, equivalently, as ¬ φ ∧ ¬ ψ.

But, if this is so, the word or must express inclusive disjunction. For the
truth value of φ or ψ must be the opposite of the truth value of its denial, and
we have seen reasons to believe that the truth value of its denial is given by the
table below.

φ ψ ¬φ ∧ ¬ ψ
T T F
T F F
F T F
F F T

If, on the other hand, the word or indicated exclusive disjunction, there would
be two ways for a sentence φ or ψ to be false—i.e., when φ and ψ were both
false  and also  when they were  both  true—and,  therefore,  two ways  for  its
denial to be true. But the form Neither φ nor ψ, does not seem to leave open
the possibility that both φ and ψ are true. In short, if the possibility that Al will
go to  both France and Germany must  not  be ruled out  by the disjunction,
because it is not left open by the corresponding neither-nor sentence.

A second argument concerns questions. Imagine that you intend to visit both
France  and  Germany  this  summer  and  are  filling  out  a  questionnaire  that
includes the following:

Will you visit France or Germany this year? __ Yes __ No

The correct  answer  in  this  case  seems to  be  yes.  But  this  means  that  the
sentence I will visit France or Germany this year is true if you will visit
both.

A final  argument concerns the following way of  making it  clear  that  Al
might visit both France and Germany.

Al will visit France or Germany, and he may visit both.

Notice that instead of hedging the claim (as is done or both is added), this
sentence uses and and thereby adds a second claim Al may visit both France



and Germany. Now, if Al will visit France or Germany implied Al won’t
visit both France and Germany, the sentence displayed above would imply
the following:

Al won’t visit both France and Germany, but he may visit both.

This sentence may not have fallen into self-contradiction, but it is teetering on
the edge. On the other hand, Al will visit France or Germany, and he may
visit both is neither a self-contradiction nor anything close to one.

If these arguments are correct, when a disjunction φ or ψ does convey the
idea that φ  and ψ  are not both true, it does so by means of an implicature
rather  than an implication.  Moreover,  it  seems possible  to  cancel  any such
implicature  by  adding  a  phrase  like  and maybe both.  This  possibility  of
cancellation  is  a  sign  that  the  implicature  is  of  a  special  kind  that  Grice
distinguished  as  a  conversational  implicature.  A  conversational  implicature
does not attach to a particular word as do the special implicatures that come
with the use of even and but. Instead, it is produced by an interaction between
the content of the claim being made and the conversational setting in which it
is  made.  Conversational  implicatures  may  be  canceled  while  implicatures
attaching to particular words typically cannot be canceled without lapsing into
the sort incoherence exhibited by Even John was laughing, but John always
laughs. Although it is not easy to say exactly how conversational implicatures
arise in the case of disjunction, it does seem clear that any suggestion that the
alternatives are not both true depends on the setting in which the disjunction is
asserted. For example, if it was clear to everyone that the speaker’s knowledge
of Al’s  plans was derived from his  responses on the kind of  questionnaire
described above, Al will visit France or Germany would carry no suggestion
that Al would not visit both.

Of  course,  to  assume  that  or  in  English  always  expresses  inclusive
disjunction is to not claim that exclusive disjunction cannot be expressed in
English. We can, of course, always rule out the possibility that two alternatives
are both true if we choose to do so. But, if this is to be done through the truth
conditions of what we say (rather than through an implicature), we must rule
out the possibility explicitly by, for example, saying something of the form φ
or ψ but not both. And, in our notation, we have the following two forms:

Inclusive disjunction Exclusive disjunction
φ ∨ ψ (φ ∨ ψ) ∧ ¬ (φ ∧ ψ)

either φ or ψ both either φ or ψ and not both φ and ψ
But, for the remainder of this text, the term disjunction without qualification
will always refer to inclusive disjunction—i.e., to the form φ ∨ ψ.
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4.1.3. Disjunction in English

Once we set aside controversies about the meaning of or, there are few special
problems that arise in analyzing sentences as disjunctions. Of course, we must
continue  to  be  careful  that  the  components  we  identify  are  independent
sentences and that they really may be combined by disjunction to capture the
content of the original sentence. This can keep us from analyzing a sentence as
a disjunction even though it  contains the word or.  For example,  Everyone
stood at either the port or the starboard railing may not be analyzed as
Everyone stood at the port railing ∨ everyone stood at the starboard
railing.

The  word  or  may be  used  in  English  to  join  a  series  of  items and our
approach  to  such  serial  disjunctions  will  similar  to  that  used  for  serial
conjunctions. We need to use two disjunctions and impose some grouping, but
it  will  not  matter  which disjunction we take to  have the wider  scope.  The
parentheses indicating the grouping we impose may be suppressed when an
analysis is written—so Al will visit England, France, or Germany could be
analyzed using a run-on disjunction as

Al will visit England ∨ Al will visit France ∨ Al will visit Germany

However,  we must  recognize the  grouping again in  order  to  apply laws of
entailment stated for two-component disjunctions.

There are few stylistic variants of or in English, but there is one especially
clear way of stating an inclusive disjunction that deserves some comment. We
might avoid any suggestion that Al will not visit both France and Germany by
restating our earlier example as follows.

Al will visit at least one of France and Germany.

That  we can have any chance at  all  of  avoiding the implicature requires
some explanation because,  even though conversational  implicatures  are  not
part of the content of what we say, they derive from it. So it is hard to avoid
them (in a given conversational context) by saying the same thing in different
words. Perhaps we succeed in the case at hand because the phrase at least
one is slightly stilted and would be appropriate only if the simpler form or
could not be used. The stilted language could provide a clue to the audience
that  the  speaker  wants  to  avoid  the  implicatures  ordinarily  carried  by  a
disjunction, and the implicature that is carried by the content of the assertion
would then end up being canceled by the way that content was expressed.

The phrase at least one seems stilted in part because it presents a simple

disjunction as if it was chosen from a whole family of similar claims, each
saying  something  about  how  many  alternatives  from  a  list  are  true.  For
example, we might say that Al will not visit both countries by means of the
following:

Al will visit at most one of France and Germany.

And we could state an exclusive disjunction as follows:

Al will visit exactly one of France and Germany.

Notice that this last sentence can be analyzed as the conjunction of the two
preceding it.

With a list of more than two alternatives, there is a greater variety of claims
of this sort; but, like the examples above, all of them can be expressed quite
directly using conjunction, negation, and disjunction. For example, let us try to
express the following sentence as a compound of the three abbreviated below
it:

Exactly two of Dan, Ed, and Fred will make the finals

D: Dan will make the finals;
E: Ed will make the finals;
F: Fred will make the finals

As a first step in analyzing this sentence, we may note that it can be regarded
as a conjunction of two claims, one saying that at least two of the three will
make it and the other saying that at most two will.

A claim that at most two will make it denies that all three will make it and
can be expressed as ¬ (D ∧ E ∧ F). The claim that at least two will make it
tells us that there is at least one true sentence of the form a and b will make
the finals where a and b are different names chosen from among Dan, Ed,
and Fred. Now there are three non-equivalent sentences of this form—namely,
D ∧ E, D ∧ F, and E ∧ F—so what we wish to say is that at least one of these
three  sentences  is  true.  This  can  be  expressed  by  the  run-on  disjunction
(D ∧ E) ∨ (D ∧ F) ∨ (E ∧ F). Putting the two analyses together, we get

((D ∧ E) ∨ (D ∧ F) ∨ (E ∧ F)) ∧ ¬ (D ∧ E ∧ F)

as an analysis of the claim that exactly two will make it.
This analysis is admittedly complex, and no one would choose to carry out

an analogous analysis for even a moderately long list of alternatives; but the
fact that it would be theoretically possible to carry it out is interesting, for it
shows  that  we  can  understand  some  implications  that  seem  to  depend  on
numerical reasoning—for example, the validity of



Exactly two of Dan, Ed, and Fred will make the finals

At least one of Dan, Ed, and Fred will make the finals

solely in terms of the logical properties of and, or, and not. In 8.3.2 , we will
see that this idea can be carried further by using other logical constants. The
possibility of understanding numerical reasoning as an aspect of purely logical
reasoning was one of the key reasons for Frege’s interest in logic and one of
the chief motivations for its development at the end of the 19th and beginning
of the 20th centuries.
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4.1.4. Further examples

The  first  example  below  illustrates  the  difference  between  not  both  and
neither-nor,  but  it  does  so  with  an analysis  of  the  latter  that  is  closer  to
English than the one that was used in the examples of 3.1.5 .

Ann and Bill didn’t both enjoy the meal but neither complained about it
Ann and Bill didn’t both enjoy the meal ∧ neither Ann nor Bill

complained about the meal
¬ Ann and Bill both enjoyed the meal ∧ ¬ either Ann or Bill complained

about the meal
¬ (Ann enjoyed the meal ∧ Bill enjoyed the meal) ∧ ¬ (Ann complained

about the meal ∨ Bill complained about the meal)

¬ (A ∧ B) ∧ ¬ (C ∨ D)
not both A and B and not either C or D

A: Ann enjoyed the meal; B: Bill enjoyed the meal; R: Ann complained
about the meal; S: Bill complained about the meal

The second example is a sample of the complexity of structure we are now
in a position to find in even fairly ordinary sentences.

Either Smith went ahead without Jones or Hardy backing him, or else
Brown knew of his wishes and carried them out without consulting him

Smith went ahead without Jones or Hardy backing him ∨ Brown knew
of Smith’s wishes and carried them out without consulting him

(Smith went ahead ∧ ¬ Jones or Hardy backed Smith) ∨ (Brown knew of
Smith’s wishes ∧ Brown carried out Smith’s wishes without consulting

him)

(Smith went ahead ∧ ¬ (Jones backed Smith ∨ Hardy backed Smith
)) ∨ (Brown knew of Smith’s wishes ∧ (Brown carried out Smith’s

wishes ∧ ¬ Brown consulted Smith))

(A ∧ ¬ (J ∨ H)) ∨ (K ∧ (C ∧ ¬ N))
either both A and not either J or H or both K and both C and not N

A: Smith went ahead; C: Brown carried out Smith’s wishes; H: Hardy
backed Smith; J: Jones backed Smith; K: Brown knew of Smith’s

wishes; N: Brown consulted Smith

Notice how often it was necessary to replace a pronoun by its antecedent in
order  to  uncover  components  that  were  independent  sentences.  If  this



replacement changed the meaning, analysis would be impossible.
Consider a sentence like the one above but having a certain partner where

that one has the name Smith.

Either a certain partner went ahead without Jones or Hardy backing
him, or else Brown knew of his wishes and carried them out without

consulting him

We can analyze this as a disjunction A certain partner went ahead without
Jones or Hardy backing him ∨ Brown knew of a certain partner’s wishes
and carried them out without consulting him; but we can go no further
with the analysis until we have other sorts of logical form at our disposal.
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4.1.s. Summary

While the logical word or is grammatically similar to and, its logical role is
to weaken claims by hedging them with a second alternative rather than to
strengthen them by adding with a second assertion. This difference from
conjunction is expressed by the truth table of the connective disjunction ,
according to which a disjunction is  true when at  least  one true sentence
among  its  components,  which  are  called  disjuncts .  The  symbol  ∨  (
logical or ) is our notation for the operation of disjunction, and its scope is
marked by parentheses. Alternatively, we can write a disjunction φ ∨ ψ as
either φ or ψ, where either serves (like both with conjunction) to indicate
scope.

The truth of a disjunction when both its components are true distinguishes
inclusive disjunction  from  another  logical  form,  exclusive disjunction ,
whose compounds are true only when exactly one component is true. While
English sentences stated with or often convey the idea that two alternatives
are not both true, it can be argued that this information is conveyed as an
implicature rather than an implication and that, as far as its truth conditions
are concerned,  the English word or  may be taken as a sign of inclusive
disjunction.

As is true of conjunction, there are cases where a word like or  marking
disjunction appears in a sentence but the sentence cannot be analyzed as a
disjunction due to our inability to replace pronouns by their antecedents.
Also, English has serial disjunctions  just as it has serial conjunctions; and
serial  disjunction  in  English  can  be  mimicked  to  some  degree  by
run-on disjunctions ,  which  suppress  parentheses.  Disjunction  can  be
expressed in English by the phrase at least one, one of the group of related
phrases  indicating  numerical  compounding  operations.  In  some  cases,
sentences  containing  these  phrases  can  be  analyzed  by  employing
disjunction along with conjunction and negation.

Finally,  disjunction  provides  an  alternative,  and  more  natural,  way  of
analyzing neither-nor claims .
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4.1.x. Exercise questions
1. Analyze each of the following sentences in as much detail as possible.
 a. Either Tommy ate his vegetables or he didn’t get any dessert.
 b. Mike heard neither the phone nor the doorbell.
 c. Either Mike wasn’t home or he wasn’t answering the phone.
 d. The package was sent, but either it’s still on its way or it’s

been lost in the mail.
 e. Neither the House nor the Senate had acted on the bill, but

the White House expressed confidence that it would pass.
 f. Sam won’t pass through without either stopping by or calling.
 g. Either Davis or Edwards will take you or give you directions.
 h. We’ll have either a can without an opener or an opener without

a can.
 i. Neither Jan nor Ken had matches or a lighter.
 j. Both Ann and Bill were in town but neither knew the other

was.
 k. Either Tom, Dick, or Harry will handle both the scheduling and

the publicity.
 l. The scheduling will be handled by either Tom, Dick, or

Harry—as will the publicity.
2. Restate each of the following forms, putting English notation into

symbols and vice versa. Indicate the scope of connectives in the result by
underlining.

 a. A ∧ (B ∨ C)
 b. (A ∧ B) ∨ C
 c. not either A or not B
 d. both either A or B and either A or C
3. Synthesize idiomatic English sentences that express the propositions

associated with the logical forms below by the intensional interpretations
that follow them.

 a. B ∨ N
B: it was the butler; N: it was the nephew

 b. ¬ (A ∨ S)
A: the alarm worked; S: the sprinkler worked

 c. ¬ A ∨ ¬ P
A: the part arrived; P: the part was the problem

 d. A ∨ ¬ (B ∧ C)
A: Ann has a large car; B: Bill will ride with us; C: Carol will

ride with us
 e. (R ∨ D) ∧ W

D: there was a heavy dew; R: it rained over night; W: it is wet
 f. (A ∧ Z) ∨ (F ∧ ¬ (A ∨ Z))

A: AAA ∧ Co. will profit from the deal; F: the deal will fall
through; Z: ZZZ Inc. will profit from the deal
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4.1.xa. Exercise answers

1. a. Tommy ate his vegetables ∨ Tommy didn’t get any dessert
Tommy ate his vegetables ∨ ¬ Tommy got dessert

V ∨ ¬ D
either V or not D

D: Tommy got dessert; V: Tommy ate his vegetables
 b. ¬ (Mike heard either the phone or the doorbell)

¬ (Mike heard the phone ∨ Mike heard the doorbell)

¬ (P ∨ D)
not either P or D

D: Mike heard the doorbell; P: Mike heard the phone
 c. Mike wasn’t home ∨ Mike wasn’t answering the phone

¬ Mike was home ∨ ¬ Mike was answering the phone

¬ H ∨ ¬ P
either not H or not P

H: Mike was home; P: Mike was answering the phone
 d. The package was sent ∧ either the package is still on its way

or it’s been lost in the mail
The package was sent ∧ (the package is still on its way ∨ the

package has been lost in the mail)

S ∧ (W ∨ L)
both S and either W or L

L: the package has been lost in the mail; S: the package was
sent; W: the package is still on its way

 e. Neither the House nor the Senate had acted on the bill ∧ the
White House expressed confidence that the bill would pass

¬ either the House or the Senate had acted on the bill ∧ the
White House expressed confidence that the bill would pass

¬ (the House had acted on the bill ∨ the Senate had acted on
the bill) ∧ the White House expressed confidence that the
bill would pass

¬ (H ∨ S) ∧ W
both not either H or S and W

H: the House had acted on the bill; S: the Senate had acted on

the bill; W: the White House expressed confidence that the
bill would pass

 f. ¬ Sam will pass through without either stopping by or calling
¬ (Sam will pass through ∧ ¬ Sam will either stop by or call)
¬ (Sam will pass through ∧ ¬ (Sam will stop by ∨ Sam will call))

¬ (P ∧ ¬ (S ∨ C))
not both P and not either S or C

C: Sam will call; P: Sam will pass through; S: Sam will stop by
 g. Davis will take you or give you directions ∨ Edwards will take

you or give you directions
(Davis will take you ∨ Davis will give you

directions) ∨ (Edwards will take you ∨ Edwards will give you
directions)

(D ∨ G) ∨ (E ∨ V)
either either D or G or either E or V

D: Davis will take you; E: Edwards will take you; G: Davis will
give you directions; V: Edwards will give you directions

 h. We’ll have a can without an opener ∨ we’ll have an opener
without a can

(we’ll have a can ∧ we won’t have an opener) ∨ (we’ll have an
opener ∧ we won’t have a can)

(we’ll have a can ∧ ¬ we’ll have an opener) ∨ (we’ll have an
opener ∧ ¬ we’ll have a can)

(C ∧ ¬ O) ∨ (O ∧ ¬ C)
either both C and not O or both O and not C

C: we’ll have a can; O: we’ll have an opener
 i. ¬ either Jan or Ken had matches or a lighter

¬ (Jan had matches or a lighter ∨ Ken had matches or a
lighter)

¬ ((Jan had matches ∨ Jan had a lighter) ∨ (Ken had
matches ∨ Ken had a lighter))

¬ ((M ∨ L) ∨ (K ∨ G))
not either either M or L or either K or G

G: Ken had a lighter; K: Ken had matches; L: Jan had a lighter;
M: Jan had matches



 j. Both Ann and Bill were in town ∧ neither Ann nor Bill knew the
other was in town

(Ann was in town ∧ Bill was in town) ∧ ¬ either Ann or Bill knew the
other was in town

(Ann was in town ∧ Bill was in town) ∧ ¬ (Ann knew Bill was in
town ∨ Bill knew Ann was in town)

(A ∧ B) ∧ ¬ (K ∨ N)
both both A and B and not either K or N

A: Ann was in town; B: Bill was in town; K: Ann knew Bill was in
town; N: Bill knew Ann was in town

 k. Tom will handle both the scheduling and the publicity ∨ Dick will
handle both the scheduling and the publicity ∨ Harry will handle
both the scheduling and the publicity

(Tom will handle the scheduling ∧ Tom will handle the
publicity) ∨ (Dick will handle the scheduling ∧ Dick will handle
the publicity) ∨ (Harry will handle the scheduling ∧ Harry will
handle the publicity)

(T ∧ P) ∨ (D ∧ B) ∨ (H ∧ L)
(both T and S) or (both D and C) or (both T and S)

[B: Dick will handle the publicity; D: Dick will handle the
scheduling; H: Harry will handle the scheduling; L: Harry will
handle the publicity; P: Tom will handle the publicity; T: Tom will
handle the scheduling]
Note: this sentence is ambiguous and could also be interpreted as
equivalent to the following one.

 l. The scheduling will be handled by either Tom, Dick, or
Harry ∧ the publicity will be handled by either Tom, Dick, or
Harry

(the scheduling will be handled by Tom ∨ the scheduling will be
handled by Dick ∨ the scheduling will be handled by
Harry) ∧ (the publicity will be handled by Tom ∨ the publicity
will be handled by Dick ∨ the publicity will be handled by Harry)

(T ∨ D ∨ H) ∧ (P ∨ B ∨ L)
both (T or D or H) and (P or B or L)

B: the publicity will be handled by Dick; D: the scheduling will be
handled by Dick; H: the scheduling will be handled by Harry; L: the

publicity will be handled by Harry; P: the publicity will be handled
by Tom; T: the scheduling will be handled by Tom

2. a. both A and either B or C
 

 b. either both A and B or C
 

 c. ¬ ( A ∨ ¬ B )
  

 d. ( A ∨ B ) ∧ ( A ∨ C )
 

3. a. It was the butler ∨ it was the nephew
It was either the butler or the nephew

 b. ¬ (the alarm worked ∨ the sprinkler worked)
¬ (either the alarm or the sprinkler worked)
Neither the alarm nor the sprinkler worked

 c. ¬ the part arrived ∨ ¬ the part was the problem
The part didn’t arrive ∨ the part wasn’t the problem
Either the part didn’t arrive or it wasn’t the problem

 d. Ann has a large car ∨ ¬ (Bill will ride with us ∧ Carol will ride
with us)

Ann has a large car ∨ ¬ Bill and Carol will ride with us
Ann has a large car ∨ Bill and Carol won’t both ride with us
Either Ann has a large car or Bill and Carol won’t both ride

with us
Note: both is introduced here to help distinguish this sentence from
A ∨ (¬ B ∧ ¬ C)

 e. (it rained over night ∨ there was a heavy dew) ∧ it is wet
It rained over night or there was a heavy dew ∧ it is wet
It rained over night or there was a heavy dew but, either way,

it is wet
Note: either way here serves to indicate that the scope of the
disjunction has ended and that the final clause is unhedged and but
reinforces this by marking the contrast between the indefinite
disjunction and the definite final clause.

 f. (AAA ∧ Co. will profit from the deal ∧ ZZZ Inc. will profit
from the deal) ∨ (the deal will fall through ∧ ¬ (AAA ∧ Co.
will profit from the deal ∨ ZZZ Inc. will profit from the
deal))



AAA ∧ Co. and ZZZ Inc. will both profit from the deal ∨ (the
deal will fall through  ∧ ¬ (either AAA ∧ Co. or ZZZ Inc. will
profit from the deal))

AAA ∧ Co. and ZZZ Inc. will both profit from the deal ∨ (the
deal will fall through ∧ neither AAA ∧ Co. nor ZZZ Inc. will
profit from the deal)

AAA ∧ Co. and ZZZ Inc. will both profit from the deal ∨ the
deal will fall through and neither AAA ∧ Co. nor ZZZ Inc.
will profit from it)

Either AAA ∧ Co. and ZZZ Inc. will both profit from the deal,
or the deal will fall through and neither will profit from it
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4.2. Arguing from and for alternatives
4.2.0. Overview
Because  a  disjunction  normally  says  less  than  its  components  while  a
conjunction  says  more,  the  two  connectives  play  very  different  roles  in
deductive inference.

4.2.1. Proofs by cases
Since a disjunction says only what is said by both its disjuncts, it entails
only things that both of them entail.

4.2.2. Proving disjunctions
Since a disjunction makes a relatively weak claim, it is easy to state a sound
rule to plan for it, but a safe rule that will cover all cases where it holds is
more complex.

4.2.3. Further examples
There are now many choices to be regarding the order in which rules are
applied and some differences in the length of derivations can result.

4.2.4. The duality of conjunction and disjunction
Conjunction and disjunction are, in a certain formal sense, mirror images of
one another.
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4.2.1. Proofs by cases
The validity of the argument

Sam didn’t praise the proposal without granting its
significance

Sam didn’t condemn the proposal without granting its
significance

Sam either praised or condemned the proposal

Sam granted the proposal’s significance.

can be accounted for by the validity of the following two arguments:
Sam didn’t praise the proposal

without granting its
significance

Sam didn’t condemn the proposal
without granting its
significance

Sam praised the proposal
Sam granted the proposal’s

significance

 

Sam didn’t praise the proposal
without granting its
significance

Sam didn’t condemn the proposal
without granting its
significance

Sam condemned the proposal
Sam granted the proposal’s

significance

Each replaces the disjunctive third premise of the original argument by one of
its  two  components.  This  way  of  establishing  an  entailment  is  sometimes
called a proof by cases. In this example, the two cases are Sam having praised
the proposal and Sam having condemned it. Since the disjunction says all and
only what is common to these two claims, what follows from the disjunction in
isolation or in addition to other premises is what follows from each of these
claims under similar circumstances.

More formally, the idea behind proofs by cases is captured by this principle:

LAW FOR DISJUNCTION AS A PREMISE. Γ, φ ∨ ψ ⊨ χ if and only if both Γ,
φ ⊨ χ and Γ, ψ ⊨ χ (for any set Γ and sentences φ, ψ, and χ).

To see why this law is true note that to divide the members of Γ and φ ∨ ψ on
the one hand from χ on the other, a possible world must make φ ∨ ψ and all
members of Γ true while making χ false. To do this it must make at least one
of φ and ψ true, so it must divide at least one of the arguments Γ, φ / χ and Γ,
ψ / χ. So, to say that the original argument is valid is to say that neither of
these latter arguments can have its premises and alternatives divided—that is,
that both are valid.

This  idea appears  in  derivations by way of  a  rule  we will  call  Proof  by
Cases (PC); it is shown in Figure 4.2.1-1.

│⋯
│φ ∨ ψ
│⋯
│
││⋯
││
││
││
││
││
││
││
││
││
││
││
││
│├─
││χ
│⋯

→

│⋯
│φ ∨ ψ n
│⋯
│
││⋯
││
│││φ
││├─
│││
││├─
│││χ n
││
│││ψ
││├─
│││
││├─
│││χ n
│├─

n PC││χ
│⋯

Fig. 4.2.1-1. Developing a derivation by exploiting a disjunction at stage n.

PC divides a gap into two new gaps. Each is a case argument that retains the
original  goal  but  adds  one  of  the  components  of  the  disjunction  as  a
supposition. The function of each supposition is to specify one of the two sorts
of  case in which the original  disjunction is  true.  A supposition is  required
because, although our premises tell us that at least one of the disjuncts is true,
we do not know which that is and the one that is true will vary among the
possible worlds in which the premises are all true.

The safety and soundness (indeed, strictness) of this rule is shown by its
effect on proximate arguments, which follows the pattern of law for disjunction
as a premise understood as a rule for sequent proofs:

That is, moving from the root to the two branches, we exploit φ ∨ ψ and thus
drop  it  from  the  active  resources,  and  we  add  assumptions  φ  and  ψ  by
introducing suppositions φ and ψ with separate scope lines. The goal of the
parent gap is carried over to each of its two children. The rule is safe because
any interpretation dividing one of the children is bound to make the resources
of the parent  true because φ  ∨  ψ  is  implied by each of φ  and ψ,  and the
requirement to make χ false remains unchanged as we move from the parent to
the  children.  And the  rule  is  strict  because  any  interpretation  dividing  the
parent must, in order to make φ ∨ ψ true, make true at least one of φ and ψ.

As  in  other  cases,  the  use  of  numerical  annotations  in  PC  reflects  the

Γ, φ ⊨ χ Γ, ψ ⊨ χ

Γ, φ ∨ ψ ⊨ χ
disj. as
prem.



corresponding rule for tree-form proofs:

The conclusion χ is based on three premises (two with assumptions that are
discharged when we draw this conclusion), so in derivations the stage number
appears on the right of three lines, the disjunction that is exploited and the
goals of the two new scope lines.

Here is a derivation which uses derivation rule to provide a proof for the
example with which we began.

 

φ ∨ ψ

φ╱

χ

ψ╱

χ

χ
PC

│¬ (P ∧ ¬ G) (4)
│¬ (C ∧ ¬ G) (7)
│P ∨ C 1
├─
││P (3)
│├─
│││¬ G (3)
││├─

3 Adj│││P ∧ ¬ G X,(4)
│││●
││├─

4 Nc │││⊥ 2
│├─

2 IP ││G 1
│
││C (6)
│├─
│││¬ G (6)
││├─

6 Adj│││C ∧ ¬ G X,(7)
│││●
││├─

7 Nc │││⊥ 5
│├─

5 IP ││G 1
├─

1 PC │G

C: Sam condemned the proposal; G: Sam granted the proposal’s
significance; P: Sam praised the proposal

In the two case arguments, we suppose first that Sam praised the proposal and
then that  he condemned it  and,  in each case,  we show that  he granted the
proposal’s significance (by showing that he could not have failed to grant it).
Since at least one of these two cases must be true whenever the premises are
all true, we know that the conclusion must be true also.

The rule for tree-form proofs displayed above shows that PC represents a
new function for suppositions. Like Lem (or the special case LFR) on the one
hand and RAA and IP on the other, we use suppositions in PC to consider the
consequences of claims without asserting them. But, while we did this in RAA
and IP in order to show the suppositions were false and in Lem and LFR in
order  to  separate  the  proof  of  a  claim  from  the  investigation  of  its
consequences, we do it here to consider separately the consequences of two
alternatives without deciding which of the two is true.

The  rule  for  tree-form  proofs  also  makes  it  clear  that,  apart  from  the
separation of φ and ψ, the form of PC is much like that of Lem, but there is an
important difference in the way they are employed in proofs. The rule Lem
would be used to initiate the search for a proof of its first premise. But, while
the tree-form rule PC might be used in this way, we use PC in derivations



instead to derive consequences from a premise φ ∨ ψ that has already been
established, and that aspect of the derivation rule is better reflected in the rule
for sequent proofs.
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4.2.2. Proving disjunctions
Now let us look at disjunctions as conclusions. An entailment Γ ⊨ φ ∨ ψ will
hold if and only if φ ∨ ψ is true in every possible world in which all members
of Γ are true. But this is to say that at least one of φ and ψ is true in every such
world, and that is a way of saying that Γ renders φ and ψ jointly exhaustive. So
we can state the following principle:

Γ ⊨ φ ∨ ψ if and only if Γ ⊨ φ, ψ

Since the right-hand side has two alternatives, this is not a law concerning
entailment alone, and we will not take the principle in this form as our account
of the role of disjunctions as conclusions. However, we can use the basic law
for  conditional  exhaustiveness  to  restate  the  right-hand  side  as  claim  of
entailment.  Indeed  we  have  two  ways  of  doing  that.  If  φ  and  φ′  are
contradictory, we can say

Γ ⊨ φ ∨ ψ if and only if Γ, φ′ ⊨ ψ

and if ψ and ψ′ are contradictory, we can say

Γ ⊨ φ ∨ ψ if and only if Γ, ψ′ ⊨ φ

In short, a disjunction is a valid conclusion from premises Γ  if and only if
adding to our premises a sentence contradictory to one disjunct enables us to
validly conclude the other disjunct.

In stating a principle for disjunction we will limit ourselves to cases where a
sentence and its negation are the pair of contradictory sentences. But, when the
disjuncts are already negative, that leaves us with two choices for each of the
pairs φ and φ′ and ψ and ψ′ since each of φ′ and ψ′ might be the result of
either adding or dropping a negation. To avoid stating four principles to cover
each  of  these  possibilities,  we will  introduce  some notation  to  capture  the
general idea of obtaining a contradictory sentence by either adding or dropping
a negation. Let the sentence ¬  φ be the result of negating φ with an optional
added step of deleting a double negation if φ was already negative. Then ¬  φ
will stand for ¬ φ when φ is not a negation and, when φ is the negation ¬ χ, it
will stand for either ¬ ¬ χ or χ. That is, ¬  φ is the result of either negating or,
perhaps, de-negating φ, which means that ¬  φ will either be the negation of φ
or have φ as its negation.

Then ¬  φ and φ form a contradictory pair consisting of a sentence and its
negation in one order or the other, so we may formulate a principle to account
for conclusions that are disjunctions with only two statements:

±

±

±

±

±



LAW  FOR  DISJUNCTION  AS  A  CONCLUSION.  (i)  Γ  ⊨  φ  ∨  ψ  if  and only if
Γ, ¬  φ ⊨ ψ, and (ii) Γ ⊨ φ ∨ ψ if and only if Γ, ¬  ψ ⊨ φ (for any set Γ
and sentences φ, ψ, and χ).

When these are implemented as derivation rules,  they give us two ways of
planning for a disjunctive goal.

The two rules are shown as alternative developments in Figure 4.2.2-1. We
will refer to both forms of the rule as Proof of Exhaustion (PE) since it is a way
of showing that φ and ψ, taken together, exhaust all possibilities left open by
the premises.

│⋯
││⋯
││
││
││
││
││
│├─
││φ ∨ ψ
│⋯

→

│⋯
││⋯
│││¬  φ
││├─
│││
││├─
│││ψ n
│├─

n PE││φ ∨ ψ
│⋯

OR

│⋯
││⋯
│││¬  ψ
││├─
│││
││├─
│││φ n
│├─

n PE││φ ∨ ψ
│⋯

Fig. 4.2.2-1. Alternative ways of developing a derivation by planning for a
disjunction at stage n.

In  each  way  of  developing  a  gap,  we  set  one  of  the  components  of  the
disjunction as a new goal and add the negation or de-negation of the other
component as a supposition. In each way of developing a gap, we set one of
the components of the disjunction as a new goal.

Both forms of planning will lead to the same answer in the end, but one or
the other may be more efficient in a particular case. There is no simple way of
predicting which choice is best but the following rules of thumb may help:

(i) if only one component is a negation, choose it to form the supposition (by
dropping its negation);

(ii) if only one component is a non-negative compound choose it as the goal;
(iii) if only one component seems likely to figure in closing the gap and it is

not a negation, choose it as the goal.

In many cases none of these suggestions will apply; but, in most such cases,
neither one of the two forms of the rule is better than the other.

As an example of this rule, consider the argument below, understanding X
was out to be the denial of X was home. The validity of this argument can be
established by the English derivation whose first stage is shown at the right.

± ±

± ±

 Ann and Bill were not both home
without the car being in the
driveway

The car was not in the driveway

Either Ann or Bill was out

 │¬ ((A ∧ B) ∧ ¬ C)
│¬ C
├─
││A
│├─
││
│├─
││¬ B 1
├─

1 PE│¬ A ∨ ¬ B

The overall form is that of a argument that we will call “hypothetical” (for
reasons  discussed  below)  in  which  we  suppose  that  Ann  was  at  home  (a
supposition that is one of the two possibilities for ¬  ¬ A) and establish under
this supposition that Bill  was out.  This shows the connection between Ann
being out and Bill being out that we claim when we state, outside the scope of
the supposition, that at least one was out.

Notice that if we continue the derivation
│¬ ((A ∧ B) ∧ ¬ C)
│¬ C
├─
││A
│├─
│││B
││├─
│││
││├─
│││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B
we plan  for  the  goal  ¬  B by  supposing  B for  reductio.  And this  example
illustrates the different functions of the two sorts of supposition. We suppose
that Ann is home in order to show that ¬ B (i.e., Bill is out) is true in all
possible worlds in which ¬ A (i.e., Ann is out) is false. We go on to show that
¬ B is true in these cases by showing that to suppose further that B would rule
out all possibilities—i.e., that this supposition would be absurd when added to
our premises and the supposition A. From one point of view, both suppositions
are merely added assumptions. But we add the first in order to show that to
accept the second would be to go too far. That is, we add the second in order to
show that we cannot accept it given the first, and we add the first to show that
the second is related to it in this way.

To complete the derivation, we might exploit the first premise by CR, and
this is the only way to proceed using basic rules. Doing this would make the
conjunction  (A  ∧  B)  ∧  ¬  C  our  goal;  and,  since  its  components  are  all

±



resources,  it  is  clear  that  the  gap  would  close.  But,  seeing  this,  we  might
choose instead to derive that conjunction by Adj.

│¬ ((A ∧ B) ∧ ¬ C) (5)
│¬ C (4)
├─
││A (3)
│├─
│││B (3)
││├─

3 Adj │││A ∧ B (4)
4 Adj │││(A ∧ B) ∧ ¬ C (5)

│││●
││├─

5 Nc │││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B
Either way we are completing the reductio, in one case under the guidance of
the rules and in the other under our own direction.

As noted above, the supposition in PE may be described as hypothetical, and
this indicates the role it plays, a fourth role on top of those we have seen in
Lem  and  LFR,  in  RAA  and  IP,  and  in  PC.  In  RAA  and  IP,  we  make
suppositions with the aim of showing that they are false. In Lem and LFR, we
make a supposition to investigate the consequences of a claim that we plan to
separately show to be true.  In PC, we make a pair  of suppositions,  having
already shown that at least one is true. In PE on the other hand, a supposition
is made with no expectation of either truth or falsity. It is made instead simply
to establish a connection between it and some other claim. As we argue within
the  scope  of  the  supposition,  we  are  making  a  hypothetical  argument,  an
argument  made  “under  a  hypothesis.”  The  conclusion  we  draw  when  we
discharge the supposition states a connection between the hypothesis and the
conclusion of the hypothetical argument. This statement no longer falls under
the  supposition,  and  that  can  be  indicated  by  saying  that  it  is  stated
categorically.

In each of the two forms of PE, shown here as a rule for tree-form proofs,

the conclusion after the hypothetical argument says that at least one of two
sentences is true. This is to say that, if one is false, the other is true. And this is

¬  φ±╱╱╱

ψ

φ ∨ ψ
PE

¬  ψ±╱╱╱

φ

φ ∨ ψ
PE

the  connection  established  between  the  supposition  and  conclusion  of  the
hypothetical argument in each form of the rule.

There is some danger of getting tangled in the terminology here, so let’s
pause and look at it more closely. The terms hypothetical and categorical
derive from an ancient classification of sentences into the “categorical,” the
“disjunctive,”  and  the  “hypothetical.”  Since  disjunctions  and  “hypothetical
sentences” (the conditionals  to  be studied in the next  chapter)  are  ways of
hedging claims, the term categorical has acquired the meaning ‘unhedged’.
Now the disjunctive goal to which we applied this term above certainly hedges
each of  its  components,  so it  does not  state  them categorically.  But,  while
sentences along the scope line of the hypothetical argument are stated only
“under  a  hypothesis”—that  is,  under  the  supposition  of  the  hypothetical
argument—the disjunction following the argument is no longer hedged in this
way.  That  means  it  is  stated  categorically  with  respect  to  that  supposition
(though it may still fall in the scope of earlier ones). In short, when the scope
line of a hypothetical argument ends, we move from hedged assertion of some
claim (in the example above, the assertion of ¬ B under the hypothesis A) to
unhedged assertion of a claim that incorporates a hedge (i.e., ¬ A ∨ ¬ B in the
example).
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4.2.3. Further examples

Both disjunction rules are illustrated
by  the  derivation  at  the  right,  in
which  one  grouping of  a  three-part
disjunction  is  shown  to  entail  the
other. Choices between the two ways
of  planning  for  a  goal  disjunction
were made at stages 2, 3, 5, 6, and 7
in  accordance  with  the  rules  of
thumb  given  above.  Each  choice
helped  to  shorten  the  derivation
—though only  by  a  few steps.  The
derivation  is  contrived  to  provide
several  examples  of  this  rule;  we
might  have  instead  planned  for  the
initial  goal  at  stage  1  before
exploiting  the  premise  rather  than
planning for it separately in each of
three gaps.

 │A ∨ (B ∨ C) 1
├─
││A (4)
│├─
│││¬ C
││├─
││││¬ B
│││├─
││││●
│││├─

4 QED ││││A 3
││├─

3 PE │││A ∨ B 2
│├─

2 PE ││(A ∨ B) ∨ C 1
│
││B ∨ C 5
│├─
│││B (8)
││├─
││││¬ C
│││├─
│││││¬ A
││││├─
│││││●
││││├─

8 QED │││││B 7
│││├─

7 PE ││││A ∨ B 6
││├─

6 PE │││(A ∨ B) ∨ C 5
││
│││C (10)
││├─
││││¬ (A ∨ B)
│││├─
││││●
│││├─

10 QED││││C 9
││├─

9 PE │││(A ∨ B) ∨ C 5
│├─

5 PC ││(A ∨ B) ∨ C 1
├─

1 PC │(A ∨ B) ∨ C

The two derivations  below illustrate  the  scale  of  the  difference  you can
expect a choice between the two forms of PE to make.

│B (3)
├─
││¬ A
│├─
│││¬ C
││├─
│││●
││├─

3 QED│││B 2
│├─

2 PE ││B ∨ C 1
├─

1 PE │A ∨ (B ∨ C)

 │B (5)
├─
││¬ (B ∨ C) 3
│├─
│││¬ A
││├─
│││││¬ C
││││├─
│││││●
││││├─

5 QED│││││B 4
│││├─

4 PE ││││B ∨ C 3
││├─

3 CR │││⊥ 2
│├─

2 IP ││A 1
├─

1 PE │A ∨ (B ∨ C)

Each chooses a different way of planning for the initial goal at stage 1. Notice
that in the second, which makes the less efficient choice, we are led back to the
goal B ∨ C in a couple of stages.
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4.2.4. The duality of conjunction and disjunction
While a conjunction and a disjunction formed from the same components are
certainly  not  contradictories,  the  two  connective  are  opposites  in  another
sense, the one for which we have used the term dual.

This duality can be expressed in one way by saying that when conjunction
and  disjunction  are  applied  to  pairs  of  sentences  whose  corresponding
components are contradictory, the results are contradictory. For example, let us
again take X was home and X was out to be contradictories. Then note that to
get a sentence contradictory to Ann and Bill were home, we cannot take Ann
and Bill were out since both would be false if one of Ann and Bill was home
and the other out. To get a contradictory to we need to cover both of those
possibilities as well, and Ann or Bill was out will do this. That is, Ann and
Bill were home is contradictory to Ann or Bill was out and, similarly, Ann or
Bill was home is contradictory to Ann and Bill were out. And this is to say
that ¬ Ann and Bill were home ≃ Ann or Bill was out and that ¬ Ann or Bill
was home ≃ Ann and Bill were out.

In cases of contradictoriness captured by the ¬  notation, these patterns of
equivalence are stated in the following principles:

DE MORGAN’S LAWS. The denial of a conjunction amounts to a disjunction
of denials, and the denial of a disjunction amounts to a conjunction of
denials. That is,

¬ (φ ∧ ψ) ≃ ¬  φ ∨ ¬  ψ
¬ (φ ∨ ψ) ≃ ¬  φ ∧ ¬  ψ

Although these laws are named after Augustus De Morgan (1806-1871), they
were known well before his time.

Another way to see the duality of conjunction and disjunction is to look at
the  principles  of  conditional  exhaustiveness.  The  table  below  follows  the
pattern of the one given for ⊥ and ⊤ in 1.4.7 .

as a premise as an alternative

Conjunction
Γ, φ ∧ ψ ⊨ Δ iff Γ, φ, ψ ⊨ Δ Γ ⊨ φ ∧ ψ, Δ iff

both Γ ⊨ φ, Δ and Γ ⊨ ψ, Δ

Disjunction
Γ, φ ∨ ψ ⊨ Δ iff

both Γ, φ ⊨ Δ and Γ, ψ ⊨ Δ
Γ ⊨ φ ∨ ψ, Δ iff Γ ⊨ φ, ψ, Δ

(Here iff is used as an abbreviation of if and only if.) Notice that the analogy
between the upper left and lower right and between the lower left and upper
right. That is, conjunction behaves as a premise much as disjunction behaves

±

± ±

± ±

as  an  alternative  and  disjunction  behaves  as  premise  much  as  conjunction
behaves as an alternative.

Since ⊥ and ⊤ are paired as duals and so are conjunction and disjunction,
you might wonder about negation. In fact, it is dual to itself. If we negate each
of a pair of contradictory sentences, the results are contradictory; that is, we do
not need to apply different operations to the two contradictory sentences in
order for the results to be contradictory. And negations behavior as a premise
is analogous to its behavior as an alternative.

Γ, ¬ φ ⊨ Δ iff Γ ⊨ φ, Δ
Γ ⊨ ¬ φ, Δ iff Γ, φ ⊨ Δ

Having a negated premise or alternative is equivalent to having the unnegated
sentence in the opposite role.

The term duality points to a certain sort of two-for-one principle. It is used
when  there  is  some  way  of  associating  vocabulary  items  as  pairs  so  that
replacing one member of a pair by the other throughout any truth will yield
another truth. In our case, we have the associations

premise alternative
⊥ ⊤

negation negation
conjunction disjunction

So,  for  example  (and  to  deal  only  with  informal  statements  of  the
principles), the principle

A conjunction as an assumption may be replaced by its components as
separate assumptions

(the upper left in the table of principles for conjunction and disjunction above)
turns into

A disjunction as an alternative may be replaced by its components as
separate alternatives

(the lower right in that table). And the principle

A  negation  as  an  assumption  may  be  replaced  by  its  immediate
component as an alternative

(the first of the principles for negation displayed above) turns into

A  negation  as  an  alternative  may  be  replaced  by  its  immediate
component as an assumption

(the  second  of  those  principles).  We  will  see  more  examples  of  such



transformations  in  the  next  section but  we have already seen some further
ones: each of the two forms of De Morgan’s laws may be transformed into the
other by this association.

Since these transformations treat assumptions and alternatives in a parallel
way, not all will apply to entailment, which allows multiple premises but only
a single alternative. However, we have also seen that principles for conditional
exhaustiveness may be transformed still further into principles of entailment
by the law alternatives via assumptions .

Glen Helman 06 Aug 2010
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4.2.s. Summary
A disjunction φ ∨ ψ is false only when its disjuncts are both false, and it
thus says only what both of them say. The law for disjunction as a premise
tell us that we can establish a conclusion using such a premise by showing
that it is entailed by each of the disjuncts (given our other premises). This
way of exploiting a disjunction is known as an proof by cases  and it appears
in our system of derivations as the rule Proof by Cases (PC)  that leads us to
divide a gap into two case arguments , each of which takes over the original
goal and adds one of the two disjuncts as a supposition.

To show that  a  disjunction is  a  valid  conclusion,  we must  show that  its
disjuncts are rendered jointly exhaustive by the premises. We can do this by
showing that one of the disjuncts will follow if we add the contradictory of
the other to our premises. We use the notation ¬  φ to indicate the result of
either negating or de-negating  φ.  The law for disjunction as a conclusion
then tells  us that  we can conclude a disjunction if  we can conclude one
disjunct provided we take the negation or de-negation of the other disjunct
as a  premise.  The rule implementing this  idea is  Proof of Exhaustion ;  it
enables us to conclude a disjunction from an argument that may be called
hypothetical  since it bases a disjunct on an assumption (of the negation or
de-negation of the other disjunct)  that  we may not be prepared to assert
categorically . It does not matter for the soundness or safety of PE which
disjunct  figures  as  the  goal  of  this  hypothetical  argument  and  which  is
negated or de-negated in its supposition.

Derivations, especially those that have a disjuction as a goal as well as a
premise can often be developed in different ways.  Some of these can be
significantly longer than others but the choice  between forms of PE will
usually have only a limited impact on the length.

Conjunction and disjunction are opposite in the sense of being dual . One
manifestation  of  this  relation  is  in  De Morgan’s laws ,  which tell  how to
restate the denial of a conjunction or disjunction as an assertion of the other
form of compound. Another manifestation is a pattern in laws of conditional
exhaustiveness which allows us to interchange conjunctions and disjunctions
if  at  the  same  time  we  interchange  ⊥  and  ⊤  and  also  premises  and
alternatives.

Glen Helman 03 Aug 2010
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4.2.x. Exercises
1. Use  derivations  to  establish  each  of  the  claims  of  entailment  and

equivalence shown below. (Remember that claims of equivalence require
derivations in both directions.)
a. A ∧ B ⊨ A ∨ B
b. A ∧ B ⊨ B ∨ C
c. A ∨ B, ¬ A ⊨ B
d. A ∨ (A ∧ B) ⊨ A
e. A ∨ B, ¬ (A ∧ C), ¬ (B ∧ C) ⊨ ¬ C
f. A ∧ (B ∨ C) ⊨ (A ∧ B) ∨ C
g. A ∨ B, C ⊨ (A ∧ C) ∨ (B ∧ C)
h. A ∨ B, ¬ A ∨ C ⊨ B ∨ C
i. A ≃ (A ∧ B) ∨ (A ∧ ¬ B)

2. Use derivations to establish each of the claims of equivalence below.
a. A ∨ A ≃ A
b. A ∨ B ≃ B ∨ A
c. A ∨ (B ∨ C) ≃ (A ∨ B) ∨ C
d. A ∨ (B ∧ ¬ B) ≃ A
e. ¬ (A ∨ B) ≃ ¬ A ∧ ¬ B
f. ¬ (A ∧ B) ≃ ¬ A ∨ ¬ B

3. Use  derivations  to  check  each  of  the  claims  below;  if  a  derivation
indicates that a claim fails, present a counterexample that divides an open
gap.
a. A ∨ B, A ⊨ ¬ B
b. A ∨ (B ∧ C) ≃ (A ∨ B) ∧ C
c. ¬ (A ∨ B) ≃ ¬ A ∨ ¬ B

For more exercises, use the exercise machine .
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4.2.xa. Exercise answers
1. a. │A ∧ B 1

├─
1 Ext │A
1 Ext │B (3)

│
││¬ A
│├─
││●
│├─

3 QED││B 2
├─

2 PE │A ∨ B
b. │A ∧ B 1

├─
1 Ext │A
1 Ext │B (3)

│
││¬ C
│├─
││●
│├─

3 QED││B 2
├─

2 PE │B ∨ C
c. │A ∨ B 1

│¬ A (3)
├─
││A (3)
│├─
│││¬ B
││├─
│││●
││├─

3 Nc │││⊥ 2
│├─

2 IP ││B 1
│
││B (4)
│├─
││●
│├─

4 QED││B 1
├─

1 PC │B



d. │A ∨ (A ∧ B) 1
├─
││A (2)
│├─
││●
│├─

2 QED││A 1
│
││A ∧ B 3
│├─

3 Ext ││A (4)
3 Ext ││B

││●
│├─

4 QED││A 1
├─

1 PC │A

e. │A ∨ B 2
│¬ (A ∧ C) 3
│¬ (B ∧ C) 7
├─
││C (6),(10)
│├─
│││A (5)
││├─
│││││●
││││├─

5 QED │││││A 4
││││
│││││●
││││├─

6 QED │││││C 4
│││├─

4 Cnj ││││A ∧ C 3
││├─

3 CR │││⊥ 2
││
│││B (9)
││├─
│││││●
││││├─

9 QED │││││B 8
││││
│││││●
││││├─

10 QED│││││C 8
│││├─

8 Cnj ││││B ∧ C 7
││├─

7 CR │││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA │¬ C

f. │A ∧ (B ∨ C) 1
├─

1 Ext │A (5)
1 Ext │B ∨ C 2

│
││B (6)
│├─
│││¬ C
││├─
││││●
│││├─

5 QED││││A 4
│││
││││●
│││├─

6 QED││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 PE ││(A ∧ B) ∨ C 2
│
││C (8)
│├─
│││¬ (A ∧ B)
││├─
│││●
││├─

8 QED│││C 7
│├─

7 PE ││(A ∧ B) ∨ C 2
├─

2 PC │(A ∧ B) ∨ C

g. │A ∨ B 1
│C (5),(9)
├─
││A (4)
│├─
│││¬ (B ∧ C)
││├─
││││●
│││├─

4 QED││││A 3
│││
││││●
│││├─

5 QED││││C 3
││├─

3 Cnj │││A ∧ C 2
│├─

2 PE ││(A ∧ C) ∨ (B ∧ C) 1
│
││B (8)
│├─
│││¬ (A ∧ C)
││├─
││││●
│││├─

8 QED││││B 7
│││
││││●
│││├─

9 QED││││C 7
││├─

7 Cnj │││B ∧ C 6
│├─

6 PE ││(A ∧ C) ∨ (B ∧ C) 1
├─

1 PC │(A ∧ C) ∨ (B ∧ C)

h. │A ∨ B 1
│¬ A ∨ C 2
├─
││A (5)
│├─
│││¬ A (5)
││├─
││││¬ B
│││├─
│││││¬ C
││││├─
│││││●
││││├─

5 Nc │││││⊥ 4
│││├─

4 IP ││││C 3
││├─

3 PE │││B ∨ C 2
││
│││C (7)
││├─
││││¬ B
│││├─
││││●
│││├─

7 QED││││C 6
││├─

6 PE │││B ∨ C 2
│├─

2 PC ││B ∨ C 1
│
││B (9)
│├─
│││¬ C
││├─
│││●
││├─

9 QED│││B 8
│├─

8 PE ││B ∨ C 1
├─

1 PC │B ∨ C



i. │A (3),(7)
├─
││¬ (A ∧ B) 5
│├─
│││●
││├─

3 QED│││A 2
││
││││B (8)
│││├─
││││││●
│││││├─

7 QED││││││A 6
│││││
││││││●
│││││├─

8 QED││││││B 6
││││├─

6 Cnj │││││A ∧ B 5
│││├─

5 CR ││││⊥ 4
││├─

4 RAA│││¬ B 2
│├─

2 Cnj ││A ∧ ¬ B 1
├─

1 PE │(A ∧ B) ∨ (A ∧ ¬ B)

 │(A ∧ B) ∨ (A ∧ ¬ B) 1
├─
││A ∧ B 2
│├─

2 Ext ││A (3)
2 Ext ││B

││●
│├─

3 QED││A 1
│
││A ∧ ¬ B 4
│├─

4 Ext ││A (5)
4 Ext ││¬ B

││●
│├─

5 QED││A 1
├─

1 PC │A

2. a. │A ∨ A 1
├─
││A (2)
│├─
││●
│├─

2 QED││A 1
│
││A (3)
│├─
││●
│├─

3 QED││A 1
├─

1 PC │A

 │A (2)
├─
││¬ A
│├─
││●
│├─

2 QED││A 1
├─

1 PE │A ∨ A

b. │A ∨ B 1
├─
││A (3)
│├─
│││¬ B
││├─
│││●
││├─

3 QED│││A 2
│├─

2 PE ││B ∨ A 1
│
││B
│├─
│││¬ A (5)
││├─
│││●
││├─

5 QED│││B 4
│├─

4 PE ││B ∨ A 1
├─

1 PC │B ∨ A

 │B ∨ A 2
├─
││¬ A (5)
│├─
│││B (3)
││├─
│││●
││├─

3 QED│││B 2
││
│││A (5)
││├─
││││¬ B
│││├─
││││●
│││├─

5 Nc ││││⊥ 4
││├─

4 IP │││B 2
│├─

2 PC ││B 1
├─

1 PE │A ∨ B

 c. │(A ∨ B) ∨ C 3
├─
││¬ A (6)
│├─
│││¬ B (8)
││├─
││││A ∨ B 4
│││├─
│││││A (6)
││││├─
││││││¬ C
│││││├─
││││││●
│││││├─

6 Nc ││││││⊥ 5
││││├─

5 IP │││││C 4
││││
│││││B (8)
││││├─
││││││¬ C
│││││├─
││││││●
│││││├─

8 Nc ││││││⊥ 7
││││├─

7 IP │││││C 4
│││├─

4 PC ││││C 3
│││
││││C (9)
│││├─
││││●
│││├─

9 QED││││C 3
││├─

3 PC │││C 2
│├─

2 PE ││B ∨ C 1
├─

1 PE │A ∨ (B ∨ C)

This is the second of the two derivations needed; the first
appears in 4.2.3 . In that one, disjunctive resources are
exploited before disjunctive goals are planned for while
the  derivation  at  the  left  here  illustrates  the  opposite
approach.



 d. │A ∨ (B ∧ ¬ B) 1
├─
││A (2)
│├─
││●
│├─

2 QED││A 1
│
││B ∧ ¬ B 3
│├─

3 Ext ││B (5)
3 Ext ││¬ B (5)

││
│││¬ A
││├─
│││●
││├─

5 Nc │││⊥ 4
│├─

4 IP ││A 1
├─

1 PC │A

 │A (2)
├─
││¬ (B ∧ ¬ B)
│├─
││●
│├─

2 QED││A 1
├─

1 PE │A ∨ (B ∧ ¬ B)

 e. │¬ (A ∨ B) 3,7
├─
│││A (5)
││├─
│││││¬ B
││││├─
│││││●
││││├─

5 QED│││││A 4
│││├─

4 PE ││││A ∨ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA││¬ A 1
│
│││B (9)
││├─
│││││¬ A
││││├─
│││││●
││││├─

9 QED│││││B 8
│││├─

8 PE ││││A ∨ B 7
││├─

7 CR │││⊥ 6
│├─

6 RAA││¬ B 1
├─

1 Cnj │¬ A ∧ ¬ B

 │¬ A ∧ ¬ B 1
├─

1 Ext │¬ A (4)
1 Ext │¬ B (5)

│
││A ∨ B 3
│├─
│││A (4)
││├─
│││●
││├─

4 Nc │││⊥ 3
││
│││B (5)
││├─
│││●
││├─
│││⊥ 3
│├─

3 PC ││⊥ 2
├─

2 RAA│¬ (A ∨ B)

 f. │¬ (A ∧ B) 3
├─
││A (5)
│├─
│││B (6)
││├─
│││││●
││││├─

5 QED│││││A 4
││││
│││││●
││││├─

6 QED│││││B 4
│││├─

4 Cnj ││││A ∧ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B

 │¬ A ∨ ¬ B 3
├─
││A ∧ B 2
│├─

2 Ext ││A (4)
2 Ext ││B (5)

││
│││¬ A (4)
││├─
│││●
││├─

4 Nc │││⊥ 3
││
│││¬ B (5)
││├─
│││●
││├─

5 Nc │││⊥ 3
│├─

3 PC ││⊥ 1
├─

1 RAA│¬ (A ∧ B)
3. a. │A ∨ B 2

│A
├─
││B
│├─
│││A
││├─
│││○ A, B ⊭ ⊥
││├─
│││⊥ 2
││
│││B
││├─
│││○ A, B ⊭ ⊥
││├─
│││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA│¬ B

A B A ∨ B , A / ¬ B
T T Ⓣ Ⓣ Ⓕ



 b. │A ∨ (B ∧ C) 3,8
├─
│││¬ A (5)
││├─
││││A (5)
│││├─
│││││¬ B
││││├─
│││││●
││││├─

5 Nc │││││⊥ 4
│││├─

4 IP ││││B 3
│││
││││B ∧ C
│││├─

6 Ext ││││B 7
6 Ext ││││C

││││●
│││├─

7 QED ││││B 3
││├─

3 PC │││B 2
│├─

2 PE ││A ∨ B 1
│
│││A
││├─
││││¬ C
│││├─
││││○ A, ¬ C ⊭ ⊥
│││├─
││││⊥ 9
││├─

9 IP │││C 8
││
│││B ∧ C 10
││├─

10 Ext │││B
10 Ext │││C 11

│││●
││├─

11 QED│││C 8
│├─

8 PC ││C 1
├─

1 Cnj │(A ∨ B) ∧ C

 Since  entailment  fails  in  one  direction,
equivalence  must  fail,  so  a  second
derivation  for  entailment  in  the  other
direction  need  not  be  pursued;  but  that
entailment does hold, as is shown below.

│(A ∨ B) ∧ C 1
├─

1 Ext │A ∨ B 2
1 Ext │C (8)

│
││A (4)
│├─
│││¬ (B ∧ C)
││├─
│││●
││├─

4 QED│││A 3
│├─

3 PE ││A ∨ (B ∧ C) 2
│
││B (7)
│├─
│││¬ A
││├─
││││●
│││├─

7 QED││││B 6
│││
││││●
│││├─

8 QED││││C 6
││├─

6 Cnj │││B ∧ C 5
│├─

5 PE ││A ∨ (B ∧ C) 2
├─

2 PC │A ∨ (B ∧ C)

Each of the following divides the
one open gap:
A B C A ∨ (B ∧ C) / (A ∨ B) ∧ C
T T F Ⓣ F T Ⓕ
T F F Ⓣ F T Ⓕ

 c. │¬ (A ∨ B) 3
├─
││A (5)
│├─
│││B
││├─
│││││¬ B
││││├─
│││││●
││││├─

5 QED│││││A 4
│││├─

4 PE ││││A ∨ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B

The following divide the first
and second open gap,
respectively:
A B ¬ A ∨ ¬ B / ¬ (A ∨ B)
F T T Ⓣ F Ⓕ T
T F F Ⓣ T Ⓕ T

 │¬ A ∨ ¬ B 2
├─
││A ∨ B 3,5
│├─
│││¬ A (4)
││├─
││││A (4)
│││├─
││││●
│││├─

4 Nc ││││⊥ 3
│││
││││B
│││├─
││││○ ¬ A, B ⊭ ⊥
│││├─
││││⊥ 3
││├─

3 PC │││⊥ 2
││
│││¬ B (6)
││├─
││││A
│││├─
││││○ A, ¬ B ⊭ ⊥
│││├─
││││⊥ 5
│││
││││B (6)
│││├─
││││●
│││├─

6 Nc ││││⊥ 5
││├─

5 PC │││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA│¬ (A ∨ B)
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4.3. Detachment: eliminating alternatives
4.3.0. Overview
Since disjunctions (and negated conjunctions)  make weak claims,  the most
general forms of reasoning about them are not simple; but there are simple
patterns of argument involving them that work in special cases.

4.3.1. Detachment rules
If we add to a disjunction the information that one of its disjuncts is false,
we  can  conclude  the  other  disjunct;  and  a  related  principle  applies  to
negated conjunctions.

4.3.2. More attachment rules
A disjunction is entailed by each of its disjuncts; and, while this does not
provide a safe way of planning to reach a goal, it is a useful way of adding to
the  inactive  resources.  Again,  a  similar  principle  applies  to  negated
conjunctions.
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4.3.1. Detachment rules
When we exploit a disjunction using a proof by cases, we divide the parent gap
into two children. Something like this is essential in any rule that allows us to
exploit a disjunction by way of reasoning about its disjuncts, for the truth of a
disjunction does not settle the truth values of its disjuncts. However, if we add
to the disjunction information about the truth value of one disjunct, it can be
possible to conclude something about the other one.

In particular, if we know both that a disjunction is true and that one of its
disjuncts is false, we can conclude that the other disjunct is true. This idea
appears in a pattern of argument, which has been recognized long enough to
have acquired a Latin name: modus tollendo ponens

The name refers to what the second premise and conclusion say about the two
disjuncts. It can be translated, very roughly, as way, by taking, of putting.
That  is,  the  argument  enables  you  to  put  forth  one  component  as  the
conclusion if you take away the other component by asserting a premise that
negates or de-negates it.

The use of this idea in derivations will be based on a somewhat stronger pair
of principles for which we will also use the name modus tollendo ponens.

Γ, φ ∨ ψ, ¬  φ ⊨ χ if and only if Γ, ψ, ¬  φ ⊨ χ
Γ, φ ∨ ψ, ¬  ψ ⊨ χ if and only if Γ, φ, ¬  ψ ⊨ χ

Taken  together,  these  say  that  in  the  presence  of  a  sentence  negating  or
de-negating  one  component  of  a  disjunction,  having  the  disjunction  as  a
premise comes to the same thing as having its other component as a premise.
The if parts of the principles are tied to the validity of the arguments MTP
while the only if parts are tied to the fact that a disjunction is entailed by each
of its components. More fundamentally, both rest on the fact that, if we make
one component of disjunction false, we make the disjunction true if and only if
we make the remaining component true.

The modus tollendo ponens principles describe grounds under which we can
drop  a  disjunction  from our  active  resources  (and  replace  it  by  one  of  its
disjuncts), so they justify a rule Modus Tollendo Ponens (MTP) that provides
an added way of exploiting a disjunction.

φ ∨ ψ ¬  φ±

ψ
MTP

φ ∨ ψ ¬  ψ±

φ
MTP

± ±

± ±



│¬  φ
│⋯
│φ ∨ ψ
│⋯
│
││⋯
││
││
│├─
││χ
│⋯

[available]

→

│¬  φ (n)
│⋯
│φ ∨ ψ n
│⋯
│
││⋯

n MTP││ψ
││
│├─
││χ
│⋯

│¬  ψ
│⋯
│φ ∨ ψ
│⋯
│
││⋯
││
││
│├─
││χ
│⋯

[available]

→

│¬  ψ (n)
│⋯
│φ ∨ ψ n
│⋯
│
││⋯

n MTP││φ
││
│├─
││χ
│⋯

Fig. 4.3.1-1. Developing a derivation at stage n by exploiting a disjunction
when a sentence negating or de-negating one component is also an active

resource.

Notice that the negated or de-negated component is not exploited, so the stage
number to its right is enclosed in parentheses. And, since we are not exploiting
this  resource,  there  is  no  need  for  it  to  be  active:  as  is  the  case  with  the
resources required by adjunction rules or rules for closing gaps, it is enough
that  this  resource  be  available.  On the  other  hand,  the  disjunction  itself  is
exploited, so it must be active and the stage number added at its right is not
parenthesized.

This is only the first of a number of rules that will enable us to exploit weak
compounds in the presence of information about a component. We will label as
detachment rules these rules, and we will use the same name for certain other
rules that enable us to exploit resources when we have further information.
The resource that is exploited by such a rule will be called the main resource
while the resource that must be available but is not exploited will be called the
auxiliary resource. In the case of MTP, the disjunction is the main resource and
the  sentence  negating  or  de-negating  one  of  its  disjuncts  is  the  auxiliary
resource.

The second detachment rule we will add concerns the not-both form. De
Morgan’s laws tell us that the form ¬ (φ ∧ ψ) is equivalent to the disjunction
¬  φ ∨ ¬  ψ, so we should expect some appropriate modification of modus
tollendo ponens to be valid. The proper form is this:

± ±

± ±

± ±

These arguments  are  called modus ponendo tollens:  they are  a  way of,  by
putting, taking. That is, if we know that φ and ψ are not both true, adding the
information  that  one  of  them  is  true  (i.e.,  putting  it  forth),  enables  us  to
conclude  that  the  other  is  not  true  (i.e.,  we  can  take  it  away).  The
corresponding principles, also called modus ponendo tollens, are these:

Γ, ¬ (φ ∧ ψ), φ ⊨ χ if and only if Γ, ¬  ψ, φ ⊨ χ
Γ, ¬ (φ ∧ ψ), ψ ⊨ χ if and only if Γ, ¬  φ, ψ ⊨ χ

They are based on the modus ponendo tollens arguments and also on the fact
that  a  not-both  form  ¬  (φ  ∧  ψ)  is  entailed  by  a  sentence  negating  or
de-negating either φ or ψ. That is, in the presence of a premise asserting φ or
ψ,  the not-both  ¬ (φ  ∧  ψ)  can be replaced by a sentence that  negates or
de-negates the other component.

The rule Modus Ponendo Tollens (MPT) is this:

│φ [available]
│⋯
│¬ (φ ∧ ψ)
│⋯
│
││⋯
││
││
│├─
││θ
│⋯

→

│φ (n)
│⋯
│¬ (φ ∧ ψ) n
│⋯
│
││⋯

n MPT││¬  ψ
││
│├─
││θ
│⋯

│ψ [available]
│⋯
│¬ (φ ∧ ψ)
│⋯
│
││⋯
││
││
│├─
││θ
│⋯

→

│ψ (n)
│⋯
│¬ (φ ∧ ψ) n
│⋯
│
││⋯

n MPT││¬  φ
││
│├─
││θ
│⋯

Fig. 4.3.1-2. Developing a derivation at stage n by exploiting a negated
conjunction when a conjunct is also an active resource.

As with MTP, one resource, the main resource, is exploited (and should be
active) while the other, auxiliary resource, is not exploited and need only be
available.

¬ (φ ∧ ψ) φ

¬  ψ
MPT

±

¬ (φ ∧ ψ) ψ

¬  φ
MPT

±

±

±

±

±



As an example  of  these  new rules,  here  is  an  alternative  version of  the
derivation at the end of 4.2.1 :

│¬ (P ∧ ¬ G) 2
│¬ (C ∧ ¬ G) 4
│P ∨ C 3
├─
││¬ G (2),(5)
│├─

2 MPT││¬ P (3)
3 MTP││C (4)
4 MPT││G (5)

││●
│├─

5 Nc ││⊥ 1
├─

1 IP │G
This is far from the only way of using the new rules to complete the derivation.
To choose only the most minor variation of the derivation above, notice that in
the second use of MPT either G or ¬ ¬ G could be concluded (since both can
be described as ¬  ¬ G). And either could be used along with ¬ G to conclude
⊥ by Nc.

One oddity of the argument above is that the supposition ¬ G (Sam didn’t
grant the proposal’s significance) enables us to conclude first that ¬ P (Sam
didn’t praise the proposal), then C (Sam condemned the proposal), and
finally G itself. An argument by which a claim is shown to follow from its own
denial  is  traditionally  called  a  consequentia  mirabilis  (an  amazing
consequence) and has been a standard form of philosophical argumentation
since antiquity. (For example, a common way of arguing against a skeptic who
denies the existence of knowledge is to try to show that this claim, that there is
no  knowledge,  in  fact  implies  that  there  is  knowledge,  which  leads  to  the
conclusion  that  knowledge  must  exist.  Any  reply  to  this  argument  must
question the moves by which one is supposed to get from the claim that there
is no knowledge to the consequence that there is knowledge because, if this
transition is valid, an indirect proof will show that knowledge does exist.)
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4.3.2. Attachment rules
The principles that lie behind the rules MTP and MPT were based in part on
the fact that the weak compounds φ ∨ ψ and ¬ (φ ∧ ψ) are entailed by certain
information about their components. We will refer to the principles asserting
these entailments as weakening principles:

φ ⊨ φ ∨ ψ
ψ ⊨ φ ∨ ψ

¬  φ ⊨ ¬ (φ ∧ ψ)
¬  ψ ⊨ ¬ (φ ∧ ψ)

They provide the basis for further attachment rules (i.e., ones in addition to
Adj). These rules allow us to enter the conclusions of the weakening principles
as inactive resources when their premises are already available.

│⋯
│φ
│⋯
│
││⋯
││
││
│├─
││θ
│⋯

[available]

→

│⋯
│φ (n)
│⋯
│
││⋯

n Wk││φ ∨ ψ X
││
│├─
││θ
│⋯

│⋯
│ψ
│⋯
│
││⋯
││
││
│├─
││θ
│⋯

[available]

→

│⋯
│ψ (n)
│⋯
│
││⋯

n Wk││φ ∨ ψ X
││
│├─
││θ
│⋯

Fig. 4.3.2-1. Developing a derivation at stage n by adding an inactive
disjunction that weakens one of the available resources.

±

±



│⋯
│¬  φ
│⋯
│
││⋯
││
││
│├─
││θ
│⋯

[available]

→

│⋯
│¬  φ (n)
│⋯
│
││⋯

n Wk││¬ (φ ∧ ψ) X
││
│├─
││θ
│⋯

│⋯
│¬  ψ
│⋯
│
││⋯
││
││
│├─
││θ
│⋯

[available]

→

│⋯
│¬  ψ (n)
│⋯
│
││⋯

n Wk││¬ (φ ∧ ψ) X
││
│├─
││θ
│⋯

Fig. 4.3.2-2. Developing a derivation at stage n by adding an inactive
negated conjunction that weakens one of the available resources.

These rules can be used, as we have used Adj, to provide material for closing
gaps.  But,  since  the  detachment  rules  MTP  and  MPT  can  use  inactive
resources, attachment rules can provide material for them, too. For example,
below are two approaches to the same argument. The argument is designed as
an illustration but can be given the English interpretation that appears between
them:

│(A ∧ B) ∨ (C ∧ D) 6
│¬ ((B ∧ E) ∧ (F ∨ G)) 3
│E ∧ F 1
├─

1 Ext │E (4)
1 Ext │F (2)
2 Wk │F ∨ G X,(3)
3 MPT│¬ (B ∧ E) 4
4 MPT│¬ B (5)
5 Wk │¬ (A ∧ B) X,(6)
6 MTP│C ∧ D 7
7 Ext │C (8)
7 Ext │D

│●
├─

8 QED│C

Assume we know in general that either Ann and Bill were both at
the party or Carol  and Dave were both there.  And assume also
that it is not the case that both Bill and Ed were there along with
either Fred or Gail. Then, assuming we know in particular that Ed

± ±

± ±

and Fred were both there, we can conclude that Carol was, too.

│(A ∧ B) ∨ (C ∧ D) 4
│¬ ((B ∧ E) ∧ (F ∨ G)) 7
│E ∧ F 1
├─

1 Ext │E (6)
1 Ext │F (8)

│
││¬ C
│├─

3 Wk ││¬ (C ∧ D) X,(4)
4 MTP││A ∧ B 5
5 Ext ││A
5 Ext ││B (6)
6 Adj ││B ∧ E X,(7)
7 MPT││¬ (F ∨ G) (9)
8 Wk ││F ∨ G X,(9)

││●
│├─

9 Nc ││⊥
├─ 2

2 IP │C
Both derivations begin by exploiting the third premise, but they exploit the
other two premises in a different order. The first derivation produces a direct
proof of the conclusion C while the second reaches C by an indirect proof
showing that ¬ C is incompatible with the premises.
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1

2

4.3.s. Summary
While a disjunction does not settle the truth values of its disjuncts, it says
enough about them that adding the information that one is false will tell us
that  the  other  is  true.  This  principle  is  known  traditionally  as
modus tollendo ponens .  Since each disjunct  entails  the disjunction,  if  we
know that one disjunct is false, then the disjunction and the other disjunct
add the same information. This idea is implemented in a further rule for
exploiting disjunctions, also known as Modus Tollendo Ponens (MTP) . The
not-both  form  ¬  (φ  ∧  ψ)  is  analogous  to  disjunction  and  analogous
principles  apply.  Specifically,  a  principle  modus ponendo tollens  tells  us
that ¬ (φ ∧  ψ) together with the assertion of one of φ and ψ entails the
denial of the other. And, since the denial of either φ or ψ entails ¬ (φ ∧ ψ),
we can have a rule Modus Ponendo Tollens (MPT)  for exploiting not-both
forms.  The rules MTP and MPT are examples of  detachment rules .  The
resource exploited in each is its main resource  and the additional resource
that must be available is the auxiliary resource .

We will refer to as weakening  the principle that disjunctions and not-both
forms are entailed by assertions of components (in the case of disjunctions)
or their denials (in the case of the not-both form). This principle provides
the basis for two further attachment rules, both called Weakening (Wk) , that
license  the  addition  of  inactive  resources.  Since  the  second resource  we
must  have  in  order  to  apply  a  detachment  rule  need  only  be  available,
attachment rules can be used to prepare for the use of detachment rules as
well to prepare for the use of rules that close gaps.

We now have examples of all the types of rules we will employ in this course:

Rules for developing gaps

for resources for goals

atomic
sentence  IP

negation
¬ φ

CR
(if φ is not atomic
and the goal is ⊥)

RAA

conjunction
φ ∧ ψ Ext Cnj

disjunction
φ ∨ ψ PC PE

Rules for closing gaps

when to close rule

the goal is also
a resource QED

sentences φ and ¬ φ are
resources & the goal is ⊥ Nc

⊤ is the goal ENV

⊥ is a resource EFQ

Basic system

Detachment rules (optional)

main resource auxiliary resource rule

φ ∨ ψ ¬  φ or ¬  ψ MTP

¬ (φ ∧ ψ) φ or ψ MPT

Attachment rules

added resource rule

φ ∧ ψ Adj

φ ∨ ψ Wk

¬ (φ ∧ ψ) Wk

Rule for lemmas

prerequisite rule

the goal is ⊥ LFR

Added rules
(optional)
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4.3.x. Exercises

Redo the exercises of 4.2.x , looking for opportunities to use the new rules.
(Each of the answers in 4.2.xa  has as least one alternative using the new rules;
and, in most cases, the alternative is much shorter than the one given there.)

Since the exercise machine  incorporates detachment rules but not attachment
rules, it can be used to produce only some of the alternative derivations that
are possible using the rules of this section.
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4.3.xa. Exercise answers
1. a. │A ∧ B 1

├─
1 Ext │A (2)
1 Ext │B
2 Wk │A ∨ B X,(3)

│●
├─

3 QED│A ∨ B

b. │A ∧ B 1
├─

1 Ext │A
1 Ext │B (2)
2 Wk │B ∨ C X,(3)

│●
├─

3 QED│B ∨ C

c. │A ∨ B 1
│¬ A (1)
├─

1 MTP│B (2)
│●
├─

2 QED│B

d. Although the following is a
possible approach, the derivation
in 4.2.xa is probably more natural:

│A ∨ (A ∧ B) 2
├─
││¬ A (2),(4)
│├─

2 MTP││A ∧ B 3
3 Ext ││A (4)
3 Ext ││B

││●
│├─

4 Nc ││⊥ 1
├─

1 IP │A

e. │A ∨ B 3
│¬ (A ∧ C) 2
│¬ (B ∧ C) 4
├─
││C (2),(5)
│├─

2 MPT││¬ A (3)
3 MTP││B (4)
4 MPT││¬ C (5)

││●
│├─

5 Nc ││⊥ 1
├─

1 RAA│¬ C

f. │A ∧ (B ∨ C) 1
├─

1 Ext │A (4)
1 Ext │B ∨ C 3

│
││¬ C (3)
│├─

3 MTP││B (4)
4 Adj ││A ∧ B X,(5)

││●
│├─

5 QED││A ∧ B 2
├─

2 PE │(A ∧ B) ∨ C

or │A ∧ (B ∨ C) 1
├─

1 Ext │A (3)
1 Ext │B ∨ C 2

│
││B (3)
│├─

3 Adj ││A ∧ B X,(4)
4 Wk ││(A ∧ B) ∨ C X,(5)

││●
│├─

5 QED││(A ∧ B) ∨ C 2
│
││C (6)
│├─

6 Wk ││(A ∧ B) ∨ C X,(7)
││●
│├─

7 QED││(A ∧ B) ∨ C 2
├─

2 PC │(A ∧ B) ∨ C



g. │A ∨ B 1
│C (2),(5)
├─
││A (2)
│├─

2 Adj ││A ∧ C X,(3)
3 Wk ││(A ∧ C) ∨ (B ∧ C) X,(4)

││●
│├─

4 QED││(A ∧ C) ∨ (B ∧ C) 1
│
││B (5)
│├─

5 Adj ││B ∧ C X,(6)
6 Wk ││(A ∧ C) ∨ (B ∧ C) X,(7)

││●
│├─

7 QED││(A ∧ C) ∨ (B ∧ C) 1
├─

1 PC │(A ∧ C) ∨ (B ∧ C)

or │A ∨ B 1
│C (2),(4)
├─
││¬ (A ∧ C) 2
│├─

2 MPT││¬ A (3)
3 MTP││B (4)
4 Adj ││B ∧ C X,(5)

││●
│├─

5 QED││B ∧ C 1
├─

1 PE │(A ∧ C) ∨ (B ∧ C)

h. │A ∨ B 1
│¬ A ∨ C 2
├─
││A (2)
│├─

2 MTP││C (3)
3 Wk ││B ∨ C X,(4)

││●
│├─

4 QED││B ∨ C 1
│
││B (5)
│├─

5 Wk ││B ∨ C X,(6)
││●
│├─

6 QED││B ∨ C 1
├─

1 PC │B ∨ C

or │A ∨ B 2
│¬ A ∨ C 3
├─
││¬ B (2)
│├─

2 MTP││A (3)
3 MTP││C (4)

││●
│├─

4 QED││C 1
├─

1 PE │B ∨ C

i. │A (2),(3)
├─
││¬ (A ∧ B) 2
│├─

2 MPT││¬ B (3)
3 Adj ││A ∧ ¬ B X,(4)

││●
│├─

4 QED││A ∧ ¬ B 1
├─

1 PE │(A ∧ B) ∨ (A ∧ ¬ B)

 │(A ∧ B) ∨ (A ∧ ¬ B) 3
├─
││¬ A (2),(5)
│├─

2 Wk ││¬ (A ∧ B) X,(3)
3 MTP││A ∧ ¬ B 4
4 Ext ││A (5)
4 Ext ││¬ B

││●
│├─

5 Nc ││⊥ 1
├─

1 IP │A
Although the derivation above for the
second entailment is possible, the
derivation for it in 4.2.xa is probably
more natural

2. a. │A ∨ A 2
├─
││¬ A (2),(3)
│├─

2 MTP││A (3)
││●
│├─

3 Nc ││⊥ 1
├─

1 IP │A
Another somewhat artificial approach.

 │A (1)
├─

1 Wk │A ∨ A X,(2)
│●
├─

2 QED│A ∨ A

b. │A ∨ B 1
├─
││A (2)
│├─

2 Wk ││B ∨ A X,(3)
││●
│├─

3 QED││B ∨ A 1
│
││B (4)
│├─

4 Wk ││B ∨ A X,(5)
││●
│├─

5 QED││B ∨ A 1
├─

1 PC │B ∨ A

 │B ∨ A 2
├─
││¬ A (2)
│├─

2 MTP││B (3)
││●
│├─

3 QED││B 1
├─

1 PE │A ∨ B

As was the case with the derivations in 4.2.xa, each of the above approaches
could have been used for both entailments.

 c. │(A ∨ B) ∨ C 3
├─
││¬ A (4)
│├─
│││¬ C (3)
││├─

3 MTP│││A ∨ B 4
4 MTP│││B (5)

│││●
││├─

5 QED│││B 2
│├─

2 PE ││B ∨ C 1
├─

1 PE │A ∨ (B ∨ C)
The derivation at the right can be
compared to the one in 4.2.3

│A ∨ (B ∨ C) 1
├─
││A (2)
│├─

2 Wk ││A ∨ B X,(3)
3 Wk ││(A ∨ B) ∨ C X,(4)

││●
│├─

4 QED ││(A ∨ B) ∨ C 1
│
││B ∨ C 5
│├─
│││B (6)
││├─

6 Wk │││A ∨ B X,(7)
7 Wk │││(A ∨ B) ∨ C X,(8)

│││●
││├─

8 QED │││(A ∨ B) ∨ C 5
││
│││C (9)
││├─

9 Wk │││(A ∨ B) ∨ C (10)
│││●
││├─

10 QED│││(A ∨ B) ∨ C 5
│├─

5 PC ││(A ∨ B) ∨ C 1
├─

1 PC │(A ∨ B) ∨ C



 d. │A ∨ (B ∧ ¬ B) 2
├─
││¬ A (2)
│├─

2 MTP││B ∧ ¬ B 3
3 Ext ││B (4)
3 Ext ││¬ B (4)

││●
│├─

4 Nc ││⊥ 4
├─

1 IP │A

 │A (1)
├─

1 Wk │A ∨ (B ∧ ¬ B) X,(2)
│●
├─

2 QED│A ∨ (B ∧ ¬ B)

 e. │¬ (A ∨ B) (4),(7)
├─
│││A (3)
││├─

3 Wk │││A ∨ B X,(4)
│││●
││├─

4 Nc │││⊥ 2
│├─

2 RAA││¬ A 1
│
│││B (6)
││├─

6 Wk │││A ∨ B X,(7)
│││●
││├─

7 Nc │││⊥ 5
│├─

5 RAA││¬ B 1
├─

1 Cnj │¬ A ∧ ¬ B

 │¬ A ∧ ¬ B 1
├─

1 Ext │¬ A (3)
1 Ext │¬ B (4)

│
││A ∨ B 3
│├─

3 MTP││B (4)
││●
│├─

4 Nc ││⊥ 2
├─

2 RAA│¬ (A ∨ B)

 f. │¬ (A ∧ B) 2
├─
││A (2)
│├─

2 MPT││¬ B (3)
││●
│├─

3 QED││¬ B 1
├─

1 PE │¬ A ∨ ¬ B

 │¬ A ∨ ¬ B 3
├─
││A ∧ B 2
│├─

2 Ext ││A (3)
2 Ext ││B (4)
3 MTP││¬ B (4)

││●
│├─

4 Nc ││⊥ 1
├─

1 RAA│¬ (A ∧ B)

3. a. This derivation is unchanged from 4.2.xa
│A ∨ B 2
│A
├─
││B
│├─
│││A
││├─
│││○ A, B ⊭ ⊥
││├─
│││⊥ 2
││
│││B
││├─
│││○ A, B ⊭ ⊥
││├─
│││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA│¬ B

A B A ∨ B , A / ¬ B
T T Ⓣ Ⓣ Ⓕ

 b. │A ∨ (B ∧ C) 3,8
├─
│││¬ A (3)
││├─

3 MTP│││B ∧ C 4
4 Ext │││B (5)
4 Ext │││C

│││●
││├─

5 QED│││B 2
│├─

2 PE ││A ∨ B 1
│
│││¬ C (7)
││├─

7 Wk │││¬ (B ∧ C) X,(8)
8 MTP│││A

│││○ A, ¬ C ⊭ ⊥
││├─
│││⊥ 9
│├─

6 IP ││C 1
├─

1 Cnj │(A ∨ B) ∧ C

 │(A ∨ B) ∧ C 1
├─

1 Ext │A ∨ B 3
1 Ext │C (4)

│
││¬ A (3)
│├─

3 MTP││B (4)
4 Adj ││B ∧ C X,(5)

││●
│├─

5 QED││B ∧ C 2
├─

2 PE │A ∨ (B ∧ C)
Each of the following divides the one
open gap:
A B C A ∨ (B ∧ C) / (A ∨ B) ∧ C
T T F Ⓣ F T Ⓕ
T F F Ⓣ F T Ⓕ

  Although the use of Wk and MTP shortens the whole first derivation, it
actually delays the dead end, which would have been reached after stage 7 if
the first premise had been exploited by PC in the second gap. As in 4.2.xa,
the second derivation is unnecessary once a dead-end gap is found in the
first.



 c. │¬ (A ∨ B) (4)
├─
││A (3)
│├─
│││B
││├─

3 Wk │││A ∨ B X,(4)
│││●
││├─

4 Nc │││⊥ 2
│├─

2 RAA││¬ B 1
├─

1 PE │¬ A ∨ ¬ B
The following divide the first and
second open gap, respectively:
A B ¬ A ∨ ¬ B / ¬ (A ∨ B)
F T T Ⓣ F Ⓕ T
T F F Ⓣ T Ⓕ T

 │¬ A ∨ ¬ B 2
├─
││A ∨ B 3,4
│├─
│││¬ A (3)
││├─

3 MTP│││B
│││○ ¬ A, B ⊭ ⊥
││├─
│││⊥ 2
││
│││¬ B (4)
││├─

4 MTP│││A
│││○ A, ¬ B ⊭ ⊥
││├─
│││⊥ 2
│├─

2 PC ││⊥ 1
├─

1 RAA│¬ (A ∨ B)
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