
3. Negations
3.1. Not: contradicting content
3.1.0. Overview
In this chapter, we direct our attention to negation, the second of the logical
forms we will consider.

3.1.1. Connectives
Negation is a way of forming sentences from sentences, so it is a connective
even though it does not serve to connect sentences.

3.1.2. Contradictory propositions
The meaning of negation is closely tied to the idea of a pair of sentences
being contradictory.

3.1.3. Negation in English
Although not is the chief way of expressing negation is English, there are
others.

3.1.4. Negated conjunctions and conjoined negations
When we combine negation with conjunction, we obtain a wide range of
further forms, some of them important enough to deserve names.

3.1.5. Some sample analyses
Analyzing  sentences  may  involve  recognizing  not  only  the  presence  of
negation and conjunction but also the way they are combined.
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3.1.1. Connectives
The connective we will study in this chapter is negation, which is associated
with the English word not. As has been the case with conjunction, we will use
the term negation also for the sentences produced by the operation of negation.
We will represent the form of such sentences symbolically using ¬ (the not
sign) as our sign for negation so that ¬ φ is the negation of φ. To indicate
negations using English, we will use not as an alternative to ¬, writing it, too,
in front of the negated sentence so that, in this notation, not φ is the negation
of φ.

The use of the term connective for negation is standard but in some ways
not very apt. The word not in English is not a combining operation; it is not a
conjunction  (in  the  grammatical  sense)  that  serves  to  connect  clauses  but
instead an adverb, a modifier of a single clause. Thus it would be a mistake to
associate  the  term connective  too  closely  with  the  ideas  of  connection  or
combination. A connective is better thought of as an operation that forms or
generates a sentence from one or more sentences. This operation may combine
or modify, and it may do both.

We will  extend the terminology used for  conjunction and refer,  however
inaptly, to any sentence generated by a connective as “compound” and refer to
the  one  or  more  sentences  it  is  generated  from  as  “components.”  When
analyzing English sentences, the ultimate components we encounter may not
be parts,  in any grammatical sense, of the sentences we analyze. They will
rather be the sentences whose logical forms we do not describe; that is, they
are the unanalyzed residue of our analysis.
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3.1.2. Contradictory propositions
We could base the truth conditions of negation directly on the observation that
the word false means ‘not true’ and the word true means ‘not false.’ But it
will  be more enlightening to base it  instead on some understanding of  the
logical relations between a negation ¬ φ (or not φ) and its component φ.

One obvious generalization about  negation is  that  a  negative sentence is
incompatible  with  the  component  that  is  negated.  For  example,  in  the
traditional  children’s  story,  even  before  sitting  down  to  her  taste  test,
Goldilocks knew that The porridge is too hot and The porridge is not too
hot could not both describe the same bowl. Each excludes the other; they are
mutually exclusive (in the sense defined in 1.2.6 ). We can explain this fact
about negation if we assume that the negation ¬ φ of a sentence φ is false
whenever the sentence φ is true. And that settles the part of the truth table for
negation shown below.

φ ¬φ
T F

But it does not settle the rest. The sentences The porridge is too hot and
The porridge is too cold are also mutually exclusive, but Goldilocks found
two cases in which The porridge is too hot  was false, one in which The
porridge is too cold is true and another in which it was false. So the mutual
exclusiveness of φ and ¬ φ is not enough to settle the truth value of ¬ φ when
φ is false.

There is a second relation between a sentence and its negation that does
settle this value. While the falsity of both The porridge is too hot and The
porridge is too cold would leave open the possibility that the porridge is just
right, The porridge is too hot and The porridge is not too hot allow no
third  case.  That  means  the  two  sentences  are  jointly  exhaustive  of  all
possibilities (see 1.2.6  for this idea). This relation serves to settle the second
row of the truth table for negation; if φ is false then ¬ φ must be true.

φ ¬φ
T F
F T

A negation ¬ φ thus has a truth value that is always the opposite of the truth
value  of  its  component  φ.  In  1.2.6 ,  we  spoke  of  such  sentences  (that  is,
sentences  that  are  both  mutually  exclusive  and  jointly  exhaustive)  as
“contradictory.” So a sentence and its  negation are contradictory sentences;

each contradicts the other. The negation of a sentence φ need not be the only
sentence that contradicts φ, but any sentence that stands in this relation to φ
will be logically equivalent to ¬ φ.

Figure 3.1.2-1 shows the effect of negation on the proposition expressed; the
possibilities ruled out by the sentence (A) and its negation (B) are shaded. The
images  of  dice  recall  the  example  of  Figure 2.1.2-1 ;  if  they  are  taken  to
indicate regions consisting of the possible worlds in which a certain die shows
one or another number,  the proposition shown in 3.1.2-1A is The number
shown by the die is less than 4 and 3.1.2-1B illustrates the negation of this
proposition.

A B

Fig. 3.1.2-1. Propositions expressed by a sentence (A) and its negation (B).

The possibilities  left  open by a sentence are ruled out  by its  negation—no
possibilities are left open by both—because the two are mutually exclusive.
And the possibilities ruled out by a sentence are left open by a sentence—none
are ruled out by both—because the two are jointly exhaustive.

The reversal in the range of possibilities left open in moving from a sentence
to its negation are the basis for what can be seen as the the key properties of
negation.

CONTRAVARIANCE. A negation implies the result of replacing its component
with  anything  that  component  is  implied  by.  That  is,  if  φ ⊨ ψ,  then
¬ ψ ⊨ ¬ φ.

INVOLUTION.  To  deny  a  negation  is  to  assert  what  it  negates.  That  is,
¬ ¬ φ ≃ φ.

COMPOSITIONALITY.  Negations  are  equivalent  if  their  components  are
equivalent. That is, if φ ≃ φ′, then ¬ φ ≃ ¬ φ′.

The last of these follows from contravariance just as the compositionality of
conjunction follows from covariance; and, as noted in 2.1.2 , compositionality
is  something  we  would  expect  to  hold  of  any  connective.  The  distinctive
character of negation is reflected in the first two principles.

In particular, contravariance and involution together tell us that ¬ ψ implies



¬ φ if and only if φ implies ψ. Contravariance alone supplies the if part of
this; in the other direction, the two principles tell us that, if ¬ ψ implies ¬ φ,
then  φ  is  equivalent  to  something  (namely,  ¬ ¬ φ)  that  implies  something
(namely, ¬ ¬ ψ) that is equivalent to ψ. In sum, the more said by a claim, the
less said by its denial; and the less said by a claim, the more said by its denial.
Compare The package won’t arrive next Wednesday  and The package
won’t arrive next week. The latter is the more informative, and it denies the
less informative of the two positive sentences The package will arrive next
Wednesday and The package will arrive next week. Notice in the diagrams
above that, as the area ruled out by a sentence increases, the area ruled out by
its denial decreases, and vice versa.

Connectives that have truth tables express truth functions and are therefore
said to be truth functional, and this is something more than being propositional.
Conjunction and negation are truth functional, but not all connectives have this
property. The following simple example of a non-truth-functional connective
should  suggest  a  whole  range  of  further  examples.  Compare  these  two
sentences:

The bridge is not finished
The bridge will never be finished.

The truth value of the first is determined once we know the truth value of The
bridge is finished, but this is not always enough information in the case of
the second. When The bridge is finished is true, we know that The bridge
will never be finished is false; but, when The bridge is finished is false, we
need more information to determine the truth value of The bridge will never
be finished. In particular, we need at least some information about the truth
value of The bridge is finished  at times in the future; and before we can
know that The bridge will never be finished is true, we need to know the
truth value of The bridge is finished  at  all  times in the future.  And this
means that the connective marked by the English form It will never be the
case that φ is not truth functional: the actual truth value of the compound
formed by it is not settled by the actual truth value of the component φ. But we
would still  expect  the proposition expressed by it  to be settled if  we knew
everything about the proposition expressed by its component—i.e., if we knew
the truth value of its component in all possible worlds. We simply cannot limit
consideration  to  one  possibility  at  a  time  in  the  way  we  can  with  truth-
functional connectives.

We will limit our study of connectives to those that are truth-functional. The

study of such connectives is truth-functional logic (a phrase that was mentioned
in 1.1.7 ). The connective expressed by It will never be the case that φ
would  be  studied  by  tense  logic,  the  logic  of  tenses  and  other  temporal
modifiers. This is one part of the logic of connectives that lies beyond truth-
functional logic. Another part is the logic of modal auxiliaries like must and
can. These, too, are associated with non-truth-functional connectives, and the
study of the logical  properties of  these connectives is  referred to as modal
logic, an ancient branch of logic that became an active area of research again in
the 20  century.
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3.1.3. Negation in English
Many questions that arise concerning the use of conjunction to analyze English
sentences do not apply to negation. In particular, since a compound formed by
negation has only a single component, there is no need to worry identifying
components that make independent contributions to the whole. It is important,
though, to be sure that the component that we uncover is related to the whole
compound in the way that negation indicates—that is, we need to make sure
that the two are contradictory.

Negative prefixes on adjectives (un-,  in-,  a-,  etc.)  sometimes function as
stylistic variants for not. But the effect of such a prefix may not always be to
negate since the result  of adding it  may not always be contradictory to the
original  sentence.  For  example,  happy  and  unhappy  seem  to  be  used
sometimes as synonyms for joyful and sad. In such usage, the sentence Hal is
unhappy is not the negation of Hal is happy because both might be false. The
only way to distinguish such cases from ones where the prefix is a sign of
negation (as in The road is unfinished) is to ask yourself whether a sentence
with  a  negative  prefix  and  the  corresponding  sentence  without  it  jointly
exhaust all possibilities in the sense that at least one of the two is bound to be
true.

When doing this, it is important to remember the difference between truth
and appropriateness. That is, to show that Hal is happy and Hal is unhappy
are not jointly exhaustive, it is not enough to find a case where it would not be
appropriate to assert either—as when Hal’s state of mind is neutral—for one of
the two inappropriate assertions might still be true. It would even be possible
for unhappy to be appropriate in exactly the same circumstances as some term
like sad  even though the two had different truth conditions. While it is not
easy to rule out this sort of possibility, remember that we have one test to use.
Imagine being asked the two questions Is Hal happy? and Is Hal unhappy?
when you know his state of mind is neutral. Ask yourself if you would reply
No to both or reply No to one and Yes, but … to the other.

So the  presence of  a  stylistic  variant  of  not  is  not  sufficient  to  indicate
negation—and it  is  also not  necessary.  Some sentences can be analyzed as
negations  even though they do not  contain  either  not  or  a  stylistic  variant
because  they  contain  another  logical  expression  that  introduces  a  negative
element. For example, The road was neither smooth nor straight can be
analyzed as the negation of The road was either smooth or straight. In this
case, we were able to simply remove the negative element in order to identify
the  component  to  which  negation  is  applied;  but,  in  other  cases,  some

restatement may be needed to formulate a component that is contradictory to
the whole compound.

That  is  often  the  case  when negation is  introduced by way of  words  or
phrases containing no. For instance, No one bought the book is negative, but
what is it  the negation of? It  is not the negation of Everyone bought the
book, for to deny that would be to say only that there is at least one person
who failed to buy it. No one bought the book must be the negation of At
least one person bought the book or, more briefly, Someone bought the
book. English is regular enough on this point that you could make it a rule of
thumb to treat no as indicating the negation of some, but this is not a rule to be
applied  without  thought.  Again,  the  best  general  policy  is  to  ask  yourself
whether the original sentence and the component you take to be negated are
really contradictories—whether it really is the case that they cannot both be
true and cannot both be false.

A related problem concerns the word any. This often appears in negative
sentences—such as I didn’t speak to anyone.  Although this sentence is a
negation,  it  cannot  be  analyzed as  the  negation of  I spoke to anyone—a
sentence that is hard to understand (except in contexts where it is elliptical for
something like I spoke to anyone I wanted to). Instead, I didn’t speak to
anyone is the negation of I spoke to someone where this is understood to
mean I spoke to at least one person. The problem with retaining any in the
component of a negation is that it is generally used only in the presence of
certain other words—not is one, but also if and some others—and it is hard, if
not impossible, to understand the force of any when it is removed from such a
context. But English is fairly regular here, too; and a sentence in which any is
used with not can usually be regarded as a negation whose component can be
stated using some in place of any.

For this approach to no and not … any to work, it is important that some
mean ‘at least one’. Now, in some contexts, the fact that some is used with a
singular noun can lead to an implicature of ‘only one’. For example, a sentence
like I spoke to someone may implicate that only one person was spoken to.
To see that this implicature is not an implication, imagine speaking to two
people  and being asked,  “Did you speak to  someone?” I  think the  natural
answer  would  be  Yes  rather  than  No—though  you  might  add  In fact,  I
spoke to two people if this further information was relevant. If that is right,
the suggested analysis of I spoke to no one and I didn’t speak to anyone
does work, but the best policy is still to ask yourself whether the component
you identify is really contradictory to the original sentence.



Similar issues arise when we consider the result of negating a negation (that
is, the form ¬ ¬ φ or not not φ). Although we can capture some further English
constructions by this form, the principle of involution in 3.1.3  tells us that we
can  find  no  new  logical  properties  since  the  two  forms  ¬ ¬ φ  and  φ  are
logically equivalent. That is, doubling a negation cancels it. The sentence The
road is not unfinished is merely a roundabout way of saying that the road is
finished. It is true that double negations do not always seem to have the same
force as positive statements; but this is naturally ascribed to a difference in
appropriateness  without  a  difference  in  truth  conditions,  a  difference  in
implicatures but not implications.

To  get  a  sense  of  the  play  of  implicatures  here,  consider  the  following
dialogue (with underlining used to mark emphasis):

A: Hal is not unhelpful.
B: So, in other words, he’s helpful.
A: Well, yes, but he’s not really helpful.
B: You mean he just appears to be helpful?
A: No, he’s really helpful. He’s just not really helpful.

This shows—if the point needed making—that truth conditions are often less
the foundations of communication than walls to bounce things off. But even so,
they make their presence felt—and that is what we are trying to capture. When
logicians  question  the  equivalence  of  a  double  negation  and  a  positive
statement, it is usually on different grounds.

And, surprising as it may be, the equivalence of φ and ¬ ¬ φ is actually one
of  the  more  controversial  principles  among  logicians.  A  small  school  of
mathematics called intuitionism grew up around efforts in the early part of the
20  century by the Dutch mathematician L. E. J. Brouwer (1881-1966) to give
what he took to be a philosophically satisfactory account of the continuum (the
full range of real numbers including irrational numbers like π and the square
root  of  2).  He  came  to  reject  certain  ways  of  proving  the  existence  of
mathematical  objects,  and  he  also  rejected  certain  logical  principles—the
equivalence of φ and ¬ ¬ φ among them—which could be used to justify such
proofs.  Brouwer  did  not  succeed  in  transforming  mathematical  practice  or
leading most logicians to doubt the equivalence of φ and ¬ ¬ φ, but his ideas
have  proved  useful  in  the  study  of  computation  and  have  led  to  a  deeper
understanding  of  the  significance  of  various  logical  principles  concerning
negation.
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3.1.4. Negated conjunctions and conjoined negations
While  the  ability  to  negate  a  negation  does  not  enable  us  to  say  any
more—however  much  more  we  may  suggest—we  increase  the  range  of
propositions  we  can  express  considerably  when  we  mix  negation  and
conjunction. The variety of English sentences whose forms we can express
naturally will still be somewhat limited, and we will go on to capture others in
the next two chapters. But the variety of logical relations between compounds
and their components that can be expressed using conjunction and negation
will be as great as any we will see when we are considering connectives alone
(that is, until chapter 6). Indeed, any connective that is truth-functional—i.e.,
any whose meaning can be captured in a truth table—can be expressed using
conjunction and negation alone.

The real key to the power of expression of these two connectives lies in the
ability to negate conjunctions, so let us look more closely at such forms. We
will begin with the example It was not both hot and humid.

It was not both hot and humid
¬ it was both hot and humid
¬ (it was hot ∧ it was humid)

¬ (T ∧ M)
not both T and M

T: it was hot; M: it was humid

The  parentheses  and  location  of  not  before  both  record  the  fact  that  the
sentence as a whole is a negation. That is, negation here has wider scope than
conjunction and is thus the main connective.

We  will  refer  to  the  way  this  sentence  is  related  to  its  unanalyzed
components as the not-both form. Our analysis together with the truth tables
for negation and conjunction enable us to calculate a truth table for it.  The
table below follows the conventions for exhibiting the values of compounds
that were introduced in 2.1.8 . (That is, each of the two columns of values on
the right is written under the sign for the connective whose table was the last
used in calculating it.)

φ ψ ¬(φ∧ψ)
T T Ⓕ T
T F Ⓣ F
F T Ⓣ F
F F Ⓣ F



The plain roman Ts and Fs are the values for the conjunction φ ∧ ψ in each
case, and the circled values for the form as a whole come by following the
table for negation and taking the opposite of the value of the conjunction in
each row.

In the symbolic analysis of the not-both form, parentheses not only reflect
the structure of the sentence analyzed but also make a significant difference in
the proposition expressed. If we drop them and write ¬ φ ∧ ψ (i.e., both not φ
and ψ), we will no longer be marking the conjunction as a component of a
larger negation. The negation sign will instead apply (by default) to φ alone,
and  the  main  connective  will  be  conjunction.  That  is,  we  will  have  a
conjunction whose first component is a negation. The truth table for this form
is as follows:

φ ψ ¬φ∧ψ
T T F Ⓕ
T F F Ⓕ
F T T Ⓣ
F F T Ⓕ

In the example we began with,  dropping the parentheses gives us ¬ T ∧ M
(that is, both not T and M), which can be put into English as follows:

¬ it was hot ∧ it was humid
It wasn’t hot ∧ it was humid

It wasn’t hot, but it was humid

And we will refer to the general form ¬ φ ∧ ψ as the not-but form.
The  not-but  sentence  above  also  could  be  expressed  (though  more

awkwardly) as It was both not hot and humid.  (If this does not seem to
make sense, try reading not hot as if it was hyphenated and pause briefly after
it;  that  is,  read  it  as  you  would  It  was  both  not-hot—and  humid.)  A
comparison of this last (awkward) expression of the not-but form with our
original not-both example is revealing:

Sentence Analysis
It was not both hot and humid ¬ (T ∧ M) or not both T and M
It was both not hot and humid (¬ T ∧ M) or both not T and M

(The whole of the second analysis is parenthesized to make the comparison
easier.)

The  order  of  the  words  expressing  negation  and  conjunction  in  the  two
English sentences corresponds exactly to their  order in the analysis written

using English notation. In particular, the word both can be seen to function in
the English sentences, as it does in the analysis, to mark the beginning of the
scope of a conjunction and thus to indicate whether the word not applies to the
whole conjunction or only a part. Of course, things do not always work out this
neatly  in  English,  but  the  use  of  both  after  not  is  an  important  way  of
indicating exactly what is being denied. Emphasis is another way of indicating
the scope of negation, and an emphasized both—as in It was not both hot
and humid—can be particularly effective.

The  real  significance  of  negated  conjunction  lies  in  the  way it  modifies
while combining, allowing us to say that at least one of the two components of
the not-both form is false. The sentence It was not both hot and humid is
false only when the components It was hot and It was humid are both true,
so it leaves open every possibility in which at least one of them is false. And
this is something we could not do by modifying the components separately and
asserting  each.  On  the  other  hand,  a  conjunction  one  or  both  of  whose
components  is  negative  merely  combines  by adding content,  and we could
convey the same information by asserting the conjuncts separately.

While  the  not-both  is  the  important  new idea,  conjunction  of  possibly
negative components sometimes captures what we want to say; and there is a
construction in English that seems designed to produce a logical form of this
sort. The sentence It was humid but it wasn’t hot could be rephrased as It
was humid but not hot and thus as It was humid without being hot. So
this last sentence, too, can be understood as a conjunction (i.e., as M ∧ ¬ T or
both M and not T). Now without (in this use of the word) is a preposition, not
a conjunction, so what follows it will not have the form of a sentence. But the
object  of  without  can be a  nominalized predicate  or  nominalized sentence
rather than an ordinary noun or noun phrase, and just about anything of the
form φ ∧ ¬ ψ (which we will refer to as the but-not form) can be paraphrased
using  without.  For  example,  Sue  listened  but  didn’t  respond  can  be
paraphrased as Sue listened without responding, and Ann walked in but
Bill  didn’t  see her  could  be  paraphrased as  Ann walked in  without Bill
seeing her.  And, even when the object of without  is an ordinary noun or
noun phrase (rather than a nominalized predicate or sentence), the effect of
without is often the same as that of a but-not form. Thus Tom left without
his coat could be paraphrased as Tom left but didn’t take his coat and thus
analyzed as Tom left ∧ ¬ Tom took his coat.  Of course,  we have had to
supply the verb take here, and we cannot expect any one pattern of paraphrase
to work in all cases where without has an ordinary noun or noun phrase as its



object.
Since this  use  of  without  is  not  a  grammatical  conjunction,  it  does  not

introduce a second main verb; and this makes it especially convenient when we
want to negate a but-not form. For the easiest way to express the negation of a
whole sentence is to apply not to a single main verb. Suppose we wish to say
something with the following form:

¬ (it will fall ∧ ¬ it will be pushed)
not both it will fall and not it will be pushed

We might manage by expressing the three connectives one by one, ending with
something  like  It  won’t  both  fall  and  not  be  pushed,  where  we  have
contrived a single conjoined predicate incorporating negation. But any such
sentence is likely to be rather awkward. The natural way of making the claim
analyzed above is to use It won’t fall without being pushed. Accordingly,
let us refer to the form ¬ (φ ∧ ¬ ψ) as the not-without form.

Of  course,  it  is  also  possible  to  conjoin  sentences  both  of  which  are
negations. Indeed, It was not hot and not humid is sometimes an accurate
description of the weather. We would analyze this symbolically as ¬ T ∧ ¬ M
or both not T and not M. It will, at least for the time being, be convenient to
have a label for the form ¬ φ ∧ ¬ ψ, too; and the natural one is not-and-not
form. Although this is an important sort of truth-functional compound, we will
see  another  way  of  expressing  it  in  the  next  chapter  that  is  closer  to  the
grammatical form usually taken by such compounds in English. For the more
idiomatic way of say that is not hot and also not humid is with the sentence It
is neither hot nor humid. We noted earlier that this sentence can be seen as a
negation of It is either hot or humid, and its analysis along those lines will
await our account of the word or. But, until we have that, the not-and-not
form can serve as an analysis of neither-nor sentences since it has the right
truth conditions.

This way of analyzing neither-nor  sentences is not the only case where
conjunction and negation can be used to analyze sentences that we will be able
to analyze in a different and more direct way later. For example, many if-then
sentences can be analyzed using the not-without form (though doing so may
be jarring due to differences in implicatures). But this is just a special case of
something  that  was  noted  earlier:  any  truth-functional  compound  can  be
expressed using conjunction and negation alone.

To see this, suppose the effect of some connective on the truth conditions of
a sentence can be captured in a truth table—that is, suppose the connective is

truth-functional. The force of a sentence formed by such a connective is to
deny that the actual state (or history) of the world is described by any of the
rows of the table in which the sentence is false. Now the description of the
state  of  the  world  offered  by  a  given  row  can  be  captured  by  a  run-on
conjunction  that  affirms  or  denies  each  component  in  turn.  For  example,
knowing that φ is assigned T and ψ is assigned F comes to the same thing as
knowing that the sentence φ ∧ ¬ ψ is true. As a result, the compound sentence
as  a  whole  is  equivalent  to  a  conjunction  of  the  denials  of  the  sentences
corresponding to each row in which the sentence is false. (At least this is so, if
there are any such rows; otherwise, the sentence is a formal tautology and is
equivalent  to  any  other  formal  tautology,  for  example,  ¬  (φ ∧ ¬  φ).)  This
argument applies no matter how many components the connective applies to
and no matter what form the truth table takes. For this reason, conjunction and
negation are said to form a truth-functionally complete set of connectives.

To take a particular case, a compound with the table below can be thought
of as saying that φ and ψ are not both truth and also that they are not both
false, so it will be equivalent to ¬ (φ ∧ ψ) ∧ ¬ (¬ φ ∧ ¬ ψ).

φ ψ   
T T  F 
T F  T 
F T  T 
F F  F 

An English sentence whose grammatical form is close to this form—such as
Sam didn’t eat both pie and cake, but he also didn’t eat neither—will be
very cumbersome, and there are likely to be more idiomatic ways of saying the
same thing  whose  most  natural  analyses  would  be  different.  But  it  is  still
important to note that it  is possible to say this sort of thing by putting the
sentences Sam ate pie  and Sam ate cake  together using conjunction and
negation alone since it shows that the other expressions for this truth function
do not introduce any fundamentally new logical ideas.
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3.1.5. Some sample analyses
We will conclude this discussion with several examples illustrating the issues
we have discussed. First, consider a case that is entirely straightforward.

It isn’t warm out
¬ it’s warm out

¬ W
not W

W: it’s warm out

A second example shows that uncovering even a simple form can require
some thought and a paraphrase.

No one saw anyone enter the building
¬ someone saw someone enter the building

¬ S
not S

S: someone saw someone enter the building

Care is needed in distinguishing not-both forms from not-and-not forms.
Everyone understands the distinction quite well intuitively, but it is easy to get
tripped up when you are first  learning to make this  understanding explicit.
Compare the following.

Britain and France won’t both vote
¬ Britain and France will both vote

¬ (Britain will vote ∧ France will vote)

¬ (B ∧ F)
not both B and F

 

Britain and France both won’t vote
Britain won’t vote ∧ France won’t vote
¬ Britain will vote ∧ ¬ France will vote

¬ B ∧ ¬ F
both not B and not F

B: Britain will vote; F: France will vote

The negation of a conjunction is not the same as a conjunction of negations.
The  second form is  also  the  way we would  analyze  Neither Britain  nor
France will vote.

The scope of negation is one respect in which English sentences are often
ambiguous,  and  it  is  not  hard  to  find  examples  that  people  will  interpret
differently. For example, you may find it  possible to understand the second
sentence above as a denial of Britain and France will both vote—i.e., as
equivalent to the first.  The first seems unambiguous, but other sentences in

which  not  appears  before  both  are  less  clear.  For  example,  it  might  be
possible to understand Tom didn’t like both the service and the price to
say that he liked neither (if you have trouble understanding it to say anything
but that, try reading it with an emphasis on both).

Finally, here is a somewhat longer example.

Al didn’t get to both the meeting and the party without missing both
the game and the movie

¬ Al got to both the meeting and the party without missing both the
game and the movie

¬ (Al got to both the meeting and the party ∧ ¬ Al missed both the
game and the movie)

¬ ((Al got to the meeting ∧ Al got to the party) ∧ ¬ (Al missed the
game ∧ Al missed the movie))

¬ ((Al got to the meeting ∧ Al got to the party) ∧ ¬ (¬ Al got to the
game ∧ ¬ Al got to the movie))

¬ ((T ∧ P) ∧ ¬ (¬ G ∧ ¬ V))
not both T and P and not both not G and not V

G: Al got to the game; P: Al got to the party; T: Al got to the meeting;
V: Al got to the movie

The final step of analyzing X missed Y as contradictory to X got to Y is not
crucial at this point in the course. While it is important to exhibit as much
logical  structure  as  possible,  we  end  up  with  four  logically  independent
sentences whether we carry out the final step or not. However, we will later go
on to press analyses below the level of sentences, and this sort of step will then
be of value since it leads us to four components that differ only in the object of
the  preposition  to  and  therefore  can  be  analyzed  in  a  way  that  re-uses
vocabulary.
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3.1.s. Summary

Negation  is an operation associated with the English word not. It generates
a compound sentence from a single component, so it is a connective that
serves  to  modify  a  sentence  rather  than  to  combine  sentences.  The
not symbol  ¬ is our notation for negation. As English notation for ¬ φ, we
use not φ.

A  sentence  and  its  negation  cannot  be  both  true  (they  are  mutually
exclusive) and cannot be both false (they are jointly exhaustive); in short,
they must have different truth values (they are contradictory). Each leaves
open the possibilities the other rules out and rules out the possibilities the
other leaves open. This means that negation, like conjunction, has a truth
table; in other words it is a truth-functional connective . Not all connectives
are  truth-functional.  Truth-functional logic  is  the  branch  of  logic  which
studies those that are, but there are branches of logic—such as tense logic
and modal logic—in which non-truth-functional connectives are studied.

Negation appears in English not only in connection with the word not but
also  with  negative  prefixes  (though  such  a  prefix  does  not  always  mark
negation because it does not always produce a sentence that is contradictory
to the original). Negation also appears with uses of no in phrases of the form
no X, uses that can often be treated as the negation of at least one or some.
The same sort of treatment is usually what is required when not  appears
along with the word any (though such sentences usually must be rephrased
when  not  is  removed).  By  negating  a  negation,  we  can  produce  a
double negation ,  but  this  undoes  the  negation  rather  than  generating  a
logical form with new properties.

The  really  new  ideas  come  with  the  negation  of  conjunctions,  but
conjunctions  whose  components  may  involve  negation  also  provide
important forms of expression. A number of forms are shown below, with
labels that suggest the sort of English sentences they serve to analyze:

not-both form ¬ (φ ∧ ψ) not both φ and ψ

not-but form ¬ φ ∧ ψ both not φ and ψ

but-not form φ ∧ ¬ ψ both φ and not ψ

not-and-not form ¬ φ ∧ ¬ ψ both not φ and not ψ

not-without form ¬ (φ ∧ ¬ ψ) not both φ and not ψ

That the last is the denial of the third reflects the fact that without can be
used to express a but-not form. Also neither-nor can be used to express a
not-and-not  form.  More  generally,  negation  and  conjunction  form  a
truth-functionally complete  set of connectives in the sense that any truth-
functional compound can be expressed using them alone.

Glen Helman  03 Aug 2010



3.1.x. Exercise questions
1. Analyze each of the following sentences in as much detail as possible.
 a. The soup was hot but not too hot, and thick but not too thick.
 b. The equipment isn’t here and it’s unlikely to arrive soon.
 c. No one answered the phone even though it rang 10 times.
 d. The alarm must have gone off, but Ted didn’t hear anything.
 e. They won’t both meet the deadline and stay within the

budget.
 f. They won’t meet the deadline, but they will stay within the

budget.
 g. They won’t meet the deadline, and they won’t stay within the

budget.
 h. Tod shut off the alarm without waking up.
 i. They won’t meet the deadline without going over the budget.
 j. Larry joined in, but not without being coaxed.
 k. Ann liked the movie, but neither Bill nor Carol did.
2. Restate each of the forms below, putting English notation into symbols

and vice versa. Indicate the scope of connectives in the result by
underlining.

 a. ¬ ¬ (A ∧ B)
 b. ¬ (¬ A ∧ B)

 c. both not A and both not B and C

 d. both not both A and B and not C

3. Synthesize idiomatic English sentences that express the propositions
that are associated with the logical forms below by the intensional
interpretations that follow them.

 a. C ∧ ¬ F
C: it was cold; F: there was frost

 b. ¬ S ∧ (H ∧ I)
H: Sue heard a crash; I: Sue went to investigate; S: someone
saw the accident

 c. (D ∧ N) ∧ ¬ P
D: it was a design; N: it was new; P: it pleased someone

 d. ¬ (I ∧ N)
I: we’ll win in Iowa; N: we’ll win in New York

 e. ¬ I ∧ N
I: we’ll win in Iowa; N: we’ll win in New York

 f. ¬ (I ∧ ¬ L)
I: we’ll win in Iowa; L: we’ll lose in New York

4. Complete the following truth tables. That is, calculate truth values for
all components of the forms below using the extensional interpretation
provided on the left in each case.

 a. A B C A ∧ ¬ (B ∧ C)
T F F  

 b. A B C A ∧ (¬ B ∧ C)
T F F

 c. A B C D (¬ A ∧ ¬ B) ∧ (¬ (A ∧ C) ∧ D)
F T T T  
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3.1.xa. Exercise answers

1. a. The soup was hot but not too hot ∧ the soup was thick but not
too thick

(the soup was hot ∧ the soup was not too hot) ∧ (the soup was
thick ∧ the soup was not too thick)

(the soup was hot ∧ ¬ the soup was too hot) ∧ (the soup was
thick ∧ ¬ the soup was too thick)

(H ∧ ¬ T) ∧ (K ∧ ¬ O)
both both H and not T and both K and not O

H: the soup was hot; K: the soup was thick; O: the soup was
too thick; T: the soup was too hot

 b. The equipment isn’t here ∧ the equipment is unlikely to arrive
soon

¬ the equipment is here ∧ ¬ the equipment is likely to arrive
soon

¬ H ∧ ¬ S
both not H and not S

H: the equipment is here; S: the equipment is likely to arrive
soon

 c. No one answered the phone ∧ the phone rang 10 times
¬ someone answered the phone ∧ the phone rang 10 times

¬ A ∧ R
both not A and R

A: someone answered the phone; R: the phone rang 10 times
 d. The alarm must have gone off ∧ Ted didn’t hear anything

The alarm must have gone off ∧ ¬ Ted heard something

A ∧ ¬ H
both A and not H

A: the alarm must have gone off; H: Ted heard something
 e. ¬ they will both meet the deadline and stay within the budget

¬ (they will meet the deadline ∧ they will stay within the
budget)

¬ (D ∧ B)
not both D and B

B: they will stay within the budget; D: they will meet the
deadline

 f. They won’t meet the deadline ∧ they will stay within the
budget

¬ they will meet the deadline ∧ they will stay within the
budget

¬ D ∧ B
both not D and B

B: they will stay within the budget; D: they will meet the
deadline

 g. They won’t meet the deadline ∧ they won’t stay within the
budget

¬ they will meet the deadline ∧ ¬ they will stay within the
budget

¬ D ∧ ¬ B
both not D and not B

B: they will stay within the budget; D: they will meet the
deadline

 h. Tod shut off the alarm ∧ ¬ Tod woke up

A ∧ ¬ W
both A and not W

A: Tod shut off the alarm; W: Tod woke up
 i. ¬ they will meet the deadline without going over the budget

¬ (they will meet the deadline ∧ ¬ they will go over the
budget)

¬ (D ∧ ¬ G)
not both D and not G

D: they will meet the deadline; G: they will go over the budget
 j. Larry joined in ∧ Larry did not join in without being coaxed

Larry joined in ∧ ¬ Larry joined in without being coaxed
Larry joined in ∧ ¬ (Larry joined in ∧ ¬ Larry was coaxed)

J ∧ ¬ (J ∧ ¬ C)
both J and not both J and not C

C: Larry was coaxed; J: Larry joined in
This is equivalent to J ∧ ¬ ¬ C and also to J ∧ C, but the analysis



shown is closer to the form of the English.
 k. Ann liked the movie ∧ neither Bill nor Carol liked the movie

Ann liked the movie ∧ (¬ Bill liked the movie ∧ ¬ Carol liked
the movie)

A ∧ (¬ B ∧ ¬ C)
both A and both not B and not C

A: Ann liked the movie; B: Bill liked the movie; C: Carol liked
the movie

The alternative  (and equivalent)  analysis  as  A ∧ ¬ E (where  E:
either Bill or Carol liked the movie) is closer to the English but it
is less satisfactory because it displays less structure. The next chapter
will give us the means carry this sort of analysis further by analyzing
E as a compound of B and C.

2. a. not not both A and B
  

 b. not both not A and B
  

 c. ¬ A ∧ (¬ B ∧ C)
   

 d. ¬ (A ∧ B) ∧ ¬ C
   

3. a. It was cold ∧ ¬ there was frost
It was cold ∧ there was no frost
It was cold, but there was no frost

 b. ¬ someone saw the accident ∧ (Sue heard a crash ∧ Sue went
to investigate)

No one saw the accident ∧ Sue heard a crash and went to
investigate

No one saw the accident, but Sue heard a crash and went to
investigate

 c. (it was a design ∧ it was new) ∧ ¬ it pleased someone
It was a new design ∧ it pleased no one
It was a new design, and it pleased no one

 d. ¬ (we’ll win in Iowa ∧ we’ll win in New York)
¬ (we’ll win in both Iowa and New York)
We won’t win in both Iowa and New York

 e. ¬ we’ll win in Iowa ∧ we’ll win in New York
We won’t win in Iowa ∧ we’ll win in New York

We won’t win in Iowa, but we’ll win in New York
 f. ¬ (we’ll win in Iowa ∧ ¬ we’ll lose in New York)

¬ (we’ll win in Iowa without losing in New York)
We won’t win in Iowa without losing in New York

4. Numbers below the tables indicate the order in which values were
computed.

 a. A B C A∧¬ (B∧C)
T F F  Ⓣ T F
    3 2 1

 b. A B C A∧(¬ B∧C)
T F F Ⓕ T F
    3 1 2

[Note that, while in a, it is the value under the ¬ that is used in
calculating the value of the main conjunction, in b it is the value
under the second ∧; this is due to the change in relative scope of
these two connectives.]

 c. A B C D (¬ A∧¬ B)∧ (¬ (A∧C)∧D)
F T T T T F F Ⓕ T F T
    1 2 1 4 2 1 3
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3.2. Reductio arguments: refuting suppositions
3.2.0. Overview
Since negating a sentence changes what it says into the contradictory opposite,
the role of negation in deductive reasoning is quite different from the role of
conjunction; and rules for negation will  focus on the rejection of sentences
rather than the extraction and assembly of information.

3.2.1. The duality of premises and alternatives
The  deductive  properties  of  negation  rest  on  ties  between  the  relation
between premises and alternatives on the one hand and the relation between
a sentence and its negation on the other.

3.2.2. Drawing negative conclusions
The basic form of argument for a negative conclusion establishes a relation
of exclusion, and it does so by a reduction to absurdity.

3.2.3. Some examples
An account of the role of negation as a conclusion does not capture all its
deductive  properties,  but  many  of  the  most  typical  sorts  of  negative
argumentation do follow.
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3.2.1. The duality of premises and alternatives

The law alternatives via assumptions  tells us that, when sentences φ and φ are
contradictory, having one as a premise comes to the same thing as having the
other as a conclusion—that is,

Γ ⊨ φ, Δ if and only if Γ, φ ⊨ Δ

If we apply this to the contradictories φ and ¬ φ, we get a pair of principles

Γ ⊨ ¬ φ, Δ if and only if Γ, φ ⊨ Δ
Γ, ¬ φ ⊨ Δ if and only if Γ ⊨ φ, Δ

where we get the second by reversing the contradictory pair. The two together
tell us that having a negation as either a premise or alternative comes to the
same thing as having the unnegated sentence in the opposite role (where the
opposition in question is the duality mentioned in 1.4.7 ).

We do not study conditional exhaustiveness directly, and we use of the basic
law  for  conditional  exhaustiveness  mainly  to  exchange  alternatives  for
premises so that a claim of conditional exhaustiveness may be converted into a
claim of entailment.  But suppose we apply it  to entailment instead; that is,
suppose we begin with only a single alternative (so the set Δ is empty). In this
case, when φ and φ are contradictory, we can say that

Γ ⊨ φ if and only if Γ, φ ⊨ 

where the right-hand side says that φ is inconsistent with (or is excluded by) Γ.
When we express that inconsistency as the validity of a reductio argument, we
get the following principle:

if φ and φ are contradictory, then Γ ⊨ φ if and only if Γ, φ ⊨ ⊥

And this will be the basis for our account of negation.
We get our basic principles for negation by applying this principle to the

case  of  negation  by  choosing  the  contradictory  pair  as  a  sentence  and  its
negation, both in that order and its reverse. Turning the second if and only if
principle  around  so  that  clause  concerning  negation  comes  first,  the  two
principles are these:

LAW FOR NEGATION AS A CONCLUSION. Γ ⊨ ¬ φ if and only if Γ, φ ⊨ ⊥.
LAW FOR NEGATION AS A PREMISE. Γ, ¬ φ ⊨ ⊥ if and only if Γ ⊨ φ.

Although these principles are dual in something like the way that the earlier
pair  for  conditional  exhaustiveness  were,  each  has  a  rather  different
significance. The first captures the core properties of negation while the second
is closely tied to the equivalence of ¬ ¬ φ with φ (which, as was noted in 3.1.3



, is about as controversial as anything gets in logic). Also, while the first will
provide  us  with  straightforward  ways  of  planning  for  negative  goals  and
carrying out these plans, the second gives an account of the role of negative
premises only in the context of reductio arguments and, for this reason, has a
less  straightforward implementation as  a  derivation rule.  We will  go on to
explore the implementation of the first now and postpone a discussion of the
second until 3.3 .
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3.2.2. Drawing negative conclusions

The law for negation as a conclusion

Γ ⊨ ¬ φ if and only if Γ, φ ⊨ ⊥

describes the conditions under which an entailment of the form Γ ⊨ ¬ φ holds.
An example may help in thinking about this law. The argument

Ann and Bill were not both home without the car
being in the driveway

Ann was home but the car was not in the
driveway

Bill was not home

is valid and seeing that it is valid comes to the same thing as seeing that Bill
could not have been home if the premises are true. But to see this is to see that
the claim Bill was home is excluded by the premises of the argument. So the
negative conclusion of this argument is valid because the conclusion denies
something that is excluded by the premises.

This  connection  between validity  and  exclusion  is  just  what  the  law for
negation as a conclusion states. For a reductio entailment Γ, φ ⊨ ⊥ is the way
we capture exclusion in terms of entailment: Γ excludes φ if adding φ to Γ
would enable us to reach an absurd conclusion. And the law tells us that we
can validly conclude a negation ¬ φ when we can reduce to absurdity the result
of adding φ to the premises Γ. So we can say that the example above is valid
because due to the inconsistency of the three sentences

Ann and Bill were not both home without the car
being in the driveway

Ann was home but the car was not in the
driveway

Bill was home

We can reduce these claims to absurdity by noting that the second and third
together imply Ann and Bill were both home without the car being in the
driveway and that this is what the first denies.

Although this reduction to absurdity shows the inconsistency of the full set
of sentences from which we draw the absurd conclusion, we focus attention on
the last one of them to draw a negative conclusion from the first two. And in
general,  the  entailment  Γ,  φ ⊨ ⊥  shows  the  inconsistency  of  the  full  set
containing the members of Γ together with φ, but we focus attention on φ
when  we  say  it  is  excluded  by,  or  is  inconsistent  with,  Γ.  We  can  focus



attention on a single sentence when speaking of reduction to absurdity itself by
saying that the argument Γ, φ / ⊥ reduces φ to absurdity given Γ. And this
allows us to restate the law for negation as a conclusion in another way: we can
validly conclude a negation ¬ φ from premises Γ when we can reduce φ to
absurdity given the premises Γ. In the example above, we reduced Bill was
home to absurdity given the two premises of the original argument.

As  a  rule  for  sequent  proofs,  the  principle  for  negation  as  a  conclusion
would take the following form:

And this shows the effect we want a corresponding derivation rule to have on a
gap in a derivation. There is no branching, but a premise is added in moving up
from the bottom and the required conclusion is strengthened to ⊥.

To implement this idea in derivations, we must add φ as a further resource
in the child gap. Unlike resources added through Ext, this added resource will
generally go beyond information contained in the premises.  It  is  a  genuine
addition  to  the  claims  made  by  the  premises,  amounting  to  a  further
assumption for the purposes of the argument.  Such further assumptions are
often called suppositions and the verb suppose is used to introduce them when
putting this sort of deductive reasoning into words. Suppositions can have a
variety of roles in deductive reasoning. In the rules Lemma and LFR of 2.4, a
lemma is introduced as a supposition in one gap of a derivation. In those rules
this supposition represents a resource that we have on loan, a loan that is paid
if we are able to prove the lemma in another gap. When we suppose φ in order
to prove ¬ φ, we make the supposition in order to refute it by reducing it to
absurdity. That is, we make the supposition in order to consider a possibility,
and we go on to rule out the possibility on the basis of other assumptions. We
will encounter still other uses of suppositions in later chapters.

The rule that implements this idea in derivations will be called Reductio Ad
Absurdum or RAA. It is shown in Figure 3.2.2-1.

Γ, φ ⊨ ⊥

Γ ⊨ ¬ φ
neg. as
concl.

│⋯
│
││⋯
││
││
││
││
││
││
│├─
││¬ φ
│⋯

→

│⋯
│
││⋯
││
│││φ
││├─
│││
││├─
│││⊥ n
│├─

n RAA││¬ φ
│⋯

Fig. 3.2.2-1. Developing a derivation by planning for a negation at stage n.

This rule leads us to develop a gap by adding a supposition and, at the same
time, changing our goal to ⊥. The part of the derivation these changes affect is
marked by a scope line, and the added resource is marked off at the top by a
horizontal line.

If we state this rule for tree-form proofs, it takes the following form (which
you should compare to the analogous diagram for the rule Lem of 2.4.1):

This shows a pattern of argument in which we conclude ¬ φ from the premise
⊥. But that description would apply also to the rule EFQ, so it does not capture
all that is going on here. The conclusion ¬ φ is, in general, weaker than ⊥. And
the rule for negation as a conclusion tells us that the particular way it is weaker
licenses us to drop φ from our assumptions. Since the conclusion rules out no
case where φ is false, it need no longer depend on an assumption φ that rules
out such cases.

As  with  other  rules,  the  form of  RAA in  tree-form proofs  explains  the
numerical annotations for it in derivations. A stage number is placed to the
right  of  ⊥,  since it  is  the  true  premise from which ¬ φ is  concluded.  The
supposition φ is not a premise but plays a different role so no stage number is
added to its right (though one might appear later if it is exploited inside the gap
as it develops further). The fact that the supposition is discharged when we
draw a conclusion from ⊥ is shown in the derivation simply by the fact that its
scope line ends with ⊥.

Once we have begun a reductio argument, we have ⊥ as our goal and we
must look for ways of reaching it. The only way we have in our rules so far is

φ╱

⊥

¬ φ
RAA



QED, but that requires that we have ⊥ among our resources. While it is, of
course, possible that our new supposition is ⊥ or that ⊥ was already among our
resources,  we would not expect this to happen in general.  Usually,  we will
need to make use of both the supposition and the pre-existing resources and
make use of some negative claims among them. Our full discussion of the use
of negative resources will come only in 3.3 , but the core principle for using
such resources is one we can consider now.

One of the traditional laws of logic is the law of non-contradiction. This is
sometimes referred to also as the “law of contradiction” when the focus is
simply  on  the  fact  that  it  is  a  law  for  concluding  something  from  a
contradictory pair rather than the fact that what we conclude is that they cannot
be  both  true.  We  know  it  as  the  principle  that  ¬ φ  and  φ  are  mutually
exclusive—or, in the form most relevant at the moment, that ¬ φ, φ ⊨ ⊥.

This  idea  lies  behind  a  pattern  of  argument  that  we  will  call
Non-contradiction or Nc:

This pattern of argument will appear in derivations as a way of completing a
reductio argument:

│⋯
│¬ φ [available]
│⋯
│φ [available]
│⋯
│
││⋯
││
│├─
││⊥
│⋯

→

│⋯
│¬ φ (n)
│⋯
│φ (n)
│⋯
│
││⋯
││●
│├─

n Nc││⊥
│⋯

Fig. 3.2.2-2. Closing the gap of a reductio argument one of whose
resources negates another.

Notice that, as with other rules that close gaps, the resources required to apply
this  need  only  be  available  and  they  are  marked  with  parenthesized  stage
numbers. The latter point is moot, as it was with QED and EFQ, since the gap
closes. And, in a way, the possibility of using available but inactive resources
is moot also. Once we have the further rules of 3.3 , we will need this rule only
when φ is an unanalyzed component (though it will be usable and useful in
other  cases,  too).  And  we  will  never  have  rules  for  exploiting  unanalyzed

¬ φ φ

⊥
Nc

components or their negations, so such resources will be active whenever they
are available.
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3.2.3. Some examples
Here is a derivation that uses the rules RAA and Nc:

│A ∧ ¬ C 1
├─

1 Ext │A
1 Ext │¬ C (5)

│
││B ∧ (C ∧ ¬ D) 3
│├─

3 Ext ││B
3 Ext ││C ∧ ¬ D 4
4 Ext ││C (5)
4 Ext ││¬ D

││●
│├─

5 Nc ││⊥ 2
├─

2 RAA│¬ (B ∧ (C ∧ ¬ D))
One feature of this derivation will now be typical: it is not possible to have all
uses of Ext at the beginning of the derivation since this rule may be used to
exploit suppositions.

Of course, we might have used RAA at the first stage before applying Ext.
But the following derivation shows that even this degree of grouping of uses of
Ext will not always be possible.

│A ∧ ¬ B 1
├─

1 Ext │A (3)
1 Ext │¬ B (6)

│
││●
│├─

3 QED││A 2
│
│││B ∧ C 5
││├─

5 Ext │││B (6)
5 Ext │││C

│││●
││├─

6 Nc │││⊥ 4
│├─

4 RAA││¬ (B ∧ C) 2
├─

2 Cnj │A ∧ ¬ (B ∧ C)
We might  have waited until  after  the  supposition B ∧ C was made before
applying Ext to the initial premise; but, by then, there would be two gaps and
the first premise would have to be exploited in each in order for them to close.
In general, it is wise (though not necessary) to apply Ext to a conjunction as
soon as it appears as a resource, but conjunctions may continue to appear as

resources from time to time as a derivation develops.
The tree-form proof corresponding to the second of these derivations takes

the following form:

Notice  the  asterisk  above  the  discharged  supposition  B ∧ C.  This  ties  the
supposition  to  the  rule  that  discharges  it  in  the  way the  scope  line  of  the
supposition does in a derivation.

Now let’s look at the sort of derivation we might give for the argument that
began 3.2.2 . We can analyze the first premise of that argument as follows:

Ann and Bill were not both home without the car being in the
driveway

¬ Ann and Bill were both home without the car being in the
driveway

¬ (Ann and Bill were both home ∧ ¬ the car was in the driveway)
¬ ((Ann was home ∧ Bill was home) ∧ ¬ the car was in the driveway)

¬ ((A ∧ B) ∧ ¬ C)
not both both A and B and not C

A: Ann was home; B: Bill was home; C: the car was in the driveway

So the full argument takes the form:

¬ ((A ∧ B) ∧ ¬ C)
A ∧ ¬ C

¬ B

The negative first premise is crucial for the argument, but we have no way of
using it at the moment without having the compound it negates as a resource.
To get that compound—i.e., (A ∧ B) ∧ ¬ C—as a resource, we need to use
Adjunction to build its first conjunct and then the full compound.

A ∧ ¬ B

A
1 Ext

A
3 QED

A ∧ ¬ B

¬ B
1 Ext

B ∧ C╱╱╱╱
*

B
5 Ext

⊥
6 Nc

¬ (B ∧ C)
4 RAA*

A ∧ ¬ (B ∧ C)
2 Cnj



│¬ ((A ∧ B) ∧ ¬ C) (6)
│A ∧ ¬ C 2
├─

2 Ext │A (4)
2 Ext │¬ C (5)

│
││B (4)
│├─

4 Adj ││A ∧ B X,(5)
5 Adj ││(A ∧ B) ∧ ¬ C X,(6)

││●
│├─

6 Nc ││⊥ 3
├─

3 RAA│¬ B
The need to use Adjunction in cases like this will end when we get the further
rules of the next section, but it will sometimes still be a natural approach to
establishing an entailment.

Now let’s  see  what  the  derivation looks like  if  we replace the  symbolic
sentences by the actual English sentences they analyze:

│Ann and Bill were not both home without the car (6)
│   being in the driveway
│Ann was home but the car was not in the driveway 2
├─

2 Ext │Ann was home (4)
2 Ext │the car was not in the driveway (5)

│
││Bill was home (4)
│├─

4 Adj ││Ann and Bill were both home X,(5)
5 Adj ││Ann and Bill were both home without the car being X,(6)

││  in the driveway
││●
│├─

6 Nc ││⊥ 3
├─

3 RAA│Bill was not home

In a stretch of explicit deductive argumentation in English, various sorts of
connecting  language  would  be  used  to  get  the  effect  of  the  lines  and
annotations  that  structure  this  derivation.  Although  this  is  not  the  sort  of
entailment where such an explicit argument would ordinarily be given, if one
were offered, it might run something like this:

We assume that Ann and Bill were not both home without the car being in
the  driveway  and  also  that  Ann  was  home  but  the  car  was  not  in  the
driveway. So we know that Ann was home. And we also know that the car was
not in the driveway.

Now suppose (for the sake of reductio) that Bill was home. It would follow
that Ann and Bill were both home. And then we would know that Ann and Bill
were both home without the car being in the driveway. But that contradicts
one of our initial assumptions.

So we can conclude that Bill was not home.

The modal verb would  has been used here in the reductio  argument of the
second paragraph to emphasize that the situation being described need not be a
real  one.  It  is  possible  to  go  further  in  that  direction  by  phrasing  the
supposition itself as Suppose that Bill were home; but it is also possible to
let the verb suppose suffice to show that what follows is not a consequence of
the initial premises.
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2

3

3.2.s. Summary
The  basic  law  for  exhaustiveness  says  that  having  one  of  a  pair  of
contradictory sentences as a premises comes to the same thing as having the
other as an alternative. This does not apply to entailment directly, but we can
consider  a  special  case  which  says  that  one  of  a  pair  of  contradictory
sentences is entailed by a set if and only if the other is inconsistent with that
set. Since a sentence and its negation are contradictories, this gives us a pair
of principles, laws for negation as a premise  and as a conclusion .

Inconsistency is established by a reductio argument. In a derivation, this will
be associated with a gap that has ⊥ as its goal. In order to show a sentence
inconsistent  with our premises,  we add it  as  a  further assumption in the
reductio  argument.  This  further  assumption  may  be  referred  to  as  a
supposition  of this argument to distinguish it from the premises with which
we  hope  to  show  it  inconsistent.  The  rule  implementing  this  idea  is
Reductio ad Absurdum (RAA) . To actually reach the goal of ⊥, we add a
rule allowing us to close a gap when a sentence and its negation are among
the resources. This rule is Non-contradiction (Nc)  and is named after the
traditional law of non-contradiction .

The use of suppositions means that we will  no longer always be able to
group all uses of Ext at the beginning of a derivation. A more temporary
complication is the need to use Adj to form a sentence contradictory to a
negated conjunction, something that will be handled by a rule introduced in
the next section.
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3.2.x. Exercise questions
1. Use  derivations  to  establish  each  of  the  claims  of  entailment  shown

below. Notice that c is a claim of tautologousness; it requires a derivation
without initial assumptions. All the resources used in a such a derivation
will come from suppositions.
a. ¬ A ⊨ ¬ (A ∧ B)
b. ¬ B ⊨ ¬ (A ∧ B) ∧ ¬ (B ∧ C)
c.  ⊨ ¬ (A ∧ ¬ A)
d. J ∧ C ⊨ J ∧ ¬ (J ∧ ¬ C) (see exercise 1j of 3.1.x )

2. Use  derivations  to  establish  each  of  the  claims  of  entailment  shown
below.  You  will  need  to  introduce  lemmas  to  exploit  the  negated
compounds that appear as premises. For most, Adj is enough; but, for the
last, you will need to use the rule LFR introduced in 2.4.
a. ¬ (A ∧ B), A ⊨ ¬ B
b. ¬ (A ∧ ¬ B), ¬ B ⊨ ¬ A
c. A, ¬ (A ∧ B), ¬ (A ∧ C) ⊨ ¬ B ∧ ¬ C
d. ¬ (A ∧ B), ¬ (C ∧ ¬ B) ⊨ ¬ (A ∧ C)

We have too limited a group of rules at this point for the exercise machine to
be useful.
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3.2.xa. Exercise answers
1. a. │¬ A (3)

├─
││A ∧ B 2
│├─

2 Ext ││A (3)
2 Ext ││B

││●
│├─

3 Nc ││⊥ 1
├─

1 RAA│¬ (A ∧ B)
b. │¬ B (4),(7)

├─
│││A ∧ B 3
││├─

3 Ext │││A
3 Ext │││B (4)

│││●
││├─

4 Nc │││⊥ 2
│├─

2 RAA││¬ (A ∧ B) 1
│
│││B ∧ C 6
││├─

6 Ext │││B (7)
6 Ext │││C

│││●
││├─

7 Nc │││⊥ 5
│├─

5 RAA││¬ (B ∧ C) 1
├─

1 Cnj │¬ (A ∧ B) ∧ ¬ (B ∧ C)
c. ││A ∧ ¬ A 2

│├─
2 Ext ││A (3)
2 Ext ││¬ A (3)

││●
│├─

3 Nc ││⊥ 1
├─

1 RAA│¬ (A ∧ ¬ A)

d. │J ∧ C 1
├─

1 Ext │J (3)
1 Ext │C (6)

│
││●
│├─

3 QED││J 2
│
│││J ∧ ¬ C 5
││├─

5 Ext │││J
5 Ext │││¬ C (6)

│││●
││├─

6 Nc │││⊥ 4
│├─

4 RAA││¬ (J ∧ ¬ C) 2
├─

2 Cnj │J ∧ ¬ (J ∧ ¬ C)
2. a. │¬ (A ∧ B) (3)

│A (2)
├─
││B (2)
│├─  

2 Adj ││A ∧ B X,(3)
││●
│├─

3 Nc ││⊥ 1
├─

1 RAA│¬ B
b.  │¬ (A ∧ ¬ B) (3)

 │¬ B (2)
 ├─
 ││A (2)
 │├─  
2 Adj ││A ∧ ¬ B X,(3)

││●
│├─

3 Nc ││⊥ 1
├─

1 RAA│¬ A



c. │A (3),(6)
│¬ (A ∧ B) (4)
│¬ (A ∧ C) (7)
├─
│││B (3)
││├─

3 Adj │││A ∧ B X,(4)
│││●
││├─

4 Nc │││⊥ 2
│├─

2 RAA││¬ B 1
│
│││C (6)
││├─

6 Adj │││A ∧ C X,(7)
│││●
││├─

7 Nc │││⊥ 5
│├─

5 RAA││¬ C 1
├─

1 Cnj │¬ B ∧ ¬ C
 d. │¬ (A ∧ B) (6)

│¬ (C ∧ ¬ B) (8)
├─
││A ∧ C 2
│├─

2 Ext ││A (5)
2 Ext ││C (7)

││
││││B (5)
│││├─

5 Adj ││││A ∧ B X,(6)
││││●
│││├─

6 Nc ││││⊥ 4
││├─

4 RAA│││¬ B 3
││
│││¬ B (7)
││├─

7 Adj │││C ∧ ¬ B X,(8)
│││●
││├─

8 Nc │││⊥ 3
│├─

3 LFR ││⊥ 1
├─

1 RAA│¬ (A ∧ C)
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3.3. Negations as premises
3.3.0. Overview
A second group of rules for negation interchanges the roles of an affirmative
sentence and its negation.

3.3.1. Indirect proof
The  basic  principles  for  negation  describe  its  role  as  a  premise  only  in
reductio arguments but a reductio is always available as an argument of last
resort.

3.3.2. Using lemmas to complete reductios
The role negative resources play will be to contradict other sentences; since
what they contradict must often be introduced as a lemma, a use of lemmas
is built into the rule for exploiting negative resources.

3.3.3. More examples
These new rules permit some new approaches to entailments that could be
established using the last section’s rule; but they also support some further
entailments.

Glen Helman  03 Aug 2010



3.3.1. Indirect proof
The last section pursued consequences of the law for negation as a conclusion.
The rules of this section will implement the other basic law for negation, the
law for it as a premise:

Γ, ¬ φ ⊨ ⊥ if and only if Γ ⊨ φ

This says that a negation is ¬ φ inconsistent with a set Γ if and only if the
sentence φ is entailed by that set.

There are  several  lessons we can learn from this  law.  First,  the  only-if-
statement tells us that negative conclusions are not the only ones that can be
established by way of reductio arguments, for it says that an entailment Γ ⊨ φ
must hold if the reductio Γ, ¬ φ ⊨ ⊥ holds. Further, the if-statement tells us in
part  that  such an approach is  safe,  that  the  reductio  is  valid  whenever  the
argument we wish to support by it  is valid. But if-statement tells us more.
Notice that φ is just the sort of resource that would enable us to complete a
reductio  that  has  ¬ φ  as  a  premise.  The  if-claim above  tells  us  that,  if  a
reductio with ¬ φ as a premise can be completed at all, we would be able to
validly conclude φ as a lemma—and that we could do so without using ¬ φ
itself as a premise. This further lesson will provide the basis for exploiting
negative resources. However, its full application depends on the broader use of
reductio arguments supported by the other two lessons, and that is what we
will consider first.

Here is an example of this broader use of reductios. If we take No one is
home  to  be  the  negation  ¬ someone  is  home,  the  law  for  negation  as  a
premise says we can rest the validity of the left-hand argument below on the
validity of the right-hand argument.

If no one was out, the car was in
the driveway

The car wasn’t in the driveway

Someone was out

 

If no one was out, the car was in
the driveway

The car wasn’t in the driveway
No one was out

⊥

The right-hand argument depends in part on the logical properties of if; but, as
far as negation is concerned, it depends on only the fact that a sentence and its
negation are mutually exclusive.

The fact that they are mutually exclusive also supports the entailment ¬ ¬ φ,
¬ φ ⊨ ⊥. If we apply the law for negation as a premise to this entailment, we
get the principle ¬ ¬ φ ⊨ φ. Moreover, the latter principle can be combined
with the law for negation as a conclusion to establish the law for negation as a

premise. So the further logical properties of negation that are captured by the
law for negation as a premise can be summarized in the principle that a double
negation entails the corresponding positive claim.

This  principle  is  one  that  was  rejected  by  Brouwer  in  his  intuitionistic
mathematics. And one of his chief reasons for rejecting it was that it would
allow us to draw a conclusion of the form Something has the property P
when the corresponding claim Nothing has the property P was inconsistent
with  our  premises,  and  that  is  just  the  sort  of  thing  that  was  done  in  the
example above. His concern with this is that it would enable us to conclude
Something has the property P  in  cases  where  we were  unable,  even in
principle,  to  provide  an  actual  example  of  a  thing  with  that  property  P.
Brouwer did not object to such an argument in ordinary reasoning about the
physical  world  (like  the  example  above);  but  he  held  that,  in  reasoning
concerning infinite mathematical structures, we were not reasoning about an
independently  existing  realm  of  objects  but  instead  about  procedures  for
constructing  abstract  objects  and  that  we  had  no  business  claiming  the
existence of such objects without having procedures enabling us to construct
them. Brouwer’s concerns may not lead you to question the law for negation as
a  premise;  but  they  highlight  the  indirectness  of  supporting  a  positive
conclusion  by  an  argument  concerning  its  denial.  This  aspect  of  these
arguments is reflected in a common term for them, indirect proofs.

Although we will  employ indirect  proofs,  we will  need them for  only  a
limited range of conclusions. We have other ways of planning for a goal that is
a conjunction or a negation, and we can simply close a gap whose goal is ⊤.
We will not adopt any rule to plan for the goal ⊥ of a reductio argument. At
the  moment,  that  leaves  only  unanalyzed  components;  and,  until  the  last
chapter (where we consider the logical properties of something), those are the
only goals for which we will use indirect proofs. We have often closed gaps
whose goals are atomic, so we know that indirect proof is not always necessary
even for such goals, but it will serve us as a last resort.

In chapter 6, we will begin to analyze sentences into components that are
not sentences, and we will still use indirect proof for goals that are analyzed in
that way. In anticipation of this, we will use the term atomic for the kind of
goals  to  which  we  will  apply  indirect  proof;  and  we  will  refer  to  other
sentences as non-atomic. Until chapter 6, any sentence we analyze will be a
compound formed by applying a connective to one or more sentences, so, for
the time being, the atomic sentences will be the unanalyzed sentences. ⊤ and ⊥
count as non-atomic since identifying them as Tautology and Absurdity counts
as an analysis of their logical form. As a result, for the time being, the atomic



sentences will be simple letters, and all other sentences will be non-atomic.
In tree-form and sequent proofs, this new form of argument will look like

RAA or negation as a conclusion except that the positions of φ and ¬ φ will be
reversed.  The  same  is  true  of  the  rule  implementing  indirect  proofs  in
derivations, but we will choose a name that reflects its rather different role and
call it Indirect Proof (IP). It takes the following form:

│⋯
│
││⋯
││
││
││
││
││
││
│├─
││φ [atomic]
│⋯

→

│⋯
│
││⋯
││
│││¬ φ
││├─
│││
││├─
│││⊥ n
│├─

n IP││φ
│⋯

Fig. 3.3.1-1. Developing a derivation by planning for an atomic sentence at
stage n.

Here is an example, which is related to the argument at the beginning of 3.2.2 .
│¬ ((A ∧ B) ∧ ¬ C) (4)
│A (2)
│B (2)
├─
││¬ C (3)
│├─

2 Adj││A ∧ B X,(3)
3 Adj││(A ∧ B) ∧ ¬ C X,(4)

││●
│├─

4 Nc ││⊥ 1
├─

1 IP │C
This example adds to the premise Ann and Bill were not both home without
the car being in the driveway further premises telling us that each of Ann
and  Bill  was  home,  and  we  conclude  that  the  car  was  in  the  driveway.
Although the initial premises and conclusion differ from those of the argument
in 3.2.2,  the reductio  argument that  is  set  up at  stage 1 here has the same
resources as the reductio set up at stage 3 in the derivation for the argument of
3.2.2 that was given at the end of 3.2.3 .

The rule IP is easily seen to be strict  and safe,  but we need to be more
careful in assessing the decisiveness of a system using it. We will consider this
question most fully in 3.4.1 , but we can see the issue in outline now. Since IP
introduces a sentence with one more connective than the goal it plans for, it

does not reduce the quantity we have used to assess the progressiveness of
other  rules.  But  IP  can  be  seen  to  be  progressive  nonetheless  if  we  look
progressiveness in a slightly different way. We will treat both atomic sentences
and their negations as equally basic when they are resources: neither sort of
resource will be exploited. And, as was noted above, we will treat ⊥ as the
basic form of goal, the only one without a corresponding planning rule. Thus
IP  leaves  us  with  a  goal  that  requires  no  planning,  and  it  introduces  no
resources that need to be exploited further. This suggests a way of looking at
the distance of a proximate argument from a dead end that would allow us to
say that IP reduces this quantity. This way of looking at distance from a dead
end is a departure from counting connectives but only a small departure. We
may count connectives except for the case of those sentences that are never
exploited  or  planned  for—i.e.,  atomic  and  negated  atomic  sentences  as
resources and ⊥ as a goal—and these sentences will be given a lower degree
than  all  other  sentences,  no  matter  how  few  connectives  those  sentences
contain.

Although IP introduces a resource that needs no exploitation, this is not to
say that applying IP will eliminate the need for further exploitations; indeed,
since negated compounds will be exploited only in reductio arguments, we will
often be in a position to exploit such resources only after we have used IP. The
rule it can put us in the position to use is the one we will consider next.
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3.3.2. Using lemmas to complete reductios
Now that we have IP, we are in a position to provide a proof for any argument
whose  validity  depends  only  on  the  properties  of  ⊤,  ⊥,  conjunction,  and
negation. However, to do this using only the rules we have so far, we would
often need to use LFR—or, in simpler cases, Adj—to make use of negative
resources.  This  poses no problems when we construct  derivations for  valid
arguments, but it makes it difficult to show that an argument is not valid. LFR
does  not  itself  exploit  resources,  so  negated  compounds  remain  as  active
resources until a gap is closed. In order to count an open gap as having reached
a dead end, we would need some description of the conditions under which
LFR had been used often enough. Such a description could certainly be given;
and, in the last two chapters, we will need to take an analogous approach in the
case  of  one  of  the  rules  for  quantifiers.  But,  in  the  case  of  negation,  it  is
possible to keep track of the use of resources by way of a genuine exploitation
rule, which will eliminate the need to use LFR and Adj.

The basis for this approach is one of the lessons drawn from the law of
negation as a premise: if a reductio that has ¬ φ as a premise is valid, then φ
must  be  a  valid  conclusion  from  the  premises  other  than  ¬ φ.  That  is,
Γ, ¬ φ ⊨ ⊥ only if Γ ⊨ φ. Now φ is just the lemma we need in order to use the
premise ¬ φ to reach the goal ⊥ and complete the reductio. The fact that our
goal is ⊥ tells us that it is safe to set φ as a goal, and the law for negation as a
premise tells us that it is safe to drop ¬ φ from the active resources of the gap
in which we establish the lemma φ. That is,  we can use a negation ¬ φ to
complete  any  reductio  argument,  so  we  can  exploit  a  negated  compound
whenever our goal is ⊥.

We will  call  the rule that implements these ideas Completing a Reductio
(CR).

│⋯
│¬ φ [φ is not atomic]
│⋯
│
││⋯
││
││
││
││
││
│├─
││⊥
│⋯

→

│⋯
│¬ φ n
│⋯
│
││⋯
││
│││
│││
││├─
│││φ n
│├─

n CR││⊥
│⋯

Fig. 3.3.2-1. Developing a derivation by exploiting a negated compound at
stage n.

The motivation for CR lies in its use to exploit the negations of non-atomic
sentences,  since  we  can  arrange  things  so  that  the  negations  of  atomic
sentences remain active forever. In fact, we must limit the use of CR to the
negations of non-atomic sentences. It is sound and safe in the case of negations
of atomic sentences, but it would not be progressive in that case because it
would allow us to go around in circles. Both IP and CR carry us between gaps
whose proximate arguments have the forms Γ, ¬ φ / ⊥ and Γ / φ; but they carry
us in opposite directions, so, if there is any overlap in the sentences φ to which
they apply, a derivation could move back and forth between the two arguments
forever. We block such circles by limiting IP to cases where φ is atomic and
limiting CR to cases where φ is non-atomic.

One way of understanding the role of CR is to compare it with a use of LFR,
where the recourse to lemma is more explicit. Below are two derivations for
the argument that was used as an illustration in the last subsection. The one on
the left uses CR and the one on the right uses LFR:

│¬ ((A ∧ B) ∧ ¬ C) 2
│A (3)
│B (3)
├─
││¬ C (4)
│├─

3 Adj │││A ∧ B X,(4)
4 Adj │││(A ∧ B) ∧ ¬ C X,(5)

│││●
││├─

5 QED│││(A ∧ B) ∧ ¬ C 2
│├─

2 CR ││⊥ 1
├─

1 IP │C

 │¬ ((A ∧ B) ∧ ¬ C) (6)
│A (3)
│B (3)
├─
││¬ C (4)
│├─

3 Adj │││A ∧ B X,(4)
4 Adj │││(A ∧ B) ∧ ¬ C X,(5)

│││●
││├─

5 QED│││(A ∧ B) ∧ ¬ C 2
││
│││(A ∧ B) ∧ ¬ C (6)
││├─
│││●
││├─

6 Nc │││⊥ 2
│├─

2 LFR ││⊥ 1
├─

1 IP │C

Notice that the gap resulting from CR on the left is identical to, and filled in
the same way as, the first of the two gaps introduced by LFR on the right. We
know in advance that the second of these gaps will close because the denial of
its supposition is one or our active resources. Indeed the point of choosing
(A ∧ B) ∧ ¬ C  as  the  lemma  in  LFA  is  to  combine  it  with  the  resource
¬ ((A ∧ B) ∧ ¬ C) to reach ⊥ and complete the reductio. That is, LFA on the
right is part of a plan to use the first premise. What is new in CR is the claim
that this resource need not be used further in developing the derivation and
may  be  dropped  from  its  active  resources.  And  this  makes  CR  clearly
progressive in a way that LFR is not.
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3.3.3. More examples
Here is  an English argument  whose derivation exhibits  all  of  the rules  for
negation:

Ann’s proposal wasn’t unfunded without
Bill’s and Carol’s each being funded

Bill’s proposal was not funded

Ann’s proposal was funded

And here is the derivation:
│¬ (¬ A ∧ ¬ (B ∧ C)) 2
│¬ B (7)
├─
││¬ A (4)
│├─
││││●
│││├─

4 QED││││¬ A 3
│││
│││││B ∧ C 6
││││├─

6 Ext │││││B (7)
6 Ext │││││C

│││││●
││││├─

7 Nc │││││⊥ 5
│││├─

5 RAA││││¬ (B ∧ C) 3
││├─

3 Cnj │││¬ A ∧ ¬ (B ∧ C) 2
│├─

2 CR ││⊥ 1
├─

1 IP │A
The rules of this section are used at the first two stages, and the rules of 3.2 are
in the course of reaching the goal introduced by CR. One alternative approach
would be to introduce ¬ (B ∧ C) as a lemma at the second stage using LFR.
Combined with a use of Adj to add ¬ A ∧ ¬ (B ∧ C) as a resource, it would
produce a simpler derivation but one that requires foresight to discover.

In the absence of the rules of this section, the exercise 2d of 3.2.x required
use of LFR. Here are two derivations for the argument of that exercise which
use CR instead but differ in the choice of the premise to be exploited by this
rule.

│¬ (A ∧ B) 3
│¬ (C ∧ ¬ B) (8)
├─
││A ∧ C 2
│├─

2 Ext ││A (5)
2 Ext ││C (7)

││
││││●
│││├─

5 QED││││A 4
│││
│││││¬ B (7)
││││├─

7 Adj │││││C ∧ ¬ B X,(8)
│││││●
││││├─

8 Nc │││││⊥ 6
│││├─

6 IP ││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ C)

│¬ (A ∧ B) (8)
│¬ (C ∧ ¬ B) 3
├─
││A ∧ C 2
│├─

2 Ext ││A (7)
2 Ext ││C (5)

││
││││●
│││├─

5 QED││││C 4
│││
│││││B (7)
││││├─

7 Adj │││││A ∧ B X,(8)
│││││●
││││├─

8 Nc │││││⊥ 6
│││├─

6 RAA││││¬ B 4
││├─

4 Cnj │││C ∧ ¬ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ C)

These derivations have the same number of stages as the answer in 3.2.xa  for
2d,  but  their  scope  lines  are  nested  one  deeper.  Each  of  the  arguments
completing the gaps set up by LFR in the earlier derivation appears in one of
these derivations, but we arrive at these arguments in a different way.

It is possible to dispense with Adj in the derivations above and exploit both
premises by CR. This leads to a derivation with two more stages and scope
lines that are nested more deeply. What we get in return for that increased
complexity is direction in how to complete the derivation. In effect,  all  the
thinking required to identify appropriate lemmas is done on paper. We will
look at this third approach to the example in 3.5 , where we consider how the
rules guide the search for derivations.
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3.3.s. Summary
The law for negation as a premise tells us two things about entailment. It
tells  us  first  that  a  conclusion  is  valid  if  and  only  if  the  denial  of  that
conclusion  can  be  reduced  to  absurdity  given  the  premises.  This  is  the
principle of  indirect proof ;  it  is  closely tied to the entailment ¬ ¬ φ ⊨ φ
(and is subject to the same concerns as is that entailment). We have no need
for this principle except in the case of unanalyzed components, which we
will begin to call atomic sentences . And, for reasons noted later, we need to
limit the use of the rule Indirect Proof (IP)  to such conclusions.

Another lesson we can draw from the law for negation as a premise is that a
reductio argument with a negative premise ¬ φ is valid if and only if the
sentence φ is entailed by whatever other premises there are. This tells us that
φ can be safely introduced as a lemma even if we drop ¬ φ from our active
resources.  The  rule  implementing  this  idea,  Completing a Reductio (CR)
serves  as  our  rule  for  exploiting  negative  resources.  It  applies  only  to
reductio  arguments  but  the  availability  of  IP  insures  that  any  gap  will
eventually turn into a gap in a reductio argument (unless it closes before that
point). Since CR, by dropping a resource ¬ φ and adding a goal φ has an
effect opposite to that of IP, we must apply them to different sentences φ to
avoid going in circles. So, just as IP is limited to atomic sentences, CR is
limited to negations of non-atomic sentences.

The rule CR can lead us to set as goals any lemmas we need in order to use
negations in completing reductio arguments. It therefore eliminates any need
for  LFR. The rule Adj  is  also no longer needed (though still  sometimes
useful) since the rules CR and Cnj will lead us to identify and prove any
lemma  that  Adj  would  introduce.  Indeed,  derivations  for  arguments
involving conjunction can now be constructed by simply letting the rules
guide us.
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3.3.x. Exercise questions
Use derivations to establish each of the claims of entailment shown below. You
can maximize your practice in the use of CR by avoiding LFR and using Adj
only in cases where the goal is a conjunction.
1. ¬ (A ∧ ¬ B), A ⊨ B
2. J ∧ ¬ (J ∧ ¬ C) ⊨ J ∧ C (see exercise 1j of 3.1.x )
3. ¬ (¬ (A ∧ B) ∧ C), ¬ A ⊨ ¬ C
4. ¬ (A ∧ ¬ (B ∧ C)) ⊨ ¬ (A ∧ ¬ B)
5. ¬ (A ∧ ¬ B), ¬ (B ∧ ¬ C) ⊨ ¬ (A ∧ ¬ C)
6. ¬ (A ∧ ¬ B), ¬ (A ∧ ¬ C) ⊨ ¬ (A ∧ ¬ (B ∧ C))

For more exercises, use the exercise machine .
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3.3.xa. Exercise answers
1. │¬ (A ∧ ¬ B) 2

│A (3)
├─
││¬ B (3)
│├─

3 Adj │││A ∧ ¬ B X,(4)
│││●
││├─

4 QED│││A ∧ ¬ B 2
│├─

2 CR ││⊥ 1
├─

1 IP │B
2. │J ∧ ¬ (J ∧ ¬ C) 1

├─
1 Ext │J (3),(6)
1 Ext │¬ (J ∧ ¬ C) 5

│
││●
│├─

3 QED││J 2
│
│││¬ C (6)
││├─

6 Adj ││││J ∧ ¬ C X,(7)
││││●
│││├─

7 QED││││J ∧ ¬ C 5
││├─

5 CR │││⊥ 4
│├─

4 IP ││C 2
├─

2 Cnj │J ∧ C

3. │¬ (¬ (A ∧ B) ∧ C) 2
│¬ A (7)
├─
││C (4)
│├─
│││││A ∧ B 6
││││├─

6 Ext │││││A (7)
6 Ext │││││B

│││││●
││││├─

7 Nc │││││⊥ 5
│││├─

5 RAA││││¬ (A ∧ B) 3
│││
││││●
│││├─

4 QED││││C 3
││├─

3 Cnj │││¬ (A ∧ B) ∧ C 2
│├─

2 CR ││⊥ 1
├─

1 RAA│¬ C
4. │¬ (A ∧ ¬ (B ∧ C)) 3

├─
││A ∧ ¬ B 2
│├─

2 Ext ││A (5)
2 Ext ││¬ B (8)

││
││││●
│││├─

5 QED││││A 4
│││
│││││B ∧ C 7
││││├─

7 Ext │││││B (8)
7 Ext │││││C

│││││●
││││├─

8 Nc │││││⊥ 6
│││├─

6 RAA││││¬ (B ∧ C) 4
││├─

4 Cnj │││A ∧ ¬ (B ∧ C) 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ ¬ B)



5. │¬ (A ∧ ¬ B) 3
│¬ (B ∧ ¬ C) 7
├─
││A ∧ ¬ C 2
│├─

2 Ext ││A (5)
2 Ext ││¬ C (8)

││
││││●
│││├─

5 QED││││A 4
│││
│││││B (8)
││││├─

8 Adj ││││││B ∧ ¬ C X,(9)
││││││●
│││││├─

9 QED││││││B ∧ ¬ C 7
││││├─

7 CR │││││⊥ 6
│││├─

6 RAA││││¬ B 4
││├─

4 Cnj │││A ∧ ¬ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ ¬ C)

6. │¬ (A ∧ ¬ B) 3
│¬ (A ∧ ¬ C) 7
├─
││A ∧ ¬ (B ∧ C) 2
│├─

2 Ext ││A (5),(9)
2 Ext ││¬ (B ∧ C) 10

││
││││●
│││├─

5 QED ││││A 4
│││
│││││B (11)
││││├─
│││││││●
││││││├─

9 QED │││││││A 8
││││││
││││││││C (11)
│││││││├─

11 Adj │││││││││B ∧ C X,(12)
│││││││││●
││││││││├─

12 QED│││││││││B ∧ C 10
│││││││├─

10 CR ││││││││⊥ 9
││││││├─

9 RAA │││││││¬ C 8
│││││├─

8 Cnj ││││││A ∧ ¬ C 7
││││├─

7 CR │││││⊥ 6
│││├─

6 RAA ││││¬ B 4
││├─

4 Cnj │││A ∧ ¬ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA │¬ (A ∧ ¬ (B ∧ C))
 Choosing ¬ (B ∧ C) as the resource to exploit by CR at stage 3 would

lead to a somewhat shorter and simpler derivation.
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3.4. Counterexamples to reductios
3.4.0. Overview
All derivations that  fail  will  now end in the failure of  a  reductio,  and this
produces some small changes in what we say about the failure of derivations.

3.4.1. When reductios fail
Changes in the arguments used to show the sufficiency, conservativeness,
and decisiveness of the system of derivations correspond to changes in the
way we present counterexamples.

3.4.2. Some examples of consistency
When a reductio  fails, we know that its premises are not inconsistent, so
derivations that fail will now lead us to consistent sets of sentences.
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3.4.1. When reductios fail
The  system  of  derivations  for  negation  can  be  shown  to  be  adequate  by
establishing  the  three  properties  of  sufficiency,  conservativeness,  and
decisiveness discussed in 2.3 .

To say that a system is conservative is to say that all its rules are sound and
safe. Soundness and safety say more than do the basic laws of negation; but, as
was the case with conjunction, the natural way of establishing the basic laws
for  negation  is  enough  to  establish  soundness  and  safety.  The  key  to  the
argument in the laws for negation is the fact that, when it comes to dividing a
gap, having a given sentence (φ or ¬ φ) as a resource comes to the same thing
as having a contradictory sentence (¬ φ or φ, respectively) as a goal. This idea
can be used to show each of the rules RAA, IP, and CR is both sound (in fact,
strict) and safe, for it shows that the same interpretations divide the proximate
arguments of gaps to which these rules apply and the child gaps that result
from applying them. Since the rule Nc closes a gap, safety is not an issue; and,
since we allow available but inactive resources to be used, we cannot expect to
show more than strictness. But its soundness is clear: if the available resources
include both φ and ¬ φ, no interpretation can make them all true, and a sound
rule needs to insure some child gap is open only if the parent is divided by an
interpretation that makes true all the available resources.

However, there is more to be said in the case of the properties of sufficiency
and decisiveness.  A system is sufficient if  it  has enough rules to close any
dead-end  gaps  that  cannot  be  divided.  Given  the  rules  we  have  now,  a
dead-end open gap must have ⊥ as its goal (since otherwise we could develop
the  gap  with  Cnj,  RAA,  or  IP  or  close  it  with  ENV),  it  cannot  have  a
conjunction or a negated non-atomic sentence as a resource (since otherwise
we  could  develop  the  gap  with  Ext  or  CR),  it  cannot  have  ⊥  among  its
resources (since otherwise we could close the gap using either QED or EFQ),
and it cannot have both a sentence and its negation among its resources (since
otherwise we could close the gap with Nc). So the proximate argument of a
dead-end gap must be a reductio whose premises are limited to ⊥, atomic, and
negated  atomic  sentences,  with  no  sentence  appearing  both  negated  and
unnegated among the premises. To show sufficiency, we must show that we
can always divide such an argument. And we can do this by making an atomic
sentence true when it appears among the premises and false when its negation
appears. We can assign truth values in this way since no sentence appears both
negated and unnegated, and an assignment like this will make all premises true
and it will, of course, make the conclusion ⊥ false.

This argument for sufficiency tells us what we need to do in order to present



a counterexample on the basis of a dead-end open gap. Here is an example of
that.

│¬ (A ∧ ¬ (B ∧ C)) 2
│¬ B (7)
├─
││¬ A
│├─
│││││¬ A
││││├─
│││││○ ¬ A, ¬ B ⊭ ⊥
││││├─
│││││⊥ 4
│││├─

4 IP ││││A 3
│││
│││││B ∧ C 6
││││├─

6 Ext │││││B (7)
6 Ext │││││C

│││││●
││││├─

7 Nc │││││⊥ 5
│││├─

5 RAA││││¬ (B ∧ C) 3
││├─

3 Cnj │││A ∧ ¬ (B ∧ C) 2
│├─

2 CR ││⊥ 1
├─

1 IP │A

A B C ¬ (A ∧ ¬ (B ∧ C)) , ¬ B / A
F F T Ⓣ F T F Ⓣ Ⓕ

(Although this derivation has been continued as far as possible, it could have
been ended after the dead-end gap appeared at stage 4.)

The proximate argument of the dead-end gap is ¬ A, ¬ B / ⊥. To divide this,
we must make A and B false since their negations are active resources of the
dead-end gap. The value assigned to C does not matter since neither it nor ¬ C
appears among the premises of this argument. So, although C is assigned T in
the counterexample presented above, an interpretation that made each of A, B,
and C false would also be a counterexample.

The basic issues regarding decisiveness were touched on when the rule IP
was introduced in 3.3.1 , but they deserve to be considered a little more fully.
The system of derivations for conjunction is easily seen to be decisive because
we  cannot  go  on  forever  dropping  and  shortening  sentences  among  the
resources  and goals.  But  we now have rules  that  can do things  other  than
simplifying the resources and goals. In particular, we can add resources while
dropping goals and vice versa, and, in the case of IP, we can do this by adding

a resource that has one more connective than the goal that was dropped. The
cases where we use IP and CR have been restricted so that we cannot go in
circles, but an argument is needed to show that those restrictions are enough.

Decisiveness  will  follow if  all  our  rules  are  progressive  in  the  sense  of
bringing us closer to a dead end in a way that cannot be continued indefinitely.
In judging this,  we cannot  now look only at  the number of  connectives in
sentences. In the first place, atomic sentences have no connectives, but are a
sign that a derivation has not reached its end when they appear as goals. And,
second, negated atomic sentences do contain connectives but can appear as
resources in a dead-end gap. Let us say that the sort of sentences that may
appear  in  a  gap that  has  reached a  dead end are  minimal.  Then a  minimal
resource will be ⊤ or an atomic or negated atomic sentence and a minimal goal
must  be  ⊥.  Thus  whether  a  given sentence  counts  as  minimal  depends  on
whether it appears as a resource or a goal.

In order to measure distance from the end of a derivation, we will assign
each resource and goal a grade. Minimal sentences form the lowest grade, and
non-minimal sentences are graded above them and relative to one another by
counting the connectives appearing in them. There are many ways of assigning
numerical grades that would accomplish this. To be concrete, let us suppose
we assign grade 0 to minimal sentences and then one more than the number of
connectives to any other sentence. So atomic and negated atomic resources
both have grade 0, but atomic and negated atomic goals have grades 1 and 2,
respectively. As a goal, ⊥ has grade 0 while, as a resource, it  has grade 1.
(Notice also that, while ⊤ has grade 0 as a resource and grade 1 as a goal, its
negation ¬ ⊤ has grade 2 whether it is a resource or a goal.)

Now, consider the whole group of active resources and goals of every open
gap of a derivation. If we look at each of the rules for developing gaps, we see
that  the effect of applying any one of them will  always be to eliminate an
active resource or a goal. It may also add resources or goals, but any sentence
that is added either has fewer connectives than the sentence dropped or, in the
case of IP, is a minimal sentence when the sentence dropped was not minimal.
Either  way,  additions  will  be  sentences  of  a  lower  grade,  so  eventually  all
active sentences will be minimal and the process must end. Notice that if, for
example,  we  allowed  CR to  apply  to  negated  atomic  sentences  as  well  as
negated non-atomic sentences, this rule would no longer be progressive since
we could, for example, drop a minimal resource ¬ A and add the non-minimal
goal A. However, when φ is not atomic, ¬ φ has a higher grade than φ because
of the extra connective, so the restricted CR is progressive.
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3.4.2. Some examples of consistency
The aim of this subsection is to consider a few examples, but its title makes a
further general point. An interpretation that divides a dead-end open gap will
divide a reductio  argument and thus show that its  premises can all  be true
together. That is, it will show that the active resources of a dead-end open gap
form a consistent set. Counterexamples to arguments in chapter 2 did that, too,
since they made all resources of the gap they divided true, but now that is the
full significance of a counterexample since the goal of the gap it divides is ⊥
and is therefore automatically false.

Here is a simple example that exhibits a common pattern.
│¬ (A ∧ B) 2
│A (4)
├─
││¬ B
│├─
││││●
│││├─

4 QED││││A 3
│││
│││││¬ B
││││├─
│││││○ A, ¬ B ⊭ ⊥
││││├─
│││││⊥ 5
│││├─

5 IP ││││B 3
││├─

3 Cnj │││A ∧ B 2
│├─

2 CR ││⊥ 1
├─

1 IP │B

A B ¬ (A ∧ B) , A / B
T F Ⓣ F Ⓣ Ⓕ

It  may  seem  odd  to  continue  to  stage  5  since,  before  IP  is  applied,  the
resources of the second gap are fully exploited and its goal is not among them.
So, in this case, it is clear before stage 5 that the gap will not close. But, with
enough thought, it would have been clear before stage 1 that some gap would
not close so the simple fact that a dead-end gap can be foreseen is not grounds
for  declaring  one.  A  dead-end  gap  is  an  indication  of  failure  made  fully
explicit. What we count as fully explicit is a conventional matter, and we will
treat as fully explicit only what cannot be made more explicit by the system of
derivations. In this case, that requires the final use of IP (though the closure of
the first gap at stage 4 might have been ignored).

Here  is  a  somewhat  longer  example.  It  is  developed following the  most

straightforward  approach,  in  which  resources  are  exploited  in  the  order  in
which they appear (when there is a choice).

│¬ (A ∧ ¬ B) 3
│¬ (A ∧ ¬ C) 6, 11
├─
││B ∧ ¬ C 2
│├─

2 Ext ││B
2 Ext ││¬ C (9),(14)

││
│││││¬ A
││││├─
││││││││¬ A
│││││││├─
││││││││○ ¬ A, B, ¬ C ⊭ ⊥
│││││││├─
││││││││⊥ 8
││││││├─

8 IP │││││││A 7
││││││
│││││││●
││││││├─

9 QED │││││││¬ C 7
│││││├─

7 Cnj ││││││A ∧ ¬ C 6
││││├─

6 CR │││││⊥ 5
│││├─

5 IP ││││A 4
│││
│││││B
││││├─
││││││││¬ A
│││││││├─
││││││││○ ¬ A, B, ¬ C ⊭ ⊥
│││││││├─
││││││││⊥ 13
││││││├─

13 IP │││││││A 12
││││││
│││││││●
││││││├─

14 QED│││││││¬ C 12
│││││├─

12 Cnj ││││││A ∧ ¬ C 11
││││├─

11 RC │││││⊥ 10
│││├─

10 RAA││││¬ B 4
││├─

4 Cnj │││A ∧ ¬ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA │¬ (B ∧ ¬ C)

A B C ¬ (A ∧ ¬ B) , ¬ (A ∧ ¬ C) / ¬ (B ∧ ¬ C)
F T F Ⓣ F F Ⓣ F T Ⓕ T T

The derivation could have been shortened significantly by reversing the order
in which the first two resources were exploited, but it would have been shorter



still (no matter what order these resources were exploited in) if we stopped
after reaching a dead-end gap at stage 8. Stopping then would be perfectly
legitimate,  and  the  derivation  is  continued  here  only  for  the  sake  of  the
example. One reason for continuing a dervation after an open gap has been
reached  would  be  that  we  wanted,  for  some  reason,  to  discover  all  the
interpretations that might divide the ultimate argument. In fact, in this case,
there is only one such interpretation, and both open gaps lead us to the same
thing.
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3.4.s. Summary
The adequacy of  our  current  system is  established by showing that  it  is
sufficient,  conservative,  and  decisive.  The  arguments  for  sufficiency  and
decisiveness  take  a  slightly  different  form  from  those  used  in  the  last
chapter. A gap that remains open at a dead end will now always have ⊥ as its
goal  and  its  resources  are  limited  to  ⊤,  atomic  sentences,  and  negated
atomic sentences, with no resource being the negation of another. Any such
gap can be divided by an interpretation that makes all its active resources
true, so the rules are sufficient to close any gap that cannot be divided. Also,
we can show that our new rules will not lead us on forever by showing that
they are progressive by leading us always to replace goals or resources by
others of a lower grade  eventually leading us to goals and resources that are
minimal ,  a  class  that  includes  ⊤,  atomic  sentences  and  negated  atomic
sentences in the case of resources and ⊥ alone in the case of goals.

Dead-end gaps will now have proximate arguments that are reductios, so the
failure of a derivation will turn on the failure of a reductio and thus on the
fact  that  the  premises  of  the  reductio  form  a  consistent  set.  Thus  any
example  of  the  failure  of  entailment  will  henceforth  be  traced  to  the
consistency of some set.
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3.4.x. Exercise questions
1. The  following  arguments  are  not  formally  valid.  In  each  case,  use  a

derivation to show this and present a counterexample that the derivation
leads you to.

 a. ¬ B / ¬ (A ∧ ¬ B)
 b. ¬ (A ∧ B) / ¬ A ∧ ¬ B
 c. ¬ (A ∧ B), ¬ (B ∧ C) / ¬ (A ∧ C)
2. Use derivations to check the following claims of entailment. If the claim

fails, present a counterexample that the derivation leads you to.
 a. ¬ (A ∧ ¬ B) ⊨ B
 b. ¬ (A ∧ B) ⊨ ¬ (B ∧ A)
 c. ¬ (A ∧ ¬ B) ⊨ ¬ (B ∧ ¬ A)
 d. ¬ (A ∧ B), ¬ (B ∧ C), B ⊨ ¬ A ∧ ¬ C
 e. ¬ (A ∧ ¬ (B ∧ ¬ (C ∧ ¬ D))) ⊨ ¬ (A ∧ ¬ (B ∧ D))

For more exercises, use the exercise machine .
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3.4.xa. Exercise answers
1. a. │¬ B

├─
││A ∧ ¬ B 2
│├─

2 Ext ││A
2 Ext ││¬ B

││○ A, ¬ B ⊭ ⊥
│├─
││⊥ 1
├─

1 RAA│¬ (A ∧ ¬ B)
A B ¬ B / ¬ (A ∧ ¬ B)
T F Ⓣ Ⓕ T T

b. │¬ (A ∧ B) 3,8
├─
│││A (5)
││├─
│││││●
││││├─

5 QED │││││A 4
││││
││││││¬ B
│││││├─
││││││○ A, ¬ B ⊭ ⊥
│││││├─
││││││⊥ 6
││││├─

6 IP │││││B 4
│││├─

4 Cnj ││││A ∧ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA ││¬ A 1
│
│││B (11)
││├─
││││││¬ A
│││││├─
││││││○ ¬ A, B ⊭ ⊥
│││││├─
││││││⊥ 10
││││├─

10 IP │││││A 9
││││
│││││●
││││├─

11 QED│││││B 9
│││├─

9 Cnj ││││A ∧ B 8
││├─

8 CR │││⊥ 7
│├─

7 RAA ││¬ B 1
├─

1 Cnj │¬ A ∧ ¬ B
A B ¬ (A ∧ B) / ¬ A ∧ ¬ B
T F Ⓣ F F Ⓕ T
F T Ⓣ F T Ⓕ F

The  first  row  is  an  interpretation  that
divides the first gap; and the second row is
an  interpretation  that  divides  the  second
gap.



 c. │¬ (A ∧ B) 3
│¬ (B ∧ C) 7
├─
││A ∧ C 2
│├─

2 Ext ││A
2 Ext ││C (10)

││
││││●
│││├─

5 QED ││││A 4
│││
│││││¬ B
││││├─
││││││││¬ B
│││││││├─
││││││││○ A, ¬ B, C ⊭ ⊥
│││││││├─
││││││││⊥ 9
││││││├─

9 IP │││││││B 8
││││││
│││││││●
││││││├─

10 QED│││││││C 8
│││││├─

8 Cnj ││││││B ∧ C 7
││││├─

7 CR │││││⊥ 6
│││├─

6 IP ││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA │¬ (A ∧ C)
A B C ¬ (A ∧ B) , ¬ (B ∧ C) / ¬ (A ∧ C)
T F T Ⓣ F Ⓣ F Ⓕ T

2. a. │¬ (A ∧ ¬ B) 2
├─
││¬ B (5)
│├─
│││││¬ A
││││├─
│││││○ ¬ A, ¬ B ⊭ ⊥
││││├─
│││││⊥ 4
│││├─

4 IP ││││A 3
│││
││││●
│││├─

5 QED││││¬ B 3
││├─

3 Cnj │││A ∧ ¬ B 2
│├─

2 CR ││⊥ 1
├─

1 RAA│B
A B ¬ (A ∧ ¬ B) / B
F F Ⓣ F T Ⓕ

b. │¬ (A ∧ B) 3
├─
││B ∧ A 2
│├─

2 Ext ││B (6)
2 Ext ││A (5)

││
││││●
│││├─

5 QED││││A 4
│││
││││●
│││├─

6 QED││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (B ∧ A)

c. │¬ (A ∧ ¬ B) 3
├─
││B ∧ ¬ A 2
│├─

2 Ext ││B
2 Ext ││¬ A

││
│││││¬ A
││││├─
│││││○ ¬ A, B ⊭ ⊥
││││├─
│││││⊥ 5
│││├─

5 IP ││││A 4
│││
│││││B
││││├─
│││││○ ¬ A, B ⊭ ⊥
││││├─
│││││⊥ 6
│││├─

6 IP ││││¬ B 4
││├─

4 Cnj │││A ∧ ¬ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (B ∧ ¬ A)
A B ¬ (A ∧ ¬ B) / ¬ (B ∧ ¬ A)
F T Ⓣ F F Ⓕ T T



d. │¬ (A ∧ B) 3,8
│¬ (B ∧ C) 11
│B (6),(10),(14)
├─
│││A (5)
││├─
│││││●
││││├─

5 QED │││││A 4
││││
│││││●
││││├─

6 QED │││││B 4
│││├─

4 Cnj ││││A ∧ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA ││¬ A 1
│
│││C (15)
││├─
││││││¬ A
│││││├─
││││││││●
│││││││├─

14 QED││││││││B 13
│││││││
││││││││●
│││││││├─

15 QED││││││││C 13
││││││├─

13 Cnj │││││││B ∧ C 12
│││││├─

12 CR ││││││⊥ 11
││││├─

11 IP │││││A 9
││││
│││││●
││││├─

10 QED│││││B 9
│││├─

9 Cnj ││││A ∧ B 8
││├─

8 CR │││⊥ 7
│├─

7 RAA ││¬ C 1
├─

1 Cnj │¬ A ∧ ¬ C

│¬ (A ∧ B) 3
│¬ (B ∧ C) 8
│B (6),(10)
├─
│││A (5)
││├─
│││││●
││││├─

5 QED │││││A 4
││││
│││││●
││││├─

6 QED │││││B 4
│││├─

4 Cnj ││││A ∧ B 3
││├─

3 CR │││⊥ 2
│├─

2 RAA ││¬ A 1
│
│││C (11)
││├─
│││││●
││││├─

10 QED│││││B 9
││││
│││││●
││││├─

11 QED│││││C 9
│││├─

9 Cnj ││││B ∧ C 8
││├─

8 CR │││⊥ 7
│├─

7 RAA ││¬ C 1
├─

1 Cnj │¬ A ∧ ¬ C
The  derivation  on  the  left  exploits
resources  in  their  order  of
appearance;  while  the  one  above
chooses, at stage 8, the resource that
is most closely connected with other
resources  of  the  gap  in  which  it  is
exploited.  Notice  that  derivation  on
the left is eventually led to exploit the
same resource to the same effect.

e. │¬ (A ∧ ¬ (B ∧ ¬ (C ∧ ¬ D))) 3
├─
││A ∧ ¬ (B ∧ D) 2
│├─

2 Ext ││A (5)
2 Ext ││¬ (B ∧ D) 8

││
││││●
│││├─

5 QED ││││A 4
│││
│││││B ∧ ¬ (C ∧ ¬ D) 7
││││├─

7 Ext │││││B (10)
7 Ext │││││¬ (C ∧ ¬ D) 12

│││││
│││││││●
││││││├─

10 QED│││││││B 9
││││││
││││││││¬ D (15)
│││││││├─
│││││││││││¬ C
││││││││││├─
│││││││││││○ A, B, ¬ C, ¬ D ⊭ ⊥
││││││││││├─
│││││││││││⊥ 14
│││││││││├─

14 IP ││││││││││C 13
│││││││││
││││││││││●
│││││││││├─

15 QED││││││││││¬ D 13
││││││││├─

13 │││││││││C ∧ ¬ D 12
│││││││├─

12 CR ││││││││⊥ 11
││││││├─

11 IP │││││││D 9
│││││├─

9 Cnj ││││││B ∧ D 8
││││├─

8 CR │││││⊥ 6
│││├─

6 RAA ││││¬ (B ∧ ¬ (C ∧ ¬ D)) 4
││├─

4 Cnj │││A ∧ ¬ (B ∧ ¬ (C ∧ ¬ D)) 3
│├─

3 CR ││⊥ 1
├─

1 RAA │¬ (A ∧ ¬ (B ∧ D))
A B C D ¬ (A ∧ ¬ (B ∧ ¬ (C ∧ ¬ D))) / ¬ (A ∧ ¬ (B ∧ D))
T T F F Ⓣ F F T T F T Ⓕ T T F

Glen Helman  03 Aug 2010



3.5. Being guided by the rules
3.5.0. Overview
Derivations are now more varied in form and sometimes more complex than in
the last chapter, but simple knowledge of when rules may be applied is enough
to guide their development

3.5.1. Approaching derivations
Each rule can be applied independently of the others, and each choice of a
rule to apply turns on a simple description of the circumstances in which it
is applied.

3.5.2. An example
An  extended  example  illustrates  the  sort  of  thinking  that  guides  the
development of a derivation.

3.5.3. A procedure
This  sort  of  thinking  can  be  summarized  as  a  procedure  for  developing
derivations.
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3.5.1. Approaching derivations
If  we set  aside the rules LFR and Adj,  the general  advice for  starting and
continuing derivations is to do anything the rules permit you to do. That is, any
rule that can be applied to a goal or active resource of any gap is a legitimate
way of proceeding. Some choices may lead to longer derivations than others;
but  the safety of  the rules  insures  that  you can never  go off in  the wrong
direction, and their progressiveness insures that you will always move some
distance toward the end.

The rules other than LFR and Adj are shown in the following tables. The
one on the left  shows the exploitation rules for resources and the planning
rules for goals. The simplest way of approaching derivations is to apply these
rules as often as possible using the rules from the right-hand table to close
gaps whenvever possible.

Rules for developing gaps
for resources for goals

conjunction
φ ∧ ψ Ext Cnj

negation
¬ φ

CR
(if φ is not atomic
and the goal is ⊥)

RAA

atomic
sentence IP

Rules for closing gaps
when to close rule

the goal is also
a resource QED

sentences φ and ¬φ are
resources & the goal is ⊥ Nc

⊤ is the goal ENV

⊥ is a resource EFQ

The further rules LFR and Adj can be used to simplify derivations in some
cases but they are never needed; and, when a gap will not close, they may
simply delay the inevitable dead end. For this reason, the rules in the tables
above are labeled basic rules and are counted as part of the basic system of
derivations.
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3.5.2. An example
As  an  example  of  the  use  of  the  basic  system,  let  us  look  at  the  further
derivation  for  the  argument  of  3.2.x  2d  that  was  promised  in  3.3.3 .  The
possible ways of proceeding at each stage are described in the commentary at
the left.

Stage 1. We have two premises and a goal and we
look to any of them for our starting point.
But our premises are negations and can be
exploited only in a reductio
argument—that is, only when the goal is
⊥. So we must begin by planning for the
goal, and RAA is the rule for doing that.

 │¬ (A ∧ B)  
│¬ (C ∧ ¬ B)
├─
│
│
│
├─
│¬ (A ∧ C)

Stage 2. After applying RAA, the goal is ⊥. There
is no rule to plan for such a goal; but we
have three resources, and we are now in a
position to exploit any one of them. The
rule Ext for exploiting conjunctions is
easy, and it sometimes leads to a shorter
derivation to do that as soon as possible, so
that is what we will do. But there would be
nothing wrong with exploiting either of the
premises with CR; we will eventually need
to do that in any case.

 │¬ (A ∧ B)
│¬ (C ∧ ¬ B)
├─
││A ∧ C
│├─
││
││
││
│├─
││⊥ 1
├─

1 RAA│¬ (A ∧ C)

Stage 3. The use of Ext has given us two new active
resources in addition to the two premises,
and our goal is still ⊥. The two added
resources are atomic sentences and can
never be exploited, so we must now exploit
one of the premises by CR. Either one will
do, but let us choose the first.

│¬ (A ∧ B)
│¬ (C ∧ ¬ B)
├─
││A ∧ C 2
│├─

2 Ext ││A
2 Ext ││C

││
││
││
│├─
││⊥ 1
├─

1 RAA│¬ (A ∧ C)

Stage 4. This use of CR has set our goal as the
conjunction A ∧ B, and we can plan to get
that by Cnj. Indeed, that’s all we can do
because we cannot exploit the second
premise until our goal is again ⊥.

│¬ (A ∧ B) 3
│¬ (C ∧ ¬ B)
├─
││A ∧ C 2
│├─

2 Ext ││A
2 Ext ││C

││
│││
│││
│││
││├─
│││A ∧ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ C)

Stage 5. The use of Cnj has divided the gap into
two open gaps, and we could go on to
work on either of them. The goal of the
first is also one of its resources, so we can
close it immediately by QED and that’s
what we will do. But it would be fine to
leave it open while we developed the
second gap. It would even be possible to
develop the first gap by planning for its
goal with IP. While, of course, that would
make for a longer derivation, we would
eventually run out of things to do and
would be forced to notice that the gap
could be closed. (It would close on
different grounds but, because the rules are
safe and sufficient, there would be some
reason for closing it.)

│¬ (A ∧ B) 3
│¬ (C ∧ ¬ B)
├─
││A ∧ C 2
│├─

2 Ext ││A
2 Ext ││C

││
││││
││││
││││
│││├─
││││A 4
│││
││││
││││
││││
│││├─
││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ C)



Stage 6. Now that the first gap is closed by RAA, we
have only the second to work on. And, since the
goal of this gap is not ⊥, we cannot exploit the
second premise. Moreover, our other two
resources are atomic sentences. So we must
plan for the atomic goal, and the rule for doing
that is IP.

│¬ (A ∧ B) 3
│¬ (C ∧ ¬ B)
├─
││A ∧ C 2
│├─

2 Ext ││A (5)
2 Ext ││C

││
││││●
│││├─

5 QED││││A 4
│││
││││
││││
││││
│││├─
││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ C)

Stage 7. The use of IP has made our goal ⊥ again, so
we are forced to turn to our resources for
guidance. We have added one, ¬ B; but it is
the negation of an atomic sentence so, like
A and C, it will never be exploited. But,
since we are again working on a reductio
argument, we can now exploit the second
premise by CR.

│¬ (A ∧ B) 3
│¬ (C ∧ ¬ B)
├─
││A ∧ C 2
│├─

2 Ext ││A (5)
2 Ext ││C

││
││││●
│││├─

5 QED││││A 4
│││
│││││¬ B
││││├─
│││││
│││││
│││││
││││├─
│││││⊥ 6
│││├─

6 IP ││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ C)

Stage 8. This exploitation of the of the second
premise by CR has left us with active
resources that are all atomic sentences
or negated atomic sentences. They can
never be exploited, but our goal is a
conjunction so we can plan to derive it
by Cnj.

│¬ (A ∧ B) 3
│¬ (C ∧ ¬ B) 7
├─
││A ∧ C 2
│├─

2 Ext ││A (5)
2 Ext ││C

││
││││●
│││├─

5 QED││││A 4
│││
│││││¬ B
││││├─
││││││
││││││
││││││
│││││├─
││││││C ∧ ¬ B 7
││││├─

7 CR │││││⊥ 6
│││├─

6 IP ││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ C)



Stages 9-10. Cnj has divided the gap in two,
but each of these two open gaps
can be closed by QED, and we
will go on to do that at the next
two stages. Each gap also has a
goal that we might plan for; and,
as noted earlier, there would be
nothing wrong with doing that. In
fact, doing it in this case would
not lead to a much longer
derivation since, once we planned
for the goals of these gaps, there
would be nothing more we could
do with either gap except close it.

│¬ (A ∧ B) 3
│¬ (C ∧ ¬ B) 7
├─
││A ∧ C 2
│├─

2 Ext ││A (5)
2 Ext ││C

││
││││●
│││├─

5 QED││││A 4
│││
│││││¬ B
││││├─
│││││││
│││││││
││││││├─
│││││││C 8
││││││
│││││││
│││││││
││││││├─
│││││││¬ B 8
│││││├─

8 Cnj ││││││C ∧ ¬ B 7
││││├─

7 CR │││││⊥ 6
│││├─

6 IP ││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA│¬ (A ∧ C)

The complete derivation is shown below.
│¬ (A ∧ B) 3
│¬ (C ∧ ¬ B) 7
├─
││A ∧ C 2
│├─

2 Ext ││A (5)
2 Ext ││C (9)

││
││││●
│││├─

5 QED ││││A 4
│││
│││││¬ B (10)
││││├─
│││││││●
││││││├─

9 QED │││││││C 8
││││││
│││││││●
││││││├─

10 QED│││││││¬ B 8
│││││├─

8 Cnj ││││││C ∧ ¬ B 7
││││├─

7 CR │││││⊥ 6
│││├─

6 IP ││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 CR ││⊥ 1
├─

1 RAA │¬ (A ∧ C)
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3.5.3. A procedure
The common features of the thinking used at each stage in the development of
this derivation can be captured in a procedure that can be applied repeatedly to
guide the development of any derivation. Restarting the procedure introduces a
new stage in the derivation, and the procedure will be restarted one final time
after the last stage in order to confirm that the derivation has reached its end.

Choose an open gap. Find all the open gaps of the derivation. If there
are none, the derivation is closed and you are done. If there is more
than one, pick one to work on (it does not matter which).

1.

Identify its proximate argument. Find the goal and the active resources
of the gap you are working on; and, for each of these, identify the kind
of sentence it is—that is, decide whether it is ⊤, ⊥, a conjunction, a
negation, or an atomic sentence.

2.

Check for closure. Check whether the gap can be closed using one of
the rules in the following table:

Rules for closing gaps
rule conditions for applying it
QED the goal is among the resources

Nc the goal is ⊥, and there are sentences φ and ¬ φ among the
resources

ENV the goal is ⊤
EFQ ⊥ is a resource

If the conditions for applying one of these rules are met, apply the rule,
and start again at step 1.

3.

Choose a sentence to  work on.  Find which,  if  any,  of  the goal  and
active resources has a rule that may be applied at this stage. That is, for
each of  these sentences check whether  a  basic  rule  (outlined in  the
table  below)  applies  to  a  resource  or  goal  of  that  sort  and  check
whether any additional requirements are met.

Exploitation and planning rules

kind of sentence rule for this sentence
as a resource as a goal

conjunction Ext Cnj

negated
⎧
⎨
⎩

non-atomic sent. CR (when the goal is ⊥)
RAA

atomic sentence none
atomic sentence none IP

⊤ or ⊥ none none
If there is no sentence to which a rule can be applied, you have reached
a dead-end open gap; mark it as such and you are done. If there is more

4.

than one sentence to which a rule may be applied, pick one to work on
(it does not matter which).
Apply a rule. Apply the rule you have identified to the sentence you
have found, and start again at step 1.

5.

The choice of a gap or sentence to work on does not matter in the sense that
whether a gap eventually closes or reaches a dead-end does not depend on the
way such a choice is made. Of course, such a choice can make a difference for
the length of the derivation; but the difference will often amount to only one
stage or a line or two.

This procedure describes a way of applying the rules; and, even though it
allows some choice, it is more restrictive than the rules alone. For example, it
forces you to close a gap you are working on if that is possible even if the rules
would also allow you to develop the gap further. In that case, it simply enforces
good sense, but it is also restrictive in one way that can length a derivation: no
allowance is made for the option of exploiting a resource in more than one gap
at  once (i.e.,  in the same stage of development).  Consequently,  you should
regard this procedure as merely a rough guide that may be supplemented by
shortcuts when you see that they are possible. Such shortcuts include the use
of  available  but  inactive  resources  with  rules  like  QED  and  the  use  of
non-basic rules like Adj and LFR.
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3.5.s. Summary

Any step in a derivation that is allowed by the basic rules  (that is, for now,
all rules except LFR and Adj) is safe and will take the derivation some way
towards completion. We call the system of derivations limited to those rules
the basic system. There will  often be different orders in which the basic
rules can be applied,  and such differences may lead to longer or  shorter
derivations. The use of non-basic rules can sometimes shorten derivations
still further, but those rules may not bring a derivation any closer to is final
state.

Although insight or foresight can help to shorten a derivation, all  that is
needed to complete a derivation is an understanding of what rules may be
applied  at  any  given  stage.  This  is  illustrated  in  the  commentary  on  an
extended example .

Derivations can be approached systematically through a 5-step procedure
that is applied repeatedly until all gaps close or the derviation reaches a dead
end.

The following table collects all rules we have now seen (and, as with the table
of 2.4.s, the rule labels are links to the original statements of the rules):

Rules for developing gaps

for resources for goals

atomic
sentence  IP

negation
¬ φ

CR
(if φ is not atomic
and the goal is ⊥)

RAA

conjunction
φ ∧ ψ Ext Cnj

Rules for closing gaps

when to close rule

the goal is also
a resource QED

sentences φ and ¬ φ are
resources & the goal is ⊥ Nc

⊤ is the goal ENV

⊥ is a resource EFQ
Basic system

Attachment rule

added resource rule

φ ∧ ψ Adj

Rule for lemmas

prerequisite rule

the goal is ⊥ LFR

Added rules
(optional)
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3.5.x. Exercise questions
1. For each of the claims of entailment shown below, construct a derivation

using only the basic rules and annotate it to show explicitly how it is the
result  of following the procedure given in 3.5.3 .  Provide one note for
each pass through the procedure—i.e., one note for each stage followed
by one for  the final  pass through the procedure that  confirms that  the
derivation is done. Each note should indicate (i) the open gap chosen (or
the fact that all gaps are closed), (ii) the proximate argument of this gap
and either the rule (or rules) by which it may be closed or the rule (or
rules)  that  may be  applied  to  develop  it,  and  (iii)  whether  the  gap  is
closed, developed, or marked as a dead end (together with the rule used if
there was a choice).

 a. ¬ A ⊨ ¬ (B ∧ A)
 b. A ∧ B ⊨ B ∧ A
 c. B ⊨ B ∧ A
 d. ¬ (A ∧ B), A ⊨ ¬ B
 e. ¬ (A ∧ B), ¬ (B ∧ C) ⊨ ¬ B
2. More than one derivation using the basic rules can be constructed for

each of the claims of entailment below. In each case construct two and
also  recognize  any  further  possibilities  by  noting  each  stage  at  which
there was a choice between different ways of developing the derivation.

 a. A ∧ B ⊨ B ∧ A
 b. ¬ (A ∧ B), B ∧ C ⊨ ¬ A
 c. ¬ (A ∧ B), ¬ (B ∧ C) ⊨ ¬ B

The exercise machine  does not generate exercises of this sort; but, of course,
you may use it to generate the derivations that are described in the answers.
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3.5.xa. Exercise answers
1. The rules that may be applied are indicated in the annotations for these

derivations  by  bracketed  subscripts  on  elements  of  the  proximate
argument,  on the sentence to  which the rule  is  applied in  the case of
development rules and on the slash between resources and goal in the
case of closure rules.

 a. │¬ A (3)
├─
││B ∧ A 2
│├─

2 Ext ││B
2 Ext ││A (3)

││●
│├─

3 Nc ││⊥ 1
├─

1 RAA│¬ (B ∧ A)

One open gap.
¬ A / ¬ (B ∧ A)[RAA].
Developled.

1.

One open gap.
¬ A, B ∧ A[Ext] / ⊥.
Developed.

2.

One open gap.
¬ A, B, A /[Nc] ⊥.
Closed gap.

3.

No gaps open.4.
 b. │A ∧ B 1

├─
1 Ext │A (3)
1 Ext │B (4)

│
││●
│├─

3 QED││B 2
│
││●
│├─

4 QED││A 2
├─

2 Cnj │B ∧ A

One open gap.
A ∧ B[Ext] / B ∧ A[Cnj].
Developed by Ext.

1.

One open gap.
A, B / B ∧ A[Cnj].
Developed.

2.

Chose first open gap.
A, B /[QED] A.
Closed gap.

3.

One open gap.
A, B /[QED] B.
Closed gap.

4.

No gaps open.5.
 c. │B (2)

├─
││●
│├─

2 QED││B 1
│
│││¬ A
││├─
│││○ B, ¬ A ⊭ ⊥
││├─
│││⊥ 3
│├─

3 IP ││A 1
├─

1 Cnj │B ∧ A

One open gap.
B / B ∧ A[Cnj].
Developed.

1.

First open gap.
B /[QED] B.
Closed gap.

2.

One open gap.
B / A[IP].
Developed.

3.

One open gap.
B, ¬ A / ⊥.
Dead end.

4.

 d. │¬ (A ∧ B) 2
│A (4)
├─
││B (5)
│├─
││││●
│││├─

4 QED││││A 3
│││
││││●
│││├─

5 QED││││B 3
││├─

3 Cnj │││A ∧ B 2
│├─

2 CR ││⊥ 1
├─

1 RAA│¬ B

One open gap.
¬ (A ∧ B), A / ¬ B[RAA].
Developed.

1.

One open gap.
¬ (A ∧ B)[CR], A, B / ⊥.
Developed.

2.

One open gap.
A, B / A ∧ B[Cnj].
Developed.

3.

Chose first open gap.
A, B /[QED] A.
Closed gap.

4.

One open gap.
A, B /[QED] B.
Closed gap.

5.

No gaps open.6.
 e. │¬ (A ∧ B) 2

│¬ (B ∧ C) 6
├─
││B (4), (8)
│├─
│││││¬ A
││││├─
│││││││●
││││││├─

8 QED│││││││B 7
││││││
││││││││¬ C
│││││││├─
││││││││○ B, ¬ A, ¬ C ⊭ ⊥
│││││││├─
││││││││⊥ 9
││││││├─

9 IP │││││││C 7
│││││├─

7 Cnj ││││││B ∧ C 6
││││├─

6 CR │││││⊥ 5
│││├─

5 IP ││││A 3
│││
││││●
│││├─

4 QED││││B 3
││├─

3 Cnj │││A ∧ B 2
│├─

2 CR ││⊥ 1
├─

1 RAA│¬ B

One open gap.
¬ (A ∧ B), ¬ (B ∧ C) / ¬ B[RAA].
Developed.

1.

One open gap.
¬ (A ∧ B)[CR], ¬ (B ∧ C)[CR], B / ⊥.
Developed by first CR.

2.

One open gap.
¬ (B ∧ C), B / A ∧ B[Cnj].
Developed.

3.

Chose second open gap.
¬ (B ∧ C), B /[QED] B.
Closed gap.

4.

One open gap.
¬ (B ∧ C), B / A[IP].
Developed.

5.

One open gap.
¬ (B ∧ C)[CR], B, ¬ A / ⊥.
Developed.

6.

One open gap.
B, ¬ A / B ∧ C[Cnj].
Developed.

7.

Chose first open gap.
B, ¬ A /[QED] B.
Closed gap.

8.

One open gap.
B, ¬ A / C[IP].
Developed.

9.

One open gap.
B, ¬ A, ¬ C / ⊥.
Dead end.

10.



2. The stages at which choices are made are indicated by references to notes
below that describe the choices that were made.

 a. │A ∧ B 1*
├─

1* Ext │A (3†)
1* Ext │B (4)

│
││●
│├─

3† QED││B 2
│
││●
│├─

4 QED ││A 2
├─

2 Cnj │B ∧ A

│A ∧ B 2†, 5
├─

2† Ext ││A
2† Ext ││B (3‡)

││●
│├─

3‡ QED││B 1*
│
│││¬ A (6)
││├─

5 Ext │││A (6)
5 Ext │││B

│││●
││├─

6 Nc │││⊥ 4§
│├─

4§ IP ││A 1*
├─

1* Cnj │B ∧ A
  * Chose Ext instead of Cnj

† Chose first of 2 gaps
* Chose Cnj instead of Ext
† Chose first of 2 gaps

and Ext instead of IP
‡ Chose first of 2 gaps
§ Chose IP instead of Ext

 b. │¬ (A ∧ B) 3
│B ∧ C 1*
├─

1* Ext │B (6)
1* Ext │C

│
││A (5†)
│├─
││││●
│││├─

5† QED││││A 4
│││
││││●
│││├─

6 QED ││││B 4
││├─

4 Cnj │││A ∧ B 3
│├─

3 CR ││⊥ 2
├─

2 RAA │¬ A

│¬ (A ∧ B) 2†
│B ∧ C 5**
├─
││A (4§)
│├─
││││●
│││├─

4§ QED ││││A 3‡
│││

5** Ext ││││B (6)
5** Ext ││││C

││││●
│││├─

6 QED ││││B 3‡
││├─

3‡ Cnj │││A ∧ B 2†
│├─

2† CR ││⊥ 1*
├─

1* RAA│¬ A

  * Chose Ext instead of RAA
† Chose first of 2 gaps

* Chose RAA instead of Ext
† Chose CR instead of Ext
‡ Chose Cnj instead of Ext
§ Chose first of 2 gaps
** Chose Ext instead of IP

 c. │¬ (A ∧ B) 2*
│¬ (B ∧ C) 6
├─
││B (4†), (8‡)
│├─
│││││¬ A
││││├─
│││││││●
││││││├─

8‡ QED│││││││B 7
││││││
││││││││¬ C
│││││││├─
││││││││○ B,¬ A,¬ C⊭⊥
│││││││├─
││││││││⊥ 9
││││││├─

9 IP │││││││C 7
│││││├─

7 Cnj ││││││B ∧ C 6
││││├─

6 CR │││││⊥ 5
│││├─

5 IP ││││A 3
│││
││││●
│││├─

4† QED││││B 3
││├─

3 Cnj │││A ∧ B 2*
│├─

2* CR ││⊥ 1
├─

1 RAA │¬ B

│¬ (A ∧ B) 5‡
│¬ (B ∧ C) 2*
├─
││B
│├─
││││
│││├─
││││B 3
│││
│││││¬ C
││││├─
│││││││
││││││├─
│││││││B 6**
││││││
││││││││¬ C
│││││││├─
││││││││○ B,¬ A,
││││││││ ¬ C⊭⊥
│││││││├─
││││││││⊥ 7††
││││││├─

7†† IP │││││││C 6**
│││││├─

6** Cnj││││││A ∧ B 5‡
││││├─

5‡ CR │││││⊥ 4†
│││├─

4† IP ││││C 3
││├─

3 Cnj │││B ∧ C 2*
│├─

2* CR ││⊥ 1
├─

1 RAA │¬ B
  * Chose CR on 1  premise instead of 2

† Chose second of 2 gaps
‡ Chose first of 2 gaps

* Chose CR on 2  premise instead of
1

† Chose second of 2 gaps
‡ Chose second of 2 gaps
§ Chose second of 2 gaps
** Chose second of 2 gaps
†† Chose third of 3 gaps
(Notice  that  two  gaps  remain
incomplete at the end. They would close
if attention were turned to them, but the
procedure ends work on a derivation as
soon  as  any  open  gap  has  reached  a
dead end.)
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