
2.4. Using lemmas
2.4.0. Overview
Although our system of derivations as it stands is both sound and complete, we
will add rules that reflect the use of lemmas, both because of the importance of
lemmas  in  ordinary  explicit  deductive  reasoning  and  because  the  sorts  of
organization and simplification they provde in that context are of value for our
work, too.

2.4.1. The dangers of lemmas
Although  the  use  of  lemmas  is  valuable  in  general,  not  all  individual
lemmas are valuable: the uncontrolled use of lemmas can lead us into blind
alleys or delay the progress of a derivation.

2.4.2. Lemmas for reductio arguments
A  lemma  that  is  entailed  by  our  goal  is  safe  (though  not  necessarily
progressive); this means that any lemma is safe when the goal is ⊥.

2.4.3. Attachment rules
Lemmas are certainly safe when we know we can prove them. We will use
such lemmas to add to the available resources. The sentences added in this
way may be more complex than those already present, so this use of lemmas
can interfere with decisiveness.
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2.4.1. The dangers of lemmas

A fully general rule for introducing lemmas was cited in 2.3.4  as an example
of an unsafe rule because the resources of a gap might not entail the lemma
even when the proximate argument of the gap is valid. Such a rule would also
prevent a system from being decisive because it would always be possible to
develop a gap further by introducing a lemma. However, as was noted earlier,
more limited rules for introducing lemmas can be safe, and we will see later
that they can also be progressive. In this section we will look at the problems
posed by lemmas more closely before going on, in 2.4.2  and 2.4.3 , to consider
a couple of special cases where these problems do not arise.

The law for lemmas  of 1.4.6 can be stated as follows:

Γ ⊨ φ if both Γ ⊨ ψ and Γ, ψ ⊨ φ

Let us recall why this is true: any possible world that is a counterexample to
the  first  entailment  will  be  a  counterexample  to  one  of  the  two  on  the
right—the first of them if it makes ψ false and the second if it makes it true. So
if both entailments on the right hold (that is, neither has a counterexample),
then the one on the left will hold, too.

But this principle is stated only as an if claim, and the corresponding only if
statement is not always true. When Γ  ⊨  φ,  we know that Γ,  ψ  ⊨  φ  by the
monotonicity of ⊨ ;  but,  since  φ  and  ψ  need  have  no  connection  with  one
another, knowing that Γ ⊨ φ would by itself give us no reason to suppose that
Γ ⊨ ψ. Of course, in a case where we know that φ ⊨ ψ, we would know Γ ⊨ ψ
because of the chain law, and there are other cases where would know Γ ⊨ ψ
because  of  special  connections  between  Γ  and  ψ.  We will  use  lemmas  in
special cases like these; but, before turning to them, let’s look at what a fully
general rule for lemmas would be like.

If used in tree-form proofs a rule for lemmas would take the following form:

This rule divides the proof of φ into two branches, and represents a division of
the task of proving φ into two components. The first is to prove the lemma ψ,
and the second is to prove φ  using the lemma ψ  in addition to the already
available assumptions and conclusions derived from them. The occurrence of
ψ above φ at the right is intended to indicate that ψ is an assumption from

ψ╱

ψ φ

φ
Lem



which  conclusions  can  be  drawn  in  this  branch,  and  the  slash  through  it
indicates that is not an assumption of the proof after the use of Lem. Such an
assumption is said to be discharged, and we will use the same term when an
assumption is no longer available in a derivation.

The assumption ψ may occur at the tips of several branches on the right, and
it  is  legitimate  to  discharge  some  or  all  of  them.  The  effect  of  Lem  is
understood to be the same as replacing the discharged assumptions ψ in the
right branch with conclusions proved in the way shown by the left branch, so
the effect of the rule is to erase the discharged assumptions as assumptions.

The value of using Lem rather than proving ψ on the right to begin with lies
in allowing us to consider the two components of the argument separately and
to save some work in cases where the assumption ψ appears more than once in
the tree on the right. Both of these functions lie behind the use of lemmas in
mathematical proofs. In the next section, we will see a simple example of the
second sort of use.

The appearance of a corresponding step in a sequent proof is shown below.
Notice that the assumption ψ is dropped between the second of the premise
sequents and the conclusion sequent.

Sequent proofs with such a rule would work in only one direction. The law for
lemmas does  justify  the  conclusion sequent  if  we are  able  to  establish  the
premise sequents, but we cannot go in the other direction. That is, since the
conclusion sequent may hold even if the first of the premise sequents does not
hold,  we  cannot  investigate  the  requirements  for  an  entailment  to  hold  by
moving up from the root.

In the notation of derivations, we use scope lines to mark the scope of added
assumptions, which are marked off from other resources along a scope line by
the  sort  of  horizontal  line  we use  to  indicate  the  premises  of  the  ultimate
argument. In the diagram below, notice that the proximate arguments of the
gaps  before  and  after  the  rule  is  applied  follow  the  pattern  shown  in  the
sequent proof step above.

Γ ⊨ ψ Γ, ψ ⊨ φ

Γ ⊨ φ
law for

lemmas
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││⋯
││
││
││
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││
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││
││
│├─
││φ
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→

│⋯
│
││⋯
││
│││
│││
││├─
│││ψ n
││
│││ψ
││├─
│││
│││
││├─
│││φ n
│├─

n Lem││φ
│⋯

Fig. 2.4.1-1. Developing a derivation by introducing a lemma at stage n (a
rule that will be part of our systems of derivations only in more restricted

forms).

The assumption ψ is available only to the right of its scope line. After that
scope line ends, it is said to have been discharged. The part of the proof in
which this assumption is available corresponds to the right side of the tree in
the tree-form and sequent proofs we have been looking at.

The  effect  of  this  rule  on  an  argument  tree  is  the  following  pattern  of
branching:

Again notice that ψ is added to the premises in the right-hand child, and it is
no longer among the assumptions when we move from this child back down
the tree to its parent. (Nothing rules out the possibility that ψ already appears
in Γ; this would be equivalent to having a tree-form proof in which the use of
Lem discharges only some of the occurrences of the assumption ψ.)

The second of the two new gaps in a derivation developed using Lem should
be, if anything, easier to close than the original gap because it has a further
resource. This increased ease is the point of introducing a lemma. The price we
pay for this is the need to close the first new gap also. If the lemma is properly
chosen, that may also be easier than closing the original gap; but, because this
rule is unsafe, we cannot be sure in general that the first new gap can be closed
at  all  even  if  the  original  one  could  be  closed  eventually  in  other  ways.
Because of this, when lemmas are introduced in ordinary deductive reasoning
we must be prepared to backtrack, to abandon the attempt to work by way of

Γ / ψ Γ, ψ / φ
└───┬───┘

Γ / φ



the  lemma  and  look  for  another  approach  to  the  proof.  The  notation  of
derivations is not designed to incorporate backtracking, so we will use lemmas
only in cases where we can be sure there will be no need to do that.

Indeed, we will not incorporate the rule Lem in the general form given here
into our system of derivations. Instead, we will employ more specific rules that
are based on the idea behind it. Even in cases where we can sure backtracking
is not necessary, the introduction of lemmas could interfere with decisiveness
if there were enough safe lemmas to keep introducing them forever. So our
restrictions on the use of alternatives to Lem will be more severe than would
be required merely to insure their safety.
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2.4.2. Lemmas for reductio arguments
We have seen that one case where a lemma is bound to be safe is when it is
entailed by the goal we seek. That is, we can state following principle:

If φ ⊨ ψ, then Γ ⊨ φ if and only if both Γ ⊨ ψ and Γ, ψ ⊨ φ

which tells us that, when φ ⊨ ψ, it is not only sound but also safe to introduce
a  lemma ψ  in  a  derivation whose  goal  is  φ.  It  is  the  only if  part  of  this
principle—and, more specifically, the part that says Γ ⊨ φ only if Γ ⊨ ψ—that
requires the assumption that φ ⊨ ψ.

In order to apply the idea of this principle in derivations, we can look for
convenient ways of insuring that φ ⊨ ψ. The obvious valid arguments of this
form among those we have identified so far are EFQ and the two forms of Ext.
Although EFQ will prove to be the more important, Ext is a better source of
examples at  the moment and we will  consider it  first.  Here is  a  derivation
which uses the rule Lem to introduce a lemma that is the result of applying left
extraction to the final goal.

 │A ∧ B 1
 ├─
1 Ext │A (5),(9)
1 Ext │B (4)
 │
 │││●
 ││├─
4 QED │││B 3
 ││
 │││●
 ││├─
5 QED │││A 3
 │├─
3 Cnj ││B ∧ A 2
 │
 ││B ∧ A (7),(10)
 │├─
 │││●
 ││├─
7 QED │││B ∧ A 6
 ││
 ││││●
 │││├─
9 QED ││││A 8
 │││
 ││││●
 │││├─
10 QED││││B ∧ A 8
 ││├─
8 Cnj │││A ∧ (B ∧ A) 6
 │├─
6 Cnj ││(B ∧ A) ∧ (A ∧ (B ∧ A)) 2
 ├─
2 Lem │(B ∧ A) ∧ (A ∧ (B ∧ A))

Here the rule Lem is applied at stage 2 with the left component of the goal as
the lemma. This yields a slight shortening of the derivation since we are able



to use the lemma to conclude B ∧ A by QED at stages 7 and 9 rather than
repeating the proof used at stages 3-5 twice.

The  basic  idea  here—isolating  a  component  of  an  argument  to  avoid
repeating it—is an important one. However, the actual simplification in this
case is limited, and we would have few opportunities to use lemmas whose
safety was assured by Ext. So we will not build this use of lemmas into our
system of derivations, it will serve us only as an initial example.

The  pattern  Ex  Falso  Quodlibet  provides  the  basis  for  a  much  more
imporant use of lemmas. An argument whose conclusion is ⊥ is often called a
reductio  argument;  reductio  here is  short  for  the Latin phrase reductio ad
absurdum  (‘reduction to absurdity’). We will often need to use a lemma to
complete such an argument and, since EFQ tells us that ⊥ entails any sentence,
we know that any lemma we choose is safe. We will call the rule implementing
this idea Lemma for Reductio or LFR:

│⋯
│
││⋯
││
││
││
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││
││
││
││
││
││
││
││
│├─
││⊥
│⋯

→

│⋯
│
││⋯
││
│││
│││
││├─
│││φ n
││
│││φ
││├─
│││
│││
││├─
│││⊥ n
│├─

n LFR││⊥
│⋯

Fig. 2.4.2-1. Developing a derivation by introducing a lemma for a reductio
at stage n.

The principle associated with this rule is the following:

Γ ⊨ ⊥ if and only if both Γ ⊨ φ and Γ, φ ⊨ ⊥

Although this follows from the principle stated at the beginning of the section
and  the  validity  of  EFQ,  it  is  instructive  to  look  at  its  justification  more
directly. The if part again is just an instance of the law for lemmas. The only if
part tells us that any interpretation dividing one of the child gaps will also
divide the parent. But this must be so because any interpretation dividing a
child will make the active resources of the parent true (since they all remain
active in each of the children) and every interpretation makes ⊥ false.

Unfortunately, we are not yet in a position to illustrate this rule because we
have no non-trivial examples of formally valid reductio arguments. A reductio
is formally valid only if its premises constitute a formally inconsistent set (that
is, one whose members cannot be all true on any extensional interpretation)
and the only formally inconsistent sets available with our current analyses of
sentences contain ⊥ either as a member or as a component of one. Such a set a
can be shown to entail ⊥ with use of nothing but Ext and QED, so introducing
LFR would merely complicate that argument.

In the next chapter, the rule LFR will serve us as a temporary expedient, but
we will eventually introduce other special rules that are designed to cover the
case where LFR would be most useful, and LFR itself will be ignored. One
reason is that the free use of LFR would undermine decisiveness since the
form of the rule places no constraints on the number of different lemmas that
might  be  introduced.  Something  like  a  limitation  to  sentences  that  already
appear  as  components  of  active resources  and goals  would be sufficient  to
insure decisiveness and would still permit the more important uses of the rule,
but we will not attempt to formulate the sort of restriction that would enable us
to prove decisiveness for a system with LFR. It is simply not important enough
to bother. Apart from its role as a temporary expedient, it will serve us mainly
as  a  way  of  displaying  the  connection  between  the  special  rules  to  be
introduced later and the idea of a lemma.
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2.4.3. Attachment rules
The second sort of case in which use of a lemma is bound to safe is one in
which it is clearly entailed by the available resources. A principle justifying
that use would take the following form:

If Γ ⊨ ψ, then Γ ⊨ φ if and only if Γ, ψ ⊨ φ

If we were to drop the only if, this would be just a another way of stating the
law for lemmas, and we know that Γ ⊨ φ only if Γ, ψ ⊨ φ by monotonicity.

There might seem to be little point in regarding this as a case of a lemma at
all. If a statement is entailed by the resources, why not just have a rule that
allows us to add it to our active resources? Indeed, as far as soundness and
safety are concerned, this would come to the same thing. But this second use
of  lemmas  is  motivated  (as  well  as  constrained)  by  considerations  of
decisiveness. That is, our system is decisive in part because active resources
are added only to reduce the complexity of proximate arguments, and it may be
useful to reach our goal by way of a lemma that is entailed by our resources
but  is  more  complex  than  they  are.  Adding  such  a  sentence  as  an  active
resource would open the door to  going around in circles  in  which we add
complexity only to simplify and then add complexity again, and so on.

When discussing the soundness of QED in 2.3.4 , we saw that it would be
legitimate  for  a  rule  to  close  a  gap  when its  goal  is  not  among its  active
resources—or even among the active resources of  its  ancestor gaps—if the
goal was entailed by available resources. We will not use such a sweeping rule
but we will  introduce a few rules in special cases that add to the available
resources of a gap without changing either its active resources or its goal.

An example is the following way of developing a gap, which we will call
Adjunction:

│⋯
│φ [available]
│⋯
│ψ [available]
│⋯
│
││⋯
││
││
││
││
│├─
││θ
│⋯

→

│⋯
│φ (n)
│⋯
│ψ (n)
│⋯
│
││⋯

n Adj││φ ∧ ψ X
││
││
││
│├─
││θ
│⋯

Fig. 2.4.3-1. Developing a derivation by applying Adj at stage n.

The added conjunction functions as a lemma, so this rule represents a way of
using  lemmas.  However,  it  has  a  number  of  special  features,  both  by
comparison with a rule like LFR and by comparison with other rules we have
seen.

The lemma φ ∧ ψ does not lie to the right of a new scope line, as it does in
the  second  gap  introduced  by  LFR,  for  two  reasons.  First,  we  have  not
branched the gap so the added resource is available throughout the gap. And,
second, we do not need to mark this new resource off as an added assumption
because it is entailed by those already present.

Notice also that we treat this rule not as a way to plan for our goal but
simply as a way to add resources. However, it does not exploit resources in
order to add others and the X to the right of φ ∧ ψ is intended to indicate that
this resource need not be exploited further. One way to think about this is to
suppose that φ ∧ ψ has been introduced as something already exploited. That
is, although it need not have once been an active resource that has since been
exploited (and it  would already be part  of  the available resources if  it  had
been), it has a status similar to such resources.

One example of the use of Adj is provided by the example in 2.4.2  (though
we  are  thinking  of  the  lemma  differently  now:  there  we  thought  of  it  as
something entailed by the goal while here we think of it as something entailed
by the resources).

 │A ∧ B 1
 ├─
1 Ext │A (2), (6)
1 Ext │B (2)
2 Adj │B ∧ A X, (4), (7)
 │
 ││●
 │├─
4 QED││B ∧ A 3
 │
 │││●
 ││├─
6 QED│││A 5
 ││
 │││●
 ││├─
7 QED│││B ∧ A 5
 │├─
5 Cnj ││A ∧ (B ∧ A) 3
 ├─
3 Cnj │(B ∧ A) ∧ (A ∧ (B ∧ A))

With two more uses of Cnj, we would not have needed Adj; and, with two
more uses of Adj, we would not have needed Cnj. Still, it is this sort of mixed
use  of  the  two  rules  that  brings  us  closest  to  typical  patterns  of  explicit
deductive argument.



This example also exhibits the sort of foresight or insight that is required to
Adj and similar  rules.  At stage 2,  after  simplifying our resources as far  as
possible, we look ahead to the analysis of the goal (before we have built that
analysis into our derivation at stages 3 and 5), and we see that we will need to
establish B ∧ A twice to reach it. Noticing that we already have the makings of
this sentence among our resources, we then assemble it using Adj to have it
available for later use.

Adjunction is one example of a group of rules we will refer to as attachment
rules. Any such rule R will exhibit the following general pattern.

│⋯
│resource(s)
│  that entail φ
│⋯
│
││⋯
││
││
││
││
│├─
││ψ
│⋯

→

│⋯
│resource(s) (n)
│  that entail φ
│⋯
│
││⋯

n R││φ X
││
││
││
│├─
││ψ
│⋯

Fig. 2.4.3-2. Developing a derivation by applying an attachment rule R at
stage n.

Since the lemma φ is not an active resource, the proximate argument of child
gap is the same as the parent’s proximate argument. This means that safety and
soundness (even strictness) hold as they would for a gap that is completely
unchanged. A rule like this must be considered when arguing for the soundness
of  rules  like  QED  that  use  merely  available  resources,  but  the  required
argument was already considered in 2.3.4 : an interpretation that divides a gap
and all its ancestors will already make true not only all the available resources
but also any sentence φ that is entailed by them, so we do nothing to change
the situation by adding such a sentence φ to the available resources.

Of course, a rule like Adj does raise questions about decisiveness since the
lemma it introduces is more complex than the premises it is based on. This
increased complexity will be typical of attachment rules and is the reason for
their name. We will not state the sort restriction on the use of attachment rules
that would enable us to prove decisiveness; and, for practical purposes, the
most valuable constraint on their use is simple good sense. But, as a rule of
thumb, it is natural to limit the use of such rules to cases where the lemma is a
component of a goal  or  active resource since such cases will  represent the
principal  grounds  for  using  these  rules  in  any case.  But  it  is  important  to

remember that a sentence is a component of itself, and one common use of
these rules will be to introduce the goal itself as an available resource in order
to apply QED.
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2

3

2.4.s. Summary
Using a lemma is one way of dividing up the work of a proof. We might use
lemmas in derivations by dividing a gap into two gaps, one with the lemma
as a goal and the other with it as a further assumption to use in reaching the
original goal. A rule Lemma (Lem)  that does this is not safe in general, and
we will use only special instances of it.

A lemma is always safe when it is entailed by the current goal. We can use
this idea in reductio arguments , arguments whose goal is ⊥. Since ⊥ entails
any  sentence,  the  rule  that  introduces  lemmas  in  such  circumstances,
Lemma for Reductio (LFR) , will be safe (though some restriction on its use
is needed to insure it is progressive).

A lemma is also safe if we know we can establish it. We will use this sort of
lemma only in attachment rules , rules that add the lemma as an available
but  inactive  resource.  The  first  example  of  this  sort  of  rule  is
Adjunction (Adj)  which  adds  a  conjunction  when  both  conjuncts  are
already  available.  Although  attachment  rules  can  help  us  to  close  gaps
sooner, care is needed in their use if they are to be progressive.

The derivation rules we have so far are summarized in the table below. The
names of the rules are links to the point in the text where they were initially
described; look there to see the actual form taken by the rule.

Rules for developing gaps

for resources for goals

conjunction
φ ∧ ψ Ext Cnj

 Rules for closing gaps

when to close rule

the goal is also
a resource QED

⊤ is the goal ENV

⊥ is a resource EFQ Basic system
  Attachment rule

added resource rule

φ ∧ ψ Adj

Rule for lemmas

prerequisite rule

the goal is ⊥ LFR

Added rules
(optional)
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2.4.x. Exercise questions
Use the basic  system of  derivations along with the attachment  rule  Adj  to
establish the following. These repeat entailments from earlier exercises and
examples (specifically, b and d of exercise 2.2.x.2  and exercises 2 and 4 of
2.3.x). They will work best as exercises in the use of Adj if you avoid using
Cnj.
1. A ⊨ A ∧ A
2. A ∧ B, B ∧ C, C ∧ D ⊨ A ∧ D
3. A ∧ B ⊨ A ∧ (B ∧ A)
4. A, B ∧ C, D ⊨ (C ∧ (B ∧ A)) ∧ B

The exercise machine  doesn’t incorporate attachment rules, so, while it can
generate exercises where Adj would be useful, that rule won’t be used in any
answers it produces.
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2.4.xa. Exercise answers
The answers below avoid the use of Cnj in order to maximize the use of the
rule Adj. In some cases, a mixed use of the two would have produced a more
natural argument.
1. │A (1)

├─
1 Adj │A ∧ A X,(2)

│●
├─

2 QED│A ∧ A
2. │A ∧ B 1

│B ∧ C 2
│B ∧ D 3
├─

1 Ext │A (4)
1 Ext │B
2 Ext │B
2 Ext │C
3 Ext │B
3 Ext │D (4)
4 Adj │A ∧ D X,(5)

│●
├─

5 QED│A ∧ D
3. │A ∧ B 1

├─
1 Ext │A (2),(3)
1 Ext │B (2)
2 Adj │B ∧ A X,(3)
3 Adj │A ∧ (B ∧ A) X,(4)

│●
├─

4 QED│A ∧ (B ∧ A)
4. │A (2)

│B ∧ C 1
│D
├─

1 Ext │B (2),(4)
1 Ext │C (3)
2 Adj │B ∧ A X,(3)
3 Adj │C ∧ (B ∧ A) X,(4)
4 Adj │(C ∧ (B ∧ A)) ∧ B X,(5)

│●
├─

5 QED│(C ∧ (B ∧ A)) ∧ B
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