
2.2. Proofs: analyzing entailment
2.2.0. Overview
We can get some insight into deductive logic by looking at basic principles of
entailment, but more will come by looking at how these principles may be
combined in proofs.

2.2.1. Proofs as trees
The simplest way of combining deductive principles takes the shape of a
tree in which premises, premises from which these premises are concluded,
and so on, grow and branch from the final conclusion.

2.2.2. Derivations
Although writing a proof as a tree can make its structure very explicit, we
will mainly use a compact notation that more closely matches the patterns
that are used when deductive reasoning is put into words.

2.2.3. Rules for derivations
In the context of derivations, principles of entailment take the form of rules
that direct the search for a proof.

2.2.4. An example
All derivations that involve conjunction alone share many features; we will
look closely at one typical example.

2.2.5. Two perspectives on derivations
Derivations have aspects that reflect both tree-form and sequent proofs; the
latter aspect will prove especially important.

2.2.6. More rules
Tautology and absurdity provide a first example of derivation rules for
logical forms other than conjunction.

2.2.7. Resources
In order to plot a course in constructing a proof for a given conclusion, we
need to keep track of not only the premises but also the conclusions that
have already been reached.

Glen Helman 03 Aug 2010

2.2.1. Proofs as trees
Our study of entailments involving conjunction will rest on the principles
discussed in 2.1.1 . These are shown below, in symbolic form on the left and in
English on the right:

φ ∧ ψ ⊨ φ both φ and ψ ⊨ φ
φ ∧ ψ ⊨ ψ both φ and ψ ⊨ ψ
φ, ψ ⊨ φ ∧ ψ φ, ψ ⊨ both φ and ψ.

We will refer to the first two of these patterns as extraction (left and right
extraction to distinguish them) and to the third simply as conjunction. To
establish particular cases of entailment, we will want to put together instances
of these general patterns and, eventually, instances of other patterns, too.

What may be the most direct notation for doing that employs something like
the two-dimensional form we have used for arguments, with the conclusion
below the premises and marked off from them by a horizontal line. In order to
make the premises of a multi-premised argument available to serve as
conclusions of further argument, we will spread them out horizontally. In this
style of notation, the basic patterns for conjunction take the following forms
(where abbreviations of their names are used as labels):

Arguments exhibiting these patterns can be linked by treating the premises
of one argument as conclusions of other arguments. For example, the following
shows that (A ∧ B) ∧ C is a valid conclusion from the two premises A and
B ∧ C:

The ability to put entailments together in this way rests on the general laws of
entailment discussed in 1.4.6 . The law for premises enables us to begin; it
shows that the premises A and B ∧ C entail the tips of the branches of this
tree-like proof. Repeated uses of the chain law then enable us to add
conclusions drawn using the principles for conjunction, and we work our way
down the tree showing that the original set of premises entails each
intermediate conclusion and, eventually, (A ∧ B) ∧ C. For example, just before

φ ∧ ψ

φ
Ext

φ ∧ ψ

ψ
Ext

φ ψ

φ ∧ ψ
Cnj

B ∧ C

B
Ext

A

A ∧ B
Cnj

B ∧ C

C
Ext

(A ∧ B) ∧ C
Cnj

the end, we know that our original premises entail each of the premises of the
final conclusion—i.e., that A, B ∧ C ⊨ A ∧ B and A, B ∧ C ⊨ C. The chain
law then enables us to combine these entailments with the fact that
A ∧ B, C ⊨ (A ∧ B) ∧ C (a case of Conjunction) to show that A, B ∧ C ⊨ (A ∧
B) ∧ C.

The simplicity of these tree-form proofs makes them useful for studying the
general properties of proofs, but actually writing them out can become
awkward. In the next section, we will look at a different sort of notation that
makes it easier to write out proofs. It is most closely tied to a different way of
stating the basic principles for conjunction that builds in the use of the chain
law described above. Rather than pointing to particular valid arguments
involving conjunction, these principles describe general conditions under
which any arguments involving conjunction are valid.

LAW FOR CONJUNCTION AS A PREMISE. Γ, φ ∧ ψ ⊨ χ if and only if
Γ, φ, ψ ⊨ χ

LAW FOR CONJUNCTION AS A CONCLUSION. Γ ⊨ φ ∧ ψ if and only if both
Γ ⊨ φ and Γ ⊨ ψ

These principles can be seen to hold by the comparing the sort of possible
worlds each side of the if and only if rules out.

The if parts of these principles reflect the validity of arguments of the forms
Ext and Cnj, respectively, together with the chain law. The only if parts tell us
that the validity of the arguments on their left sides can always be established
in this way. For example, the only if part of the second tells us that, if a
conjunction is a valid conclusion, then the premises needed to reach it by Cnj
are bound to be valid conclusions also; so it should be possible to establish
what we need to in order to apply Cnj.

When conjunction is the only connective employed in our analysis of
sentences, applying these two principles repeatedly will eventually bring us
back to arguments whose premises and conclusions are all unanalyzed
components. An argument like that will be valid if its conclusion is among its
premises; and, if the unanalyzed components making it up are logically
independent, that is the only way it can be valid. This means that the two
principles for conjunction combine with the law for premises to provide a
complete account of validity for arguments involving only conjunction.

These two principles could be used to show that A, B ∧ C ⊨
(A ∧ B) ∧ C—that is, to show what we showed in the earlier tree-form
proof—in the following way:

Like the tree-form proofs, this second way of writing proofs is being used only
temporarily, but it is useful to have a name for it. It is close in form to a
standard notation for proofs in which the separate claims of entailment are
called sequents, so we will refer to proofs of this sort as sequent proofs.

A sequent proof can be read top to bottom as a tree-form proof like the
earlier one except for two differences: (i) we are now reasoning about claims of
entailment rather than unspecified sentences, and (ii) we are using principles of
entailment rather than valid patterns of argument that apply to sentences of any
sort. The examples we have looked have the further difference that the sequent
proof begins with no assumptions—so the horizontal lines at the top have
nothing above them—since the premises for principles at the next level down
are provided by the law for premises, and that principle states categorically
that certain arguments are valid (rather than making a conditional if and only
if claim).

A sequent proof can also be read from the bottom up—that is, it can be
understood to grow like a tree with a claim of entailment at its root. Looking at
in this way, a sequent proof serves to investigate the conditions under which
the entailment at its root holds. Or, more pointedly, it serves to search for ways
in which that entailment might fail, ways of dividing its premises from its
conclusion. In the example above, that search ends at the tips of branches when
we run into arguments whose conclusions are among their premises.

Any notation for writing out proofs is more than we need to settle questions
of entailment involving only conjunction. But the complications introduced by
the logical forms we will consider in later chapters make it useful to have some
system of notation, and, because we have simpler ways of seeing that
entailments hold in the case of conjunction, it will be easier to see how this
notation works if we develop it now. Neither the tree-form proofs nor the
sequent proofs are the sort of notation we will actually adopt; but that more
compact notation will have ties to both of them, and it will useful to look at
them from time to time since they do exhibit quite clearly some features of the
compact notation that are disguised by its compactness.

Glen Helman 05 Aug 2010

A, B, C ⊨ A
law for
prems.

A, B, C ⊨ B
law for
prems.

A, B, C ⊨ A ∧ B
conj. as

concl.
A, B, C ⊨ C

law for
prems.

A, B, C ⊨ (A ∧ B) ∧ C
conj. as

concl.

A, B ∧ C ⊨ (A ∧ B) ∧ C
conj. as

prem.

2.2.2. Derivations
Both ways of writing proofs that we considered in the last section involved
trees that spread horizontally. The more compact notation that we will actually
use will be more linear, though still somewhat two-dimensional. We will gain
compactness by listing premises and conclusions in a more-or-less vertical way
and by minimizing the repetition of premises that are used draw a number of
conclusions. We will still need a tree structure to keep track of the premises
relevant any given point, but this will involve rather stunted trees that grow
horizontally from left to right.

Compactness is not all we will gain with this notation. It is designed to
incorporate more directly the process of proof discovery, and it will
approximate the ways proofs are normally stated in language. Indeed, although
we will not emphasize this aspect of it, the notation for proofs could be
thought of as a notation for analyzing the form of proofs presented in English
that is in some respects analogous to our symbolic notation for analyzing the
logical forms of sentences.

The system to be developed here falls into a broad class often referred to as
natural deduction systems because they replicate, to some extent, natural
patterns of reasoning. Such systems were first set out in full in the 1930s by G.
Gentzen and also by S. Jaskowski, but some of the key ideas can be found
already in the Stoic philosopher Chrysippus (who lived in the 3rd century
BCE). The notation we will be using is an adaptation of notation introduced by
F. B. Fitch but our approach to these systems will be influenced heavily by the
“semantic tableaux” of E. Beth. (Their ideas are now a little over 50 years old.)

This system, which we will call a system of derivations, will employ a
perspective on proofs that we adopted in the last section whenever we
considered ways of restating claims of entailment. If we ask whether an
entailment holds, we find ourselves faced with the task of reaching the
conclusion from the premises (or showing that it cannot be reached). Let us
think of the conclusion as our goal and of the premises as the resources we
have available in trying to reach that goal. Until we reach the goal, it is
separated from our resources by a gap that it is our aim to close.

We begin in the state shown in Figure 2.2.2-1, with a single gap between the
premises and conclusion the argument whose validity we are trying to
establish.

│premise
│premise ← resources
│premise
├─
│
│ ← gap
│
├─
│conclusion ← goal

Fig. 2.2.2-1. The initial state of a derivation.

The premises of the argument (if it has any) are written above a horizontal
line, and the conclusion is written below a second line. The space in between
the horizontal lines marks the gap and will be filled in with additional
resources and new goals as the derivation develops. (The vertical line on the
left will be discussed later.)

We will approach the problem of closing the initial gap (or showing that it
cannot be closed) step by step. At each step, either we will plan the way a goal
may be reached or we will exploit resources, usually by drawing one or more
conclusions from them. In making a step of either sort, we will restate our
problem with different goals or resources, and we will say that, by this
restatement, we are developing the derivation. When it is seen from this
perspective, the problem of closing a gap is a problem of connecting available
premises with desired conclusions. In developing a derivation, we work
forward from premises and backward from conclusions in hopes of making
this connection.

Either process may lead us to divide a gap in two. In the case of conjunction,
this will happen when we plan to reach a goal φ ∧ ψ by first concluding φ and
ψ separately, for we will then set φ and ψ as separate preliminary goals and
there will be a gap before each of them. This development of our initial
problem by restating it and perhaps dividing it into subproblems will be
expressed in a sort of tree structure. However, a derivation will be written as a
more or less vertical list of sentences. The subgoals that we plan to reach in
order to go on to a further goal will be written one above the other, each
preceded by space for further growth, and conclusions we reach by exploiting
resources will be written in at the top of a gap. In order to indicate the tree
structure of problems and subproblems within this vertical list of sentences, we
will need to mark up the derivation in various ways.

We will employ two main devices for doing this. One is the numbering of
stages and sentences added at those stages. The other device is a system of
vertical lines like the line at the left in Figure 2.2.2-1. These lines will be
called scope lines, and they will serve us in a number of ways. First of all, new

scope lines will be introduced as we analyze goals, with a separate scope line
serving to mark the portion of the derivation devoted to each subgoal. The
scope line will indicate the portion of derivation where a given subgoal is the
goal we are aiming at, and it is in this sense that the scope line marks scope of
the subgoal. As scope lines accumulate, they will be nested, some to the right
of others, in a way that indicates the tree structure of the proofs. In later
chapters, proofs will sometimes involve assumptions beyond the initial
premises, and scope lines will then also serve to mark the portions of a proof
in which these assumptions are operative—that is, they will serve to mark the
scope of assumptions as well as goals. Later still, the scope lines will be
labeled to indicate vocabulary that has a special role in the portion of a
derivation marked by the scope line.

At any stage in the development of a derivation, each gap will have certain
active resources. These are resources available for use in the gap that have not
already been exploited in developing it. They correspond to the premises
appearing to the left of a given turnstile in the sequent proofs discussed in the
last section. Our aim in a developing a gap will thus always be to see whether
the goal of the gap is entailed by its active resources. And this means that the
situation depicted in Figure 2.2.2-1, which is explicit at the beginning of the
derivation, will be replicated, although less explicitly, throughout the
development of a derivation.

Glen Helman 03 Aug 2010

2.2.3. Rules for derivations
One way of developing a gap is to restate our problem so that one of its
resources can be dropped from consideration, perhaps adding others of
equivalent power but simpler form. We will call this process exploitation, and
one example is provided by the way we implement the
law for conjunction as a premise . That principle tells us that anything we can
conclude from premises that include a conjunction can still be concluded if we
replace the conjunction by its two components. In derivations, we will apply
this idea by adding, as further resources, both of the conclusions that can
reached from a conjunction by Ext. By adding both conclusions, we eliminate
any further need to consider the conjunction we are exploiting; but, since both
conclusions may not be needed to reach our ultimate goal, a derivation may
contain conclusions that are never used later.

The derivation rule Extraction thus takes the form shown in Figure 2.2.3-1.

│⋯
│φ ∧ ψ
│⋯
│
││⋯
││
││
││
││⋯
│⋯

→

│⋯
│φ ∧ ψ n
│⋯
│
││⋯

n Ext││φ
n Ext││ψ

││
││⋯
│⋯

Fig. 2.2.3-1. Developing a derivation by exploiting a conjunction at stage n.

On the left, the gap is shown nested inside scope lines (two are shown but
there may be just one or more than two). A conjunction is displayed at the top
to show that it is among resources available for use in this gap. It is shown to
the right of one of the scope lines running to the left of the gap but not to the
right of the other. The requirement this illustrates is that a resource being
exploited need not be inside all the scope lines to the left of the gap but cannot
be inside any extra ones; that is, all lines to the left of the resource being
exploited must continue to the left of the gap it is exploited in.

The right side of the figure illustrates the results of exploiting the
conjunction. When we exploit it, we add its components as new resources at
the top of the gap. If either component of the conjunction should happen to be
already among the active resources of the gap, it would not be necessary to add
this component again; but there is nothing wrong with doing so, and examples
in the text will generally add it. (Although this practice may make the
derivation slightly less compact, it makes it possible to focus solely on the

parts of the derivation that are immediately relevant to the rule—i.e., the ones
displayed in the diagram above.)

The number n of the new stage in the development of the derivation is
written to the right of the conjunction to show that it has been exploited at this
stage, and the stage number is also shown, along with the label Ext, to the left
of each of the two lines that are added. Once the conjunction has been
exploited, it is no longer an active resource for this gap though it could be
active in other gaps (we will see later how to tell). The numbers in a derivation
thus record the order of the development and also provide a way of telling
when and where resources are exploited. These numbers are also one of the
devices derivations use to encode the structure of tree-form proofs: they mark
the relation between premises and conclusion that tree-form proofs marked the
horizontal lines between premises and conclusions. In English argumentation,
words and phrases like therefore, hence, and it follows that indicate the
same sorts of connections in a less explicit way.

Exploiting resources like this is one way to narrow a gap. Another way to
narrow a gap is to restate the problem it represents so that the goal we seek to
reach is replaced by one or more simpler goals. We will call this process goal
planning. The law for conjunction as a conclusion tells us how we may plan for
a goal that is a conjunction. Such a goal is entailed by our active resources if
and only if each of its components is entailed. So the project of reaching a
conjunction φ ∧ ψ from given resources comes to the same thing as
completing two projects—namely, reaching each of the components φ and ψ
from those same resources. This sort of goal planning thus uses Cnj and takes
the form shown in Figure 2.2.3-2.

│⋯
│
││⋯
││
││
││
││
││
││
││
││
││
││
│├─
││φ ∧ ψ
│⋯

→

│⋯
│
││⋯
││
│││
│││
││├─
│││φ n
││
│││
│││
││├─
│││ψ n
│├─

n Cnj││φ ∧ ψ
│⋯

Fig. 2.2.3-2. Developing a derivation by planning for a conjunction at stage n.

On the left, no assumptions are made about the resources, but the goal is

shown as a conjunction. On the right, we have introduced two new gaps, each
with one of the conjunction’s components as its goal. The two new goals bring
with them two scope lines and are marked off by horizontal lines (as was the
initial conclusion) to show that they represent the new material that led to the
use of new scope lines. At the right of each of the new goals is a number
showing the stage at which it was added. The same number appears to the left
of the goal along with the label Cnj.

While in the case of Ext, numbers appeared at the left of the resources that
were added and at the right of the resource being exploited, numbers here
appear on the right of the new goals and at the left of the old one. This is
because the new goals added by Cnj are introduced as premises from which
the old goal may be concluded while the resources added by Ext are added as
conclusions drawn from the resource that is exploited. Still, in both cases the
numbers mark a connection between premises and conclusions. The numbers
also show for both rules how an element of the derivation has been superceded
by new additions. But, in the case of Cnj, this information is also provided by
the added gaps: a gap will always have exactly one goal, and that goal will
appear immediately below it.

The new gaps introduced in planning for a conjunction initially have the
same active resources as the original gap. As resources are exploited in
narrowing one of the gaps, these resources will become inactive for that gap;
but they will remain active for the other gap until they are exploited there.
When a derivation contains more than one gap, the question of where
resources are active becomes important, and something will be said about it
before too long. But, when we are dealing with conjunction alone, it is possible
to exploit the initial resources completely before we plan for goals. As a result,
a general discussion of active and inactive resources can be postponed until we
have considered an actual example of a derivation.

What we cannot postpone is an account of how a gap may be closed. If the
goal of a gap appears also among its resources, the law for premises tells us
that the goal is entailed by these resources. That means we have succeeded in
making a connection between our resources and that goal, and the gap may be
closed. The rule we use to do this is shown in Figure 2.2.3-3 below.

│⋯
│φ [available]
│⋯
│
││⋯
││
│├─
││φ
│⋯

→

│⋯
│φ (n)
│⋯
│
││⋯
││●
│├─

n QED││φ
│⋯

Fig. 2.2.3-3. Closing a gap by locating its goal among its resources.

The label for this rule abbreviates the Latin quod erat demonstrandum
(which might be translated as what was to be proven), a phrase that is
traditionally used when a planned conclusion is reached.

The stage number appears to the left of the goal (along with the label) since
the goal is the conclusion, and it appears to the right of the resource since the
resource is the premise. The latter number is enclosed in parentheses to
indicate that the premise is not here being exploited. Since the gap is closed,
the question whether a resource is active or not becomes moot; but this sort of
notation will be used later in other cases where resources are used without
being replaced by simpler resources of equivalent content, and QED shares
with these rules the feature that the resources to which it is applied do not need
to be active. To make it easy to see that the gap is now closed, we put the
symbol ● (a filled circle) in it. This is really not part of the derivation itself and
is not given a stage number; it instead functions like stage numbers to indicate
the organization of a derivation. Think of an analogy with written language:
the symbol ● marks the end of a series of stages in the way a period marks the
end of a series of words.

Glen Helman 05 Aug 2010

2.2.4. An example
Now, let us look at an example using these rules. The development is shown
stage by stage below. At each stage, new material is shown in red. Resources
that are exploited or goals that are planned for are shown in blue. At each of
the stages 1 and 2, a resource is exploited. The added resources are
conclusions drawn from the exploited resource, so the number of the stage is
written at the left of the resources that are added and at the right of the one that
is exploited.

│(A ∧ B) ∧ C
│D
├─
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
├─
│C ∧ (A ∧ D)

→

│(A ∧ B) ∧ C 1
│D
├─

1 Ext│A ∧ B
1 Ext│C

│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
├─
│C ∧ (A ∧ D)

→

│(A ∧ B) ∧ C 1
│D
├─

1 Ext│A ∧ B 2
1 Ext│C
2 Ext│A
2 Ext│B

│
│
│
│
│
│
│
│
│
│
│
│
│
│
├─
│C ∧ (A ∧ D)

In stages 3 and 4, we plan for goals. The goals we add in each case are
premises from which we plan to conclude the goal we are planning for. The
stage number therefore appears at the right of the new goals and to the left of
the old one.

→

│(A ∧ B) ∧ C 1
│D
├─

1 Ext│A ∧ B 2
1 Ext│C
2 Ext│A
2 Ext│B

│
││
│├─
││C 3
│
││
││
││
││
││
││
││
│├─
││A ∧ D 3
├─

3 Cnj│C ∧ (A ∧ D)

→

│(A ∧ B) ∧ C 1
│D
├─

1 Ext│A ∧ B 2
1 Ext│C
2 Ext│A
2 Ext│B

│
││
│├─
││C 3
│
│││
││├─
│││A 4
││
│││
││├─
│││D 4
│├─

4 Cnj││A ∧ D 3
├─

3 Cnj│C ∧ (A ∧ D)

In the last three stages we close gaps. Although these are separate stages,
they are independent of one another and could have been done in any order, so
all three are shown together. No sentences are added and the stage numbers
merely mark the connection between resources that serve as premises and the
goals that are concluded from them (both shown in blue).

→

│(A ∧ B) ∧ C 1
│D (7)
├─

1 Ext │A ∧ B 2
1 Ext │C (5)
2 Ext │A (6)
2 Ext │B

│
││●
│├─

5 QED││C 3
│
│││●
││├─

6 QED│││A 4
││
│││●
││├─

7 QED│││D 4
│├─

4 Cnj ││A ∧ D 3
├─

3 Cnj │C ∧ (A ∧ D)

If your browser has JavaScript enabled, the diagram below can be used to
display each stage in the development of the derivation we have been
considering.

│(A ∧ B) ∧ C 1
│D (7)
├─

1 Ext │A ∧ B 2
1 Ext │C (5)
2 Ext │A (6)
2 Ext │B

│
││●
│├─

5 QED││C 3
│
│││●
││├─

6 QED│││A 4
││
│││●
││├─

7 QED│││D 4
│├─

4 Cnj ││A ∧ D 3
├─

3 Cnj │C ∧ (A ∧ D)

When this sort of animation is not available, the stage numbers in a completed
derivation can be used to reconstruct its history.

Glen Helman 05 Aug 2010

2.2.5. Two perspectives on derivations
The locations of the stage numbers appearing in a derivation reflect the
patterns of argument on which the derivation rules are based. The label for a
rule always appears to the left of the conclusion of such an argument, and the
number of the stage at which the rule was applied appears not only next to the
label but also to the right of the premises of the argument. A tree form proof
can be reconstructed from the derivation by beginning with the final
conclusion and working backward to the premises from which it was
concluded, the premises from which those were concluded, and so on.

If we apply this idea to the example of the last section (which is reproduced
below), we get the tree-form proof following it.

│(A ∧ B) ∧ C 1
│D (7)
├─

1 Ext │A ∧ B 2
1 Ext │C (5)
2 Ext │A (6)
2 Ext │B

│
││●
│├─

5 QED││C 3
│
│││●
││├─

6 QED│││A 4
││
│││●
││├─

7 QED│││D 4
│├─

4 Cnj ││A ∧ D 3
├─

3 Cnj │C ∧ (A ∧ D)

The sentence B concluded by Ext at the second stage of the derivation does not
appear in the tree-form proof because it is not used as a premise for any later
conclusions, something that can directly determined from the derivation by the
fact that it has no stage number to its right.

Looked at in this way, a derivation could be thought of as the result of

(A ∧ B) ∧ C

C
1 Ext

C
5 QED

(A ∧ B) ∧ C

A ∧ B
1 Ext

A
2 Ext

A
6 QED

D

D
7 QED

A ∧ D
4 Cnj

C ∧ (A ∧ D)
3 Cnj

disassembling a tree-form proof and stacking the pieces up vertically. When
reassembling the tree, we paid no attention to the horizontal organization
provided by scope lines. The order of the stage numbers played no role either:
they could just as well have been arbitrary codes used to mark corresponding
parts of the tree so they could be fit together again. Indeed, even the vertical
order of the lines of the derivation did not matter. Matching numbers on the
left with numbers on the right is all that was necessary to reassemble the tree,
and pieces could have been given to us in an unorganized heap. However, all
these features of derivations, which are not needed to reconstruct a tree-form
proof, do matter for another, and more important, way of looking at
derivations, one in which a derivation is associated with a sequent proof.

To see this association, first use the stage numbers, scope lines, and the
vertical ordering of lines to determine the way the gaps of the derivation
develop over time, beginning with the intial gap, eventually dividing, and
finally closing. That is shown on the right in the diagram below, where the
stages are arrayed left to right and gaps are indicated by circles, with a filled
circle used to indicate closure and an empty circle used to indicate a gap that is
open. Colors are used to emphasize where and when changes occur.

│(A ∧ B) ∧ C 1
│D (7)
├─

1 Ext │A ∧ B 2
1 Ext │C (5)
2 Ext │A (6)
2 Ext │B

│
││●
│├─

5 QED││C 3
│
│││●
││├─

6 QED│││A 4
││
│││●
││├─

7 QED│││D 4
│├─

4 Cnj ││A ∧ D 3
├─

3 Cnj │C ∧ (A ∧ D)

 ○

─○

─○

┌○
│
┤
└○

─○

┌○
┤
└○

─●

─○

─○

─●

─○

─●

0 1 2 3 4 5 6 7

Now turn the tree pattern counterclockwise so that the tree grows upward. The
result is shown on the left below. Then associate with each open gap the
argument whose conclusion is the goal of the gap and whose premises are the
active resources of the gap, a argument that we will refer to as the proximate
argument of the gap. These two steps yield the tree on the right below (where
the fact that an argument is valid is again indicated by a filled circle). Colored

sentences are new additions as the tree grows (something that is shown by the
dashed lines below them); the other sentences at a stage are repeated from
earlier stages. Resources that become inactive and goals that are replaced as
the derivation develops have dashed lines above them.

The tree on the right amounts to a schematic way of writing a sequent proof.
The only differences are the use of the argument slash instead of the entailment
sign and the more graphic indication of the branches. We will call this the
argument tree associated with a derivation. It serves not only to emphasize the
features derivations share with sequent proofs but also to present the sort of
information about derivations that will be needed when we go on (in 2.3) to
consider the general properties of derivations. Indeed, a derivation can be
thought of as an abbreviated way of writing its argument tree.

Glen Helman 03 Aug 2010

7

6

5

4

3

2

1

0

●
│
○
│
○

●
│
○
│
○

●
│
○
│
○
│
○

└┬┘
○

└─┬┘
○
│
○
│
○

●
│

A, B, C, D / C
│

A, B, C, D / C

●
│

A, B, C, D / A
│

A, B, C, D / A

●
│

A, B, C, D / D
│

A, B, C, D / D
│

A, B, C, D / D
└────┬────┘

A, B, C, D / A ∧ D
└───────┬───────┘

A, B, C, D / C ∧ (A ∧ D)
│

A ∧ B, C, D / C ∧ (A ∧ D)
│

(A ∧ B) ∧ C, D / C ∧ (A ∧ D)

2.2.6. More rules
A couple of the principles for ⊤ and ⊥—in particular, with the laws for
⊤ as a conclusion and ⊥ as a premise—have a role to play in derivations. Like
the laws for conjunction, these laws have associated patterns of valid argument:

The label for the second, EFQ, abbreviates the Latin ex falso quodlibet
(which might be translated as from the false, whatever), a traditional way
of stating the law for ⊥ as a premise, and the label for the first, ENV,
abbreviates ex nihilo verum (from nothing, the true), which gives a
corresponding statement of the law for ⊤ as a conclusion.

The two other laws for ⊤ and ⊥ do not have associated patterns of argument
and will not be associated with steps in proofs. The law for ⊤ as a premise
does not point to a pattern of argument whose conclusion could replace ⊤, for
it tells us that ⊤ may simply be dropped from the premises. In fact, it will be
just as easy to retain ⊤ as an active resource but ignore it. And that will make
our handling of ⊤ more like our handling of ⊥. For we cannot apply the
principle for ⊥ as an alternative unless we begin with multiple alternatives or
end with none, so it is not a principle of entailment at all and provides no way
of replacing ⊥ as a conclusion. This does not mean that ⊥ as a conclusion is
insignificant in the way ⊤ is insignificant as a premise, but the role of ⊥ as
conclusion is to mark an entailment as a claim of inconsistency, and such
claims will be established by applying principles to their premises rather than
to their conclusion. (However, we will eventually have some rules for
exploiting resources that we will apply only when the goal is ⊥.)

The principles ENV and EFQ figure in derivations as rules for closing gaps.
In the case of the first, it is enough for a gap to be closed that it have ⊤ as its
goal. No resource is involved, and the stage number appears only as an
annotation to the goal.

│⋯
│
││⋯
││
│├─
││⊤
│⋯

→
│⋯
│
││⋯
││●
│├─

n ENV││⊤
│⋯

Fig. 2.2.6-1. Closing a gap that has ⊤ as its goal.

⊤
ENV

⊥

φ
EFQ

The rule EFQ takes a form much like QED.

│⋯
│⊥
│⋯
│
││⋯
││
│├─
││φ
│⋯

→

│⋯
│⊥ (n)
│⋯
│
││⋯
││●
│├─

n EFQ││φ
│⋯

Fig. 2.2.6-2. Closing a gap that has ⊥ among its resources.

The difference is that having ⊥ as a resource enables us to close a gap no
matter what its goal is. (If the goal also was ⊥, either EFQ or QED could be
used.)

Here are examples of the use of these rules:

│A (5)
│B (3)
├─
│││●
││├─

3 QED│││B 2
││
│││●
││├─

4 ENV│││⊤ 2
│├─

2 Cnj ││B ∧ ⊤ 1
│
││●
│├─

5 QED││A 1
├─

1 Cnj │(B ∧ ⊤) ∧ A

 │A ∧ (⊥ ∧ B) 2
├─

2 Ext │A
2 Ext │⊥ ∧ B 3
3 Ext │⊥ (4),(5)
3 Ext │B

│
││●
│├─

4 EFQ││C 1
│
││●
│├─

5 EFQ││D 1
├─

1 Cnj │C ∧ D

Notice that, while every stage number of the second derivation appears
somewhere among the annotations on its right-hand side, the same is not true
of the first derivation because stage 4 is missing. Of course, that’s because
stage 4 is when we used ENV, and ENV is a valid argument without premises.
Since stage numbers appearing in annotations on the right-hand side of a
derivation mark the use of a line as a premise and ENV is the only form of
argument we have seen so far that has no premises, a use of the rule ENV
should be the only reason for a stage number to appear on the left of a
derivation but not on the right.

You can use this idea as a way of checking for errors, and there are some
further generalizations like this that you can use as checks. We will have no
rules without conclusions, so every stage number should appear somewhere in

the left-hand annotations. And, in a completed derivation whose gaps all close,
all sentences other than assumptions (which, for now, are just the initial
premises) will be conclusions and thus should have annotations on their
left-hand side. Resources that are never used may appear with no annotations
on their right; but, as you are constructing a derivation, it can be very useful to
check for the absence of right-hand annotations because this can lead you to
notice resources that you have not yet exploited. And, when we go on (in 2.3)
to use derivations to show that claims of entailment fail, a check for the
absence of right-hand annotations will be the key test of whether we done
everything possible to complete a derivation.

Glen Helman 05 Aug 2010

2.2.7. Resources
The ideas of available and active resources have been used at several points
already, but they have not yet been explained fully. A resource counts as
available in a gap if it was entered either as one of the initial premises of the
derivation or in the course of developing the gap in question. The system of
scope lines can be used to tell which resources are available in a gap: a
resource is available if every scope line to its left continues unbroken at the left
of the gap.

One way of thinking about this is shown in Figure 2.2.7-1.

│resource(s)
├─
│resource(s)
│
│
││resource(s)
││gap
│├─
││goal
│
│
│
││resource(s)
││
││
│││resource(s)
│││gap
││├─
│││goal
││
││
││
│││resource(s)
│││gap
││├─
│││goal
││
│├─
││goal
│
├─
│goal

Fig. 2.2.7-1. The boxes indicated by the scope lines of a derivation. If
JavaScript is enabled on the browser you are using, moving the cursor over
a resource will color the gaps in which it is available green and shade areas
where it is unavailable. Moving the cursor over a gap will color resources
available in it green and shade areas whose resources are unavailable to it.
The resource or gap that the cursor is over will be colored blue and
underlined.

You may suppose that each scope line indicates the left side of a box and that a
resource is available only to the gaps that are also within the smallest box
containing it.

A resource is active in a gap if it is available in that gap and has not already

been exploited in narrowing it. The easiest way to locate the active resources
of a gap is to scan the available resources and eliminate the inactive ones. To
be inactive in any gap, a resource must have been exploited at some stage. If it
has, there will be an unparenthesized stage number to its right. A resource may
have been exploited only in some gaps and may still remain active in others.
To be inactive in a given gap, the resource must have been exploited in
narrowing the gap. To see whether this is so, we need to check all resources
and goals that were introduced at a stage when the resource was exploited (i.e.,
at a stage whose number appear unparenthesized to the resource’s right). (So
far, we have seen goals introduced only in the course of planning for more
distant goals, but in later chapters they will be introduced as part of the
exploitation of certain resources.) If any such resource or goal is such that the
smallest box containing it also contains the gap we are considering, it was
introduced in the course of developing the gap. A resource may be exploited
more than once, so there may be several stage numbers you will need to check.
If any of them was a stage in which the gap you are considering was
developed, the resource is no longer among the active resources of the gap.
This description of the process may make it sound rather daunting, but in
practice you will find that it is usually obvious which resources have been
exploited in developing a given gap.

The partially developed derivation shown below has been designed to
provide an example of a resource that has been exploited without being
exploited in all gaps in which it is available.

│(A ∧ B) ∧ C 1
├─

1 Ext│A ∧ B 3
1 Ext│C

│
3 Ext││A
3 Ext││B

││
│├─
││A 2
│
│││
││├─
│││B 4
││
│││
││├─
│││C 4
│├─

4 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)

The three steps at the top of the derivation are resources available for each of
the derivation’s three gaps. The first, (A ∧ B) ∧ C, is inactive in all three gaps.
It was exploited at stage 1, and that was the initial stage of development for all

the gaps of the derivation. The second resource, A ∧ B, is inactive for the first
of the gaps (having been exploited at stage 3 in developing this gap), but it is
active for the remaining two gaps since the resources introduced at stage 3 did
nothing to narrow these gaps (as is shown by the fact that the gaps are outside
the smallest box surrounding the resources with 3 at their left). The third
resource C has not been exploited at all (and could not be since it is not a
conjunction), so it is active for all three gaps. Since the resource exploited at
stage 3 must be exploited again in order to close the second gap, it would have
been a little more efficient to exploit this resource before dividing the initial
gap in two; but the derivation as shown is perfectly correct (though still
unfinished).

You may suppose that a given gap can see only those parts of a derivation
that are not boxed off from it—i.e., only those parts all of whose scope lines
continue to the left of the gap. If a stage number appears at the left only in
parts of the derivation that are invisible to the gap, this stage number is also
invisible—even when it appears to the right of resources that are visible.

This idea is illustrated in Figure 2.2.7-2 below where the same derivation is
shown from the perspective of each of the three gaps in turn.

│(A ∧ B) ∧ C 1
├─

1 Ext│A ∧ B 3
1 Ext│C

│
3 Ext││A
3 Ext││B

││gap 1
│├─
││A 2
│
│││
││├─
│││B 4
││
│││
││├─
│││C 4
│├─

4 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)

│(A ∧ B) ∧ C 1
├─

1 Ext│A ∧ B 3
1 Ext│C

│
3 Ext││A
3 Ext││B

││
│├─
││A 2
│
│││gap 2
││├─
│││B 4
││
│││
││├─
│││C 4
│├─

4 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)

│(A ∧ B) ∧ C 1
├─

1 Ext│A ∧ B 3
1 Ext│C

│
3 Ext││A
3 Ext││B

││
│├─
││A 2
│
│││
││├─
│││B 4
││
│││gap 3
││├─
│││C 4
│├─

4 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)

A B C

Fig. 2.2.7-2. A derivation from the perspective of each of its three gaps.

Material that is boxed off from a gap is shown in very light gray. Notice that
the number 3 at the right of the second line is invisible to the second and third
gaps. As we saw earlier, that is because all the development at stage 3 is boxed
off from the second and third gaps.

Any derivation can be thought of as the result of superimposing separate
layers like these. There will be one layer for each gap with a gap’s layer
depicting its perspective on the derivation. This corresponds directly to a
feature of argument trees: a gap can see what is on the path from it back to the
root of the tree, and the superimposing layers to make up a derivation
corresponds to superimposing paths to make up a tree. When we distinguish
the resources available for a gap or determine whether a resource has been
used to narrow a gap, we are really considering that gap’s layer separately,
which is to say we are considering its path to the root apart from paths that
have branched off.

When a gap is divided before a resource is exploited to narrow it, it is
possible to exploit the resource to narrow several gaps at once. This is shown
in the partial derivation below (which has the same initial premises and
conclusion as the one we have been considering).

│(A ∧ B) ∧ C 1
├─

1 Ext│A ∧ B 4
1 Ext│C

│
4 Ext││A
4 Ext││B

││
│├─
││A 2
│

4 Ext│││A
4 Ext│││B

│││
││├─
│││B 3
││
│││
││├─
│││C 3
│├─

3 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)
In this derivation, one of the resources has just been exploited at stage 4 to
narrow two different gaps. Thereafter, it is inactive in these gaps but still active
in the third (where it happens to be unneeded). Some of the resources added at
stage 4 will be invisible to each of the first two gaps; but, because other added
resources are visible, the number 4 at the right is visible from both these gaps.
However, none of the resources added at stage 4 is visible from the third gap,
so the number 4 at the right is not visible from it.

Since we use a similar numerical notation for both resources that are
exploited and goals that have been planned for, you might expect that the

concepts of availability and activity can be applied to goals as well as
resources; and, indeed, they can be. If we were to consider derivations for
conditional exhaustiveness, we would need to engage in the same sort of
accounting for goals that we have been considering for resources. However, in
a system of derivations for entailment alone like the one we will actually use,
each gap has just one active goal, which appears just below the gap. Goals at
earlier stages of a gap’s development (i.e., the goals that are not boxed off from
the gap) could be described as “available”, but they are not available for any
sort of use. In particular, although we can consider all available resources
when looking for a way of closing a gap, it is only the active goal and not any
earlier one that we consider. (Some of the arguments of 2.3.3 could be used to
show that considering all “available” goals would not lead us to count an
invalid argument as valid, but looking at derivations in this way would make
them less like the patterns of ordinary explicit deductive argumentation, which
seem to be focused always on a single conclusion.)

Glen Helman 05 Aug 2010

1

2

3

4

5

6

2.2.s. Summary
Principles of entailment can be applied in concert by using the graphical
idea of a tree—and in more than one way. Tree-form proofs provide a
natural notation for applying the valid patterns of argument Cnj and Ext .
Alternatively, we can consider principles of entailment that state conditions
for the validity of arguments that have conjunctions as conclusions or
as premises . These, too, can be combined in a tree as a sequent proof to
show an argument is valid. A sequent proof can also be thought of as a tree
whose growth traces the conditions that must hold for the argument at its
root to be valid.

In fact, we will use a different, more compact notation for combining
principles of entailment—a kind of natural deduction system that we will
refer as a system of derivations . This notation presents the project of
showing that an entailment holds as the task of closing a gap between its
conclusion, which serves as a goal , and its premises, which serve as
resources . As we narrow the initial gap (and others that result from it), we
develop the derivation. Derivations also have a tree structure displayed in a
system of vertical scope lines which indicate the resources and goals
relevant to various parts of the derivation.

The laws of entailment appear as rules for exploiting resources, planning
for goals, and closing gaps. There are rules for each of the patterns of
argument that figure in tree-form proofs. The key rules for conjunction are
Extraction (Ext) and Conjunction (Cnj) .
Quod Erat Demonstrandum (QED) is used to close a gap when its goal is
among its resources, and the symbol ● (a filled circle) marks a closed gap.

When a derivation is developed, numbers are used along with the labels for
rules to record both the order of the development and the connection
between the premises and conclusions of the rules.

The branching structure of tree-form proofs is replicated in derivations by
the system of cross-references provided by stage numbers. And the
branching structure of sequent proofs lies in the way gaps develop,
something indicated by the order of stage numbers and the arrangement of
scope lines. This structure, together with the proximate argument of each
gap (formed from its active resources and its goal), forms an argument tree .

Principles of entailment for other logical forms will be associated with
further rules. Those for ⊤ and ⊥ are the rules Ex Nihilo Verum (ENV) and

7

Ex Falso Quodlibet (EFQ) , which figure in derivations as rules for closing
gaps.

We keep track of changes in the information contained in goals and
resources by using the scope lines of a derivation to tell in which gaps given
resources are available and in which gaps available resources are still
active.

Glen Helman 05 Aug 2010

2.2.x. Exercise questions

1. Restate the derivation below in two ways: (i) as a tree-form proof,
labeling each horizontal line with the number of the stage at which it is
entered, and (ii) as its associated argument tree. That is, do with it what
is done with the example in 2.2.5 (ignoring the extra decoration, such
as colors and dashed lines, that appeared there).

 │(A ∧ C) ∧ B 1
├─

1 Ext │A ∧ C 2
1 Ext │B (4)
2 Ext │A
2 Ext │C (5)

│
││●
│├─

4 QED││B 3
│
││●
│├─

5 QED││C 3
├─

3 Cnj │B ∧ C

2. Use the system of derivations to establish each of the following claims
of entailment:
a. A ∧ B ⊨ B ∧ A
b. A ⊨ A ∧ A
c. A ∧ (B ∧ C) ⊨ (C ∧ B) ∧ A
d. A, B ∧ C, D ⊨ (C ∧ (B ∧ A)) ∧ B

[The derivation for d will have three premises above the initial
horizontal line.]

e. A ∧ (B ∧ C) ⊨ (B ∧ A) ∧ (C ∧ A)

For more exercises, use the exercise machine .

Glen Helman 03 Aug 2010

2.2.xa. Exercise answers
1.

2. a. │A ∧ B 1
├─

1 Ext │A (4)
1 Ext │B (3)

│
││●
│├─

3 QED││B 2
│
││●
│├─

4 QED││A 2
├─

2 Cnj │B ∧ A
 b. │A (2),(3)

├─
││●
│├─

2 QED││A 1
│
││●
│├─

3 QED││A 1
├─

1 Cnj │A ∧ A

(A ∧ C) ∧ B

B
1 Ext

B
4 QED

(A ∧ C) ∧ B

A ∧ C
1 Ext

C
2 Ext

C
5 QED

B ∧ C
3 Cnj

●
│

A, C, B / B

●
│

A, C, B / C
│

A, C, B / C
└─────┬─────┘

A, C, B / B ∧ C
│

A ∧ C, B / B ∧ C
│

(A ∧ C) ∧ B / B ∧ C

 c. │A ∧ (B ∧ C) 1
├─

1 Ext │A (7)
1 Ext │B ∧ C 2
2 Ext │B (6)
2 Ext │C (5)

│
│││●
││├─

5 QED│││C 4
││
│││●
││├─

6 QED│││B 4
│├─

4 Cnj ││C ∧ B 3
│
││●
│├─

7 QED││A 3
├─

3 Cnj │(C ∧ B) ∧ A
 d. │A (7)

│B ∧ C 1
│D
├─

1 │B (6)
1 │C (5)

│
│││●
││├─

5 QED│││C 3
││
││││●
│││├─

6 QED││││B 4
│││
││││●
│││├─

7 QED││││A 4
││├─

4 Cnj │││B ∧ A 3
│├─

3 Cnj ││C ∧ (B ∧ A) 2
│
││●
│├─
││B 2
├─

2 Cnj │(C ∧ (B ∧ A)) ∧ B 2

 e. │A ∧ (B ∧ C) 1
├─

1 Ext │A (7),(9)
1 Ext │B ∧ C 2
2 Ext │B (6)
2 Ext │C (8)

│
│││●
││├─

6 QED│││B 4
││
│││●
││├─

7 QED│││A 4
│├─

4 Cnj ││B ∧ A 3
│
│││●
││├─

8 QED│││C 5
││
│││●
││├─

9 QED│││A 5
│├─

5 Cnj ││C ∧ A 3
├─

3 Cnj │(B ∧ A) ∧ (C ∧ A)

Glen Helman 03 Aug 2010

