
2.2. Proofs: analyzing entailment
2.2.0. Overview
We can get some insight into deductive logic by looking at basic principles of
entailment, but more will  come by looking at how these principles may be
combined in proofs.

2.2.1. Proofs as trees
The simplest way of combining deductive principles takes the shape of a
tree in which premises, premises from which these premises are concluded,
and so on, grow and branch from the final conclusion.

2.2.2. Derivations
Although writing a proof as a tree can make its structure very explicit, we
will mainly use a compact notation that more closely matches the patterns
that are used when deductive reasoning is put into words.

2.2.3. Rules for derivations
In the context of derivations, principles of entailment take the form of rules
that direct the search for a proof.

2.2.4. An example
All derivations that involve conjunction alone share many features; we will
look closely at one typical example.

2.2.5. Two perspectives on derivations
Derivations have aspects that reflect both tree-form and sequent proofs; the
latter aspect will prove especially important.

2.2.6. More rules
Tautology  and  absurdity  provide  a  first  example  of  derivation  rules  for
logical forms other than conjunction.

2.2.7. Resources
In order to plot a course in constructing a proof for a given conclusion, we
need to keep track of not only the premises but also the conclusions that
have already been reached.
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2.2.1. Proofs as trees
Our  study  of  entailments  involving  conjunction  will  rest  on  the  principles
discussed in 2.1.1 . These are shown below, in symbolic form on the left and in
English on the right:

φ ∧ ψ ⊨ φ both φ and ψ ⊨ φ
φ ∧ ψ ⊨ ψ both φ and ψ ⊨ ψ
φ, ψ ⊨ φ ∧ ψ φ, ψ ⊨ both φ and ψ.

We will  refer  to  the  first  two of  these  patterns  as  extraction  (left  and right
extraction  to  distinguish  them)  and  to  the  third  simply  as  conjunction.  To
establish particular cases of entailment, we will want to put together instances
of these general patterns and, eventually, instances of other patterns, too.

What may be the most direct notation for doing that employs something like
the two-dimensional form we have used for arguments, with the conclusion
below the premises and marked off from them by a horizontal line. In order to
make  the  premises  of  a  multi-premised  argument  available  to  serve  as
conclusions of further argument, we will spread them out horizontally. In this
style of notation, the basic patterns for conjunction take the following forms
(where abbreviations of their names are used as labels):

Arguments exhibiting these patterns can be linked by treating the premises
of one argument as conclusions of other arguments. For example, the following
shows that (A ∧ B) ∧ C is a valid conclusion from the two premises A and
B ∧ C:

The ability to put entailments together in this way rests on the general laws of
entailment discussed in 1.4.6 . The law for premises enables us to begin; it
shows that the premises A and B ∧ C entail the tips of the branches of this
tree-like  proof.  Repeated  uses  of  the  chain  law  then  enable  us  to  add
conclusions drawn using the principles for conjunction, and we work our way
down  the  tree  showing  that  the  original  set  of  premises  entails  each
intermediate conclusion and, eventually, (A ∧ B) ∧ C. For example, just before
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the end, we know that our original premises entail each of the premises of the
final conclusion—i.e., that A, B ∧ C ⊨ A ∧ B and A, B ∧ C ⊨ C. The chain
law  then  enables  us  to  combine  these  entailments  with  the  fact  that
A ∧ B, C ⊨ (A ∧ B) ∧ C (a case of Conjunction) to show that A, B ∧ C ⊨ (A ∧
B) ∧ C.

The simplicity of these tree-form proofs makes them useful for studying the
general  properties  of  proofs,  but  actually  writing  them  out  can  become
awkward. In the next section, we will look at a different sort of notation that
makes it easier to write out proofs. It is most closely tied to a different way of
stating the basic principles for conjunction that builds in the use of the chain
law  described  above.  Rather  than  pointing  to  particular  valid  arguments
involving  conjunction,  these  principles  describe  general  conditions  under
which any arguments involving conjunction are valid.

LAW  FOR  CONJUNCTION  AS  A  PREMISE.  Γ,  φ  ∧  ψ  ⊨  χ  if  and  only  if
Γ, φ, ψ ⊨ χ

LAW FOR CONJUNCTION AS A CONCLUSION. Γ ⊨ φ ∧ ψ if and only if both
Γ ⊨ φ and Γ ⊨ ψ

These principles can be seen to hold by the comparing the sort of possible
worlds each side of the if and only if rules out.

The if parts of these principles reflect the validity of arguments of the forms
Ext and Cnj, respectively, together with the chain law. The only if parts tell us
that the validity of the arguments on their left sides can always be established
in this  way.  For example,  the only if  part  of  the second tells  us  that,  if  a
conjunction is a valid conclusion, then the premises needed to reach it by Cnj
are bound to be valid conclusions also; so it should be possible to establish
what we need to in order to apply Cnj.

When  conjunction  is  the  only  connective  employed  in  our  analysis  of
sentences, applying these two principles repeatedly will  eventually bring us
back  to  arguments  whose  premises  and  conclusions  are  all  unanalyzed
components. An argument like that will be valid if its conclusion is among its
premises;  and,  if  the  unanalyzed  components  making  it  up  are  logically
independent,  that  is  the only way it  can be valid.  This means that  the two
principles  for  conjunction combine with  the  law for  premises  to  provide  a
complete account of validity for arguments involving only conjunction.

These  two  principles  could  be  used  to  show  that  A,  B  ∧  C  ⊨
(A  ∧  B)  ∧  C—that  is,  to  show  what  we  showed  in  the  earlier  tree-form
proof—in the following way:



 

Like the tree-form proofs, this second way of writing proofs is being used only
temporarily,  but  it  is  useful  to have a name for it.  It  is  close in form to a
standard notation for proofs in which the separate claims of entailment are
called sequents, so we will refer to proofs of this sort as sequent proofs.

A sequent proof can be read top to bottom as a tree-form proof like the
earlier one except for two differences: (i) we are now reasoning about claims of
entailment rather than unspecified sentences, and (ii) we are using principles of
entailment rather than valid patterns of argument that apply to sentences of any
sort. The examples we have looked have the further difference that the sequent
proof  begins  with  no assumptions—so the  horizontal  lines  at  the  top have
nothing above them—since the premises for principles at the next level down
are provided by the law for premises, and that principle states categorically
that certain arguments are valid (rather than making a conditional if and only
if claim).

A sequent proof can also be read from the bottom up—that is,  it  can be
understood to grow like a tree with a claim of entailment at its root. Looking at
in this way, a sequent proof serves to investigate the conditions under which
the entailment at its root holds. Or, more pointedly, it serves to search for ways
in which that  entailment  might  fail,  ways of  dividing its  premises from its
conclusion. In the example above, that search ends at the tips of branches when
we run into arguments whose conclusions are among their premises.

Any notation for writing out proofs is more than we need to settle questions
of entailment involving only conjunction. But the complications introduced by
the logical forms we will consider in later chapters make it useful to have some
system  of  notation,  and,  because  we  have  simpler  ways  of  seeing  that
entailments hold in the case of conjunction, it will be easier to see how this
notation  works  if  we develop  it  now.  Neither  the  tree-form proofs  nor  the
sequent proofs are the sort of notation we will actually adopt; but that more
compact notation will have ties to both of them, and it will useful to look at
them from time to time since they do exhibit quite clearly some features of the
compact notation that are disguised by its compactness.
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2.2.2. Derivations
Both ways of writing proofs that we considered in the last section involved
trees that spread horizontally. The more compact notation that we will actually
use will be more linear, though still somewhat two-dimensional. We will gain
compactness by listing premises and conclusions in a more-or-less vertical way
and by minimizing the repetition of premises that are used draw a number of
conclusions. We will still need a tree structure to keep track of the premises
relevant any given point, but this will involve rather stunted trees that grow
horizontally from left to right.

Compactness is  not all  we will  gain with this notation.  It  is  designed to
incorporate  more  directly  the  process  of  proof  discovery,  and  it  will
approximate the ways proofs are normally stated in language. Indeed, although
we  will  not  emphasize  this  aspect  of  it,  the  notation  for  proofs  could  be
thought of as a notation for analyzing the form of proofs presented in English
that is in some respects analogous to our symbolic notation for analyzing the
logical forms of sentences.

The system to be developed here falls into a broad class often referred to as
natural  deduction  systems  because  they  replicate,  to  some  extent,  natural
patterns of reasoning. Such systems were first set out in full in the 1930s by G.
Gentzen and also by S. Jaskowski, but some of the key ideas can be found
already in  the  Stoic  philosopher  Chrysippus  (who lived in  the  3rd century
BCE). The notation we will be using is an adaptation of notation introduced by
F. B. Fitch but our approach to these systems will be influenced heavily by the
“semantic tableaux” of E. Beth. (Their ideas are now a little over 50 years old.)

This  system,  which  we  will  call  a  system of  derivations,  will  employ  a
perspective  on  proofs  that  we  adopted  in  the  last  section  whenever  we
considered  ways  of  restating  claims  of  entailment.  If  we  ask  whether  an
entailment  holds,  we  find  ourselves  faced  with  the  task  of  reaching  the
conclusion from the premises (or showing that it cannot be reached). Let us
think of the conclusion as our goal and of the premises as the resources we
have  available  in  trying  to  reach  that  goal.  Until  we  reach  the  goal,  it  is
separated from our resources by a gap that it is our aim to close.

We begin in the state shown in Figure 2.2.2-1, with a single gap between the
premises  and  conclusion  the  argument  whose  validity  we  are  trying  to
establish.



│premise
│premise ← resources
│premise
├─
│
│ ← gap
│
├─
│conclusion ← goal

Fig. 2.2.2-1. The initial state of a derivation.

The premises of the argument (if it has any) are written above a horizontal
line, and the conclusion is written below a second line. The space in between
the  horizontal  lines  marks  the  gap  and  will  be  filled  in  with  additional
resources and new goals as the derivation develops. (The vertical line on the
left will be discussed later.)

We will approach the problem of closing the initial gap (or showing that it
cannot be closed) step by step. At each step, either we will plan the way a goal
may be reached or we will exploit resources, usually by drawing one or more
conclusions from them. In making a step of either sort,  we will restate our
problem  with  different  goals  or  resources,  and  we  will  say  that,  by  this
restatement,  we  are  developing  the  derivation.  When  it  is  seen  from  this
perspective, the problem of closing a gap is a problem of connecting available
premises  with  desired  conclusions.  In  developing  a  derivation,  we  work
forward from premises and backward from conclusions in hopes of making
this connection.

Either process may lead us to divide a gap in two. In the case of conjunction,
this will happen when we plan to reach a goal φ ∧ ψ by first concluding φ and
ψ separately, for we will then set φ and ψ as separate preliminary goals and
there  will  be  a  gap  before  each  of  them.  This  development  of  our  initial
problem  by  restating  it  and  perhaps  dividing  it  into  subproblems  will  be
expressed in a sort of tree structure. However, a derivation will be written as a
more or less vertical list of sentences. The subgoals that we plan to reach in
order  to go on to a  further  goal  will  be written one above the other,  each
preceded by space for further growth, and conclusions we reach by exploiting
resources will be written in at the top of a gap. In order to indicate the tree
structure of problems and subproblems within this vertical list of sentences, we
will need to mark up the derivation in various ways.

We will employ two main devices for doing this. One is the numbering of
stages and sentences added at those stages. The other device is a system of
vertical  lines like the line at  the left  in Figure 2.2.2-1.  These lines will  be
called scope lines, and they will serve us in a number of ways. First of all, new



scope lines will be introduced as we analyze goals, with a separate scope line
serving to mark the portion of the derivation devoted to each subgoal. The
scope line will indicate the portion of derivation where a given subgoal is the
goal we are aiming at, and it is in this sense that the scope line marks scope of
the subgoal. As scope lines accumulate, they will be nested, some to the right
of  others,  in  a  way that  indicates  the  tree  structure  of  the  proofs.  In  later
chapters,  proofs  will  sometimes  involve  assumptions  beyond  the  initial
premises, and scope lines will then also serve to mark the portions of a proof
in which these assumptions are operative—that is, they will serve to mark the
scope  of  assumptions  as  well  as  goals.  Later  still,  the  scope  lines  will  be
labeled  to  indicate  vocabulary  that  has  a  special  role  in  the  portion  of  a
derivation marked by the scope line.

At any stage in the development of a derivation, each gap will have certain
active resources. These are resources available for use in the gap that have not
already  been  exploited  in  developing  it.  They  correspond  to  the  premises
appearing to the left of a given turnstile in the sequent proofs discussed in the
last section. Our aim in a developing a gap will thus always be to see whether
the goal of the gap is entailed by its active resources. And this means that the
situation depicted in Figure 2.2.2-1, which is explicit at the beginning of the
derivation,  will  be  replicated,  although  less  explicitly,  throughout  the
development of a derivation.
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2.2.3. Rules for derivations
One way of  developing a  gap  is  to  restate  our  problem so  that  one  of  its
resources  can  be  dropped  from  consideration,  perhaps  adding  others  of
equivalent power but simpler form. We will call this process exploitation, and
one  example  is  provided  by  the  way  we  implement  the
law for conjunction as a premise . That principle tells us that anything we can
conclude from premises that include a conjunction can still be concluded if we
replace the conjunction by its two components. In derivations, we will apply
this  idea  by adding,  as  further  resources,  both  of  the  conclusions  that  can
reached from a conjunction by Ext. By adding both conclusions, we eliminate
any further need to consider the conjunction we are exploiting; but, since both
conclusions may not be needed to reach our ultimate goal, a derivation may
contain conclusions that are never used later.

The derivation rule Extraction thus takes the form shown in Figure 2.2.3-1.

│⋯
│φ ∧ ψ
│⋯
│
││⋯
││
││
││
││⋯
│⋯

→

│⋯
│φ ∧ ψ n
│⋯
│
││⋯

n Ext││φ
n Ext││ψ

││
││⋯
│⋯

Fig. 2.2.3-1. Developing a derivation by exploiting a conjunction at stage n.

On the left, the gap is shown nested inside scope lines (two are shown but
there may be just one or more than two). A conjunction is displayed at the top
to show that it is among resources available for use in this gap. It is shown to
the right of one of the scope lines running to the left of the gap but not to the
right  of  the  other.  The requirement  this  illustrates  is  that  a  resource  being
exploited need not be inside all the scope lines to the left of the gap but cannot
be inside any extra ones;  that  is,  all  lines to the left  of  the resource being
exploited must continue to the left of the gap it is exploited in.

The  right  side  of  the  figure  illustrates  the  results  of  exploiting  the
conjunction. When we exploit it, we add its components as new resources at
the top of the gap. If either component of the conjunction should happen to be
already among the active resources of the gap, it would not be necessary to add
this component again; but there is nothing wrong with doing so, and examples
in  the  text  will  generally  add  it.  (Although  this  practice  may  make  the
derivation slightly less compact,  it  makes it  possible to focus solely on the



parts of the derivation that are immediately relevant to the rule—i.e., the ones
displayed in the diagram above.)

The number  n  of  the  new stage in  the  development  of  the  derivation is
written to the right of the conjunction to show that it has been exploited at this
stage, and the stage number is also shown, along with the label Ext, to the left
of  each  of  the  two  lines  that  are  added.  Once  the  conjunction  has  been
exploited, it  is no longer an active resource for this gap though it could be
active in other gaps (we will see later how to tell). The numbers in a derivation
thus record the order of the development and also provide a way of telling
when and where resources are exploited. These numbers are also one of the
devices derivations use to encode the structure of tree-form proofs: they mark
the relation between premises and conclusion that tree-form proofs marked the
horizontal lines between premises and conclusions. In English argumentation,
words and phrases like therefore, hence, and it follows that indicate the
same sorts of connections in a less explicit way.

Exploiting resources like this is one way to narrow a gap. Another way to
narrow a gap is to restate the problem it represents so that the goal we seek to
reach is replaced by one or more simpler goals. We will call this process goal
planning. The law for conjunction as a conclusion tells us how we may plan for
a goal that is a conjunction. Such a goal is entailed by our active resources if
and only if each of its components is entailed. So the project of reaching a
conjunction  φ  ∧  ψ  from  given  resources  comes  to  the  same  thing  as
completing two projects—namely, reaching each of the components φ and ψ
from those same resources. This sort of goal planning thus uses Cnj and takes
the form shown in Figure 2.2.3-2.

│⋯
│
││⋯
││
││
││
││
││
││
││
││
││
││
│├─
││φ ∧ ψ
│⋯

→

│⋯
│
││⋯
││
│││
│││
││├─
│││φ n
││
│││
│││
││├─
│││ψ n
│├─

n Cnj││φ ∧ ψ
│⋯

Fig. 2.2.3-2. Developing a derivation by planning for a conjunction at stage n.

On the  left,  no assumptions  are  made about  the  resources,  but  the  goal  is



shown as a conjunction. On the right, we have introduced two new gaps, each
with one of the conjunction’s components as its goal. The two new goals bring
with them two scope lines and are marked off by horizontal lines (as was the
initial conclusion) to show that they represent the new material that led to the
use of new scope lines. At the right of each of the new goals is a number
showing the stage at which it was added. The same number appears to the left
of the goal along with the label Cnj.

While in the case of Ext, numbers appeared at the left of the resources that
were added and at  the right  of  the resource being exploited,  numbers here
appear on the right of the new goals and at the left of the old one. This is
because the new goals added by Cnj are introduced as premises from which
the old goal may be concluded while the resources added by Ext are added as
conclusions drawn from the resource that is exploited. Still, in both cases the
numbers mark a connection between premises and conclusions. The numbers
also show for both rules how an element of the derivation has been superceded
by new additions. But, in the case of Cnj, this information is also provided by
the added gaps: a gap will always have exactly one goal, and that goal will
appear immediately below it.

The new gaps introduced in planning for a conjunction initially have the
same  active  resources  as  the  original  gap.  As  resources  are  exploited  in
narrowing one of the gaps, these resources will become inactive for that gap;
but they will remain active for the other gap until  they are exploited there.
When  a  derivation  contains  more  than  one  gap,  the  question  of  where
resources are active becomes important, and something will be said about it
before too long. But, when we are dealing with conjunction alone, it is possible
to exploit the initial resources completely before we plan for goals. As a result,
a general discussion of active and inactive resources can be postponed until we
have considered an actual example of a derivation.

What we cannot postpone is an account of how a gap may be closed. If the
goal of a gap appears also among its resources, the law for premises tells us
that the goal is entailed by these resources. That means we have succeeded in
making a connection between our resources and that goal, and the gap may be
closed. The rule we use to do this is shown in Figure 2.2.3-3 below.



│⋯
│φ [available]
│⋯
│
││⋯
││
│├─
││φ
│⋯

→

│⋯
│φ (n)
│⋯
│
││⋯
││●
│├─

n QED││φ
│⋯

Fig. 2.2.3-3. Closing a gap by locating its goal among its resources.

The  label  for  this  rule  abbreviates  the  Latin  quod  erat  demonstrandum
(which  might  be  translated  as  what  was  to  be proven),  a  phrase  that  is
traditionally used when a planned conclusion is reached.

The stage number appears to the left of the goal (along with the label) since
the goal is the conclusion, and it appears to the right of the resource since the
resource  is  the  premise.  The  latter  number  is  enclosed  in  parentheses  to
indicate that the premise is not here being exploited. Since the gap is closed,
the question whether a resource is active or not becomes moot; but this sort of
notation will be used later in other cases where resources are used without
being replaced by simpler resources of equivalent content,  and QED shares
with these rules the feature that the resources to which it is applied do not need
to be active. To make it easy to see that the gap is now closed, we put the
symbol ● (a filled circle) in it. This is really not part of the derivation itself and
is not given a stage number; it instead functions like stage numbers to indicate
the organization of a derivation. Think of an analogy with written language:
the symbol ● marks the end of a series of stages in the way a period marks the
end of a series of words.
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2.2.4. An example
Now, let us look at an example using these rules. The development is shown
stage by stage below. At each stage, new material is shown in red. Resources
that are exploited or goals that are planned for are shown in blue. At each of
the  stages  1  and  2,  a  resource  is  exploited.  The  added  resources  are
conclusions drawn from the exploited resource, so the number of the stage is
written at the left of the resources that are added and at the right of the one that
is exploited.

│(A ∧ B) ∧ C
│D
├─
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
├─
│C ∧ (A ∧ D)

→

│(A ∧ B) ∧ C 1
│D
├─

1 Ext│A ∧ B
1 Ext│C

│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
├─
│C ∧ (A ∧ D)

→

│(A ∧ B) ∧ C 1
│D
├─

1 Ext│A ∧ B 2
1 Ext│C
2 Ext│A
2 Ext│B

│
│
│
│
│
│
│
│
│
│
│
│
│
│
├─
│C ∧ (A ∧ D)

In  stages  3  and  4,  we  plan  for  goals.  The  goals  we  add  in  each  case  are
premises from which we plan to conclude the goal we are planning for. The
stage number therefore appears at the right of the new goals and to the left of
the old one.

→

│(A ∧ B) ∧ C 1
│D
├─

1 Ext│A ∧ B 2
1 Ext│C
2 Ext│A
2 Ext│B

│
││
│├─
││C 3
│
││
││
││
││
││
││
││
│├─
││A ∧ D 3
├─

3 Cnj│C ∧ (A ∧ D)

→

│(A ∧ B) ∧ C 1
│D
├─

1 Ext│A ∧ B 2
1 Ext│C
2 Ext│A
2 Ext│B

│
││
│├─
││C 3
│
│││
││├─
│││A 4
││
│││
││├─
│││D 4
│├─

4 Cnj││A ∧ D 3
├─

3 Cnj│C ∧ (A ∧ D)



In the last three stages we close gaps. Although these are separate stages,
they are independent of one another and could have been done in any order, so
all three are shown together. No sentences are added and the stage numbers
merely mark the connection between resources that serve as premises and the
goals that are concluded from them (both shown in blue).

→

│(A ∧ B) ∧ C 1
│D (7)
├─

1 Ext │A ∧ B 2
1 Ext │C (5)
2 Ext │A (6)
2 Ext │B

│
││●
│├─

5 QED││C 3
│
│││●
││├─

6 QED│││A 4
││
│││●
││├─

7 QED│││D 4
│├─

4 Cnj ││A ∧ D 3
├─

3 Cnj │C ∧ (A ∧ D)

If  your browser  has JavaScript  enabled,  the diagram below can be used to
display  each  stage  in  the  development  of  the  derivation  we  have  been
considering.

│(A ∧ B) ∧ C 1
│D (7)
├─

1 Ext │A ∧ B 2
1 Ext │C (5)
2 Ext │A (6)
2 Ext │B

│
││●
│├─

5 QED││C 3
│
│││●
││├─

6 QED│││A 4
││
│││●
││├─

7 QED│││D 4
│├─

4 Cnj ││A ∧ D 3
├─

3 Cnj │C ∧ (A ∧ D)

When this sort of animation is not available, the stage numbers in a completed
derivation can be used to reconstruct its history.
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2.2.5. Two perspectives on derivations
The  locations  of  the  stage  numbers  appearing  in  a  derivation  reflect  the
patterns of argument on which the derivation rules are based. The label for a
rule always appears to the left of the conclusion of such an argument, and the
number of the stage at which the rule was applied appears not only next to the
label but also to the right of the premises of the argument. A tree form proof
can  be  reconstructed  from  the  derivation  by  beginning  with  the  final
conclusion  and  working  backward  to  the  premises  from  which  it  was
concluded, the premises from which those were concluded, and so on.

If we apply this idea to the example of the last section (which is reproduced
below), we get the tree-form proof following it.

│(A ∧ B) ∧ C 1
│D (7)
├─

1 Ext │A ∧ B 2
1 Ext │C (5)
2 Ext │A (6)
2 Ext │B

│
││●
│├─

5 QED││C 3
│
│││●
││├─

6 QED│││A 4
││
│││●
││├─

7 QED│││D 4
│├─

4 Cnj ││A ∧ D 3
├─

3 Cnj │C ∧ (A ∧ D)

The sentence B concluded by Ext at the second stage of the derivation does not
appear in the tree-form proof because it is not used as a premise for any later
conclusions, something that can directly determined from the derivation by the
fact that it has no stage number to its right.

Looked at  in  this  way,  a  derivation could be thought  of  as  the result  of

(A ∧ B) ∧ C

C
1 Ext

C
5 QED

(A ∧ B) ∧ C

A ∧ B
1 Ext

A
2 Ext

A
6 QED

D

D
7 QED

A ∧ D
4 Cnj

C ∧ (A ∧ D)
3 Cnj



disassembling a tree-form proof and stacking the pieces up vertically. When
reassembling  the  tree,  we  paid  no  attention  to  the  horizontal  organization
provided by scope lines. The order of the stage numbers played no role either:
they could just as well have been arbitrary codes used to mark corresponding
parts of the tree so they could be fit together again. Indeed, even the vertical
order of the lines of the derivation did not matter. Matching numbers on the
left with numbers on the right is all that was necessary to reassemble the tree,
and pieces could have been given to us in an unorganized heap. However, all
these features of derivations, which are not needed to reconstruct a tree-form
proof,  do  matter  for  another,  and  more  important,  way  of  looking  at
derivations, one in which a derivation is associated with a sequent proof.

To see this  association,  first  use the stage numbers,  scope lines,  and the
vertical  ordering  of  lines  to  determine  the  way  the  gaps  of  the  derivation
develop  over  time,  beginning  with  the  intial  gap,  eventually  dividing,  and
finally closing. That is shown on the right in the diagram below, where the
stages are arrayed left to right and gaps are indicated by circles, with a filled
circle used to indicate closure and an empty circle used to indicate a gap that is
open. Colors are used to emphasize where and when changes occur.

│(A ∧ B) ∧ C 1
│D (7)
├─

1 Ext │A ∧ B 2
1 Ext │C (5)
2 Ext │A (6)
2 Ext │B

│
││●
│├─

5 QED││C 3
│
│││●
││├─

6 QED│││A 4
││
│││●
││├─

7 QED│││D 4
│├─

4 Cnj ││A ∧ D 3
├─

3 Cnj │C ∧ (A ∧ D)
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─●
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Now turn the tree pattern counterclockwise so that the tree grows upward. The
result  is  shown on  the  left  below.  Then  associate  with  each  open  gap  the
argument whose conclusion is the goal of the gap and whose premises are the
active resources of the gap, a argument that we will refer to as the proximate
argument of the gap. These two steps yield the tree on the right below (where
the fact that an argument is valid is again indicated by a filled circle). Colored



sentences are new additions as the tree grows (something that is shown by the
dashed lines below them); the other sentences at  a stage are repeated from
earlier stages. Resources that become inactive and goals that are replaced as
the derivation develops have dashed lines above them.

The tree on the right amounts to a schematic way of writing a sequent proof.
The only differences are the use of the argument slash instead of the entailment
sign and the more graphic indication of the branches. We will call this the
argument tree associated with a derivation. It serves not only to emphasize the
features derivations share with sequent proofs but also to present the sort of
information about derivations that will be needed when we go on (in 2.3 ) to
consider  the  general  properties  of  derivations.  Indeed,  a  derivation  can  be
thought of as an abbreviated way of writing its argument tree.
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●
│

A, B, C, D / A
│

A, B, C, D / A

●
│

A, B, C, D / D
│

A, B, C, D / D
│

A, B, C, D / D
└────┬────┘

A, B, C, D / A ∧ D
└───────┬───────┘

A, B, C, D / C ∧ (A ∧ D)
│

A ∧ B, C, D / C ∧ (A ∧ D)
│

(A ∧ B) ∧ C, D / C ∧ (A ∧ D)



2.2.6. More rules
A  couple  of  the  principles  for  ⊤  and  ⊥—in  particular,  with  the  laws  for
⊤ as a conclusion  and ⊥ as a premise—have a role to play in derivations. Like
the laws for conjunction, these laws have associated patterns of valid argument:

 

The  label  for  the  second,  EFQ,  abbreviates  the  Latin  ex falso  quodlibet
(which might be translated as from the false, whatever), a traditional way
of  stating  the  law  for  ⊥  as  a  premise,  and  the  label  for  the  first,  ENV,
abbreviates  ex  nihilo  verum  (from  nothing,  the  true),  which  gives  a
corresponding statement of the law for ⊤ as a conclusion.

The two other laws for ⊤ and ⊥ do not have associated patterns of argument
and will not be associated with steps in proofs. The law for ⊤ as a premise
does not point to a pattern of argument whose conclusion could replace ⊤, for
it tells us that ⊤ may simply be dropped from the premises. In fact, it will be
just as easy to retain ⊤ as an active resource but ignore it. And that will make
our  handling  of  ⊤  more  like  our  handling  of  ⊥.  For  we cannot  apply  the
principle for ⊥ as an alternative  unless we begin with multiple alternatives or
end with none, so it is not a principle of entailment at all and provides no way
of replacing ⊥ as a conclusion. This does not mean that ⊥ as a conclusion is
insignificant in the way ⊤ is insignificant as a premise, but the role of ⊥ as
conclusion is  to  mark an entailment  as  a  claim of  inconsistency,  and such
claims will be established by applying principles to their premises rather than
to  their  conclusion.  (However,  we  will  eventually  have  some  rules  for
exploiting resources that we will apply only when the goal is ⊥.)

The principles ENV and EFQ figure in derivations as rules for closing gaps.
In the case of the first, it is enough for a gap to be closed that it have ⊤ as its
goal.  No  resource  is  involved,  and  the  stage  number  appears  only  as  an
annotation to the goal.

│⋯
│
││⋯
││
│├─
││⊤
│⋯

→
│⋯
│
││⋯
││●
│├─

n ENV││⊤
│⋯

Fig. 2.2.6-1. Closing a gap that has ⊤ as its goal.

 

⊤
ENV

⊥

φ
EFQ



The rule EFQ takes a form much like QED.

│⋯
│⊥
│⋯
│
││⋯
││
│├─
││φ
│⋯

→

│⋯
│⊥ (n)
│⋯
│
││⋯
││●
│├─

n EFQ││φ
│⋯

Fig. 2.2.6-2. Closing a gap that has ⊥ among its resources.

The difference is that having ⊥  as a resource enables us to close a gap no
matter what its goal is. (If the goal also was ⊥, either EFQ or QED could be
used.)

Here are examples of the use of these rules:

│A (5)
│B (3)
├─
│││●
││├─

3 QED│││B 2
││
│││●
││├─

4 ENV│││⊤ 2
│├─

2 Cnj ││B ∧ ⊤ 1
│
││●
│├─

5 QED││A 1
├─

1 Cnj │(B ∧ ⊤) ∧ A

 │A ∧ (⊥ ∧ B) 2
├─

2 Ext │A
2 Ext │⊥ ∧ B 3
3 Ext │⊥ (4),(5)
3 Ext │B

│
││●
│├─

4 EFQ││C 1
│
││●
│├─

5 EFQ││D 1
├─

1 Cnj │C ∧ D

Notice  that,  while  every  stage  number  of  the  second  derivation  appears
somewhere among the annotations on its right-hand side, the same is not true
of the first derivation because stage 4 is missing. Of course, that’s because
stage 4 is when we used ENV, and ENV is a valid argument without premises.
Since  stage  numbers  appearing  in  annotations  on  the  right-hand  side  of  a
derivation mark the use of a line as a premise and ENV is the only form of
argument we have seen so far that has no premises, a use of the rule ENV
should  be  the  only  reason  for  a  stage  number  to  appear  on  the  left  of  a
derivation but not on the right.

You can use this idea as a way of checking for errors, and there are some
further generalizations like this that you can use as checks. We will have no
rules without conclusions, so every stage number should appear somewhere in



the left-hand annotations. And, in a completed derivation whose gaps all close,
all  sentences  other  than  assumptions  (which,  for  now,  are  just  the  initial
premises)  will  be  conclusions  and  thus  should  have  annotations  on  their
left-hand side. Resources that are never used may appear with no annotations
on their right; but, as you are constructing a derivation, it can be very useful to
check for the absence of right-hand annotations because this can lead you to
notice resources that you have not yet exploited. And, when we go on (in 2.3 )
to  use  derivations  to  show that  claims  of  entailment  fail,  a  check  for  the
absence of right-hand annotations will  be the key test  of  whether we done
everything possible to complete a derivation.
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2.2.7. Resources
The ideas of available and active resources have been used at several points
already,  but  they  have  not  yet  been  explained  fully.  A  resource  counts  as
available in a gap if it was entered either as one of the initial premises of the
derivation or in the course of developing the gap in question. The system of
scope  lines  can  be  used  to  tell  which  resources  are  available  in  a  gap:  a
resource is available if every scope line to its left continues unbroken at the left
of the gap.

One way of thinking about this is shown in Figure 2.2.7-1.
   
│resource(s)   
├─   
│resource(s)   
│   
│    
││resource(s)   
││gap   
│├─   
││goal   
│    
│   
│    
││resource(s)   
││   
││    
│││resource(s)   
│││gap   
││├─   
│││goal   
││    
││   
││    
│││resource(s)   
│││gap   
││├─   
│││goal   
││    
│├─   
││goal   
│    
├─   
│goal   

 

Fig.  2.2.7-1.  The boxes  indicated by  the  scope lines  of  a  derivation.  If
JavaScript is enabled on the browser you are using, moving the cursor over
a resource will color the gaps in which it is available green and shade areas
where it is unavailable. Moving the cursor over a gap will color resources
available in it green and shade areas whose resources are unavailable to it.
The  resource  or  gap  that  the  cursor  is  over  will  be  colored  blue  and
underlined.

You may suppose that each scope line indicates the left side of a box and that a
resource is  available only to the gaps that  are also within the smallest  box
containing it.

A resource is active in a gap if it is available in that gap and has not already



been exploited in narrowing it. The easiest way to locate the active resources
of a gap is to scan the available resources and eliminate the inactive ones. To
be inactive in any gap, a resource must have been exploited at some stage. If it
has, there will be an unparenthesized stage number to its right. A resource may
have been exploited only in some gaps and may still remain active in others.
To  be  inactive  in  a  given  gap,  the  resource  must  have  been  exploited  in
narrowing the gap. To see whether this is so, we need to check all resources
and goals that were introduced at a stage when the resource was exploited (i.e.,
at a stage whose number appear unparenthesized to the resource’s right). (So
far, we have seen goals introduced only in the course of planning for more
distant  goals,  but  in  later  chapters  they  will  be  introduced  as  part  of  the
exploitation of certain resources.) If any such resource or goal is such that the
smallest  box containing it  also contains the gap we are considering, it  was
introduced in the course of developing the gap. A resource may be exploited
more than once, so there may be several stage numbers you will need to check.
If  any  of  them  was  a  stage  in  which  the  gap  you  are  considering  was
developed, the resource is no longer among the active resources of the gap.
This  description of  the  process  may make it  sound rather  daunting,  but  in
practice you will  find that  it  is  usually obvious which resources have been
exploited in developing a given gap.

The  partially  developed  derivation  shown  below  has  been  designed  to
provide  an  example  of  a  resource  that  has  been  exploited  without  being
exploited in all gaps in which it is available.

│(A ∧ B) ∧ C 1
├─

1 Ext│A ∧ B 3
1 Ext│C

│
3 Ext││A
3 Ext││B

││
│├─
││A 2
│
│││
││├─
│││B 4
││
│││
││├─
│││C 4
│├─

4 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)

The three steps at the top of the derivation are resources available for each of
the derivation’s three gaps. The first, (A ∧ B) ∧ C, is inactive in all three gaps.
It was exploited at stage 1, and that was the initial stage of development for all



the gaps of the derivation. The second resource, A ∧ B, is inactive for the first
of the gaps (having been exploited at stage 3 in developing this gap), but it is
active for the remaining two gaps since the resources introduced at stage 3 did
nothing to narrow these gaps (as is shown by the fact that the gaps are outside
the  smallest  box  surrounding  the  resources  with  3  at  their  left).  The  third
resource C has not been exploited at all (and could not be since it is not a
conjunction), so it is active for all three gaps. Since the resource exploited at
stage 3 must be exploited again in order to close the second gap, it would have
been a little more efficient to exploit this resource before dividing the initial
gap  in  two;  but  the  derivation  as  shown  is  perfectly  correct  (though  still
unfinished).

You may suppose that a given gap can see only those parts of a derivation
that are not boxed off from it—i.e., only those parts all of whose scope lines
continue to the left of the gap. If a stage number appears at the left only in
parts of the derivation that are invisible to the gap, this stage number is also
invisible—even when it appears to the right of resources that are visible.

This idea is illustrated in Figure 2.2.7-2 below where the same derivation is
shown from the perspective of each of the three gaps in turn.

│(A ∧ B) ∧ C 1
├─

1 Ext│A ∧ B 3
1 Ext│C

│
3 Ext││A
3 Ext││B

││gap 1
│├─
││A 2
│
│││
││├─
│││B 4
││
│││
││├─
│││C 4
│├─

4 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)

│(A ∧ B) ∧ C 1
├─

1 Ext│A ∧ B 3
1 Ext│C

│
3 Ext││A
3 Ext││B

││
│├─
││A 2
│
│││gap 2
││├─
│││B 4
││
│││
││├─
│││C 4
│├─

4 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)

│(A ∧ B) ∧ C 1
├─

1 Ext│A ∧ B 3
1 Ext│C

│
3 Ext││A
3 Ext││B

││
│├─
││A 2
│
│││
││├─
│││B 4
││
│││gap 3
││├─
│││C 4
│├─

4 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)

A B C

Fig. 2.2.7-2. A derivation from the perspective of each of its three gaps.

Material that is boxed off from a gap is shown in very light gray. Notice that
the number 3 at the right of the second line is invisible to the second and third
gaps. As we saw earlier, that is because all the development at stage 3 is boxed
off from the second and third gaps.



Any derivation can be thought of as the result of superimposing separate
layers  like  these.  There  will  be  one  layer  for  each  gap  with  a  gap’s  layer
depicting  its  perspective  on  the  derivation.  This  corresponds  directly  to  a
feature of argument trees: a gap can see what is on the path from it back to the
root  of  the  tree,  and  the  superimposing  layers  to  make  up  a  derivation
corresponds to superimposing paths to make up a tree. When we distinguish
the resources available for a gap or determine whether a resource has been
used to narrow a gap, we are really considering that gap’s layer separately,
which is to say we are considering its path to the root apart from paths that
have branched off.

When a  gap is  divided before  a  resource  is  exploited  to  narrow it,  it  is
possible to exploit the resource to narrow several gaps at once. This is shown
in  the  partial  derivation  below  (which  has  the  same  initial  premises  and
conclusion as the one we have been considering).

│(A ∧ B) ∧ C 1
├─

1 Ext│A ∧ B 4
1 Ext│C

│
4 Ext││A
4 Ext││B

││
│├─
││A 2
│

4 Ext│││A
4 Ext│││B

│││
││├─
│││B 3
││
│││
││├─
│││C 3
│├─

3 Cnj││B ∧ C 2
├─

2 Cnj│A ∧ (B ∧ C)
In this derivation, one of the resources has just been exploited at stage 4 to
narrow two different gaps. Thereafter, it is inactive in these gaps but still active
in the third (where it happens to be unneeded). Some of the resources added at
stage 4 will be invisible to each of the first two gaps; but, because other added
resources are visible, the number 4 at the right is visible from both these gaps.
However, none of the resources added at stage 4 is visible from the third gap,
so the number 4 at the right is not visible from it.

Since  we  use  a  similar  numerical  notation  for  both  resources  that  are
exploited  and goals  that  have  been planned for,  you might  expect  that  the



concepts  of  availability  and  activity  can  be  applied  to  goals  as  well  as
resources;  and,  indeed,  they can be.  If  we were to consider derivations for
conditional  exhaustiveness,  we  would  need  to  engage  in  the  same  sort  of
accounting for goals that we have been considering for resources. However, in
a system of derivations for entailment alone like the one we will actually use,
each gap has just one active goal, which appears just below the gap. Goals at
earlier stages of a gap’s development (i.e., the goals that are not boxed off from
the gap) could be described as “available”, but they are not available for any
sort  of  use.  In  particular,  although we can consider  all  available  resources
when looking for a way of closing a gap, it is only the active goal and not any
earlier one that we consider. (Some of the arguments of 2.3.3  could be used to
show that  considering  all  “available”  goals  would  not  lead  us  to  count  an
invalid argument as valid, but looking at derivations in this way would make
them less like the patterns of ordinary explicit deductive argumentation, which
seem to be focused always on a single conclusion.)
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2.2.s. Summary
Principles of entailment can be applied in concert by using the graphical
idea  of  a  tree—and  in  more  than  one  way.  Tree-form proofs  provide  a
natural notation for applying the valid patterns of argument Cnj  and Ext .
Alternatively, we can consider principles of entailment that state conditions
for  the  validity  of  arguments  that  have  conjunctions  as conclusions  or
as premises . These, too, can be combined in a tree as a sequent proof  to
show an argument is valid. A sequent proof can also be thought of as a tree
whose growth traces the conditions that must hold for the argument at its
root to be valid.

In  fact,  we  will  use  a  different,  more  compact  notation  for  combining
principles of entailment—a kind of natural deduction system  that we will
refer  as  a  system of derivations .  This  notation  presents  the  project  of
showing that an entailment holds as the task of closing a gap  between its
conclusion,  which  serves  as  a  goal ,  and  its  premises,  which  serve  as
resources . As we narrow the initial gap (and others that result from it), we
develop  the derivation. Derivations also have a tree structure displayed in a
system  of  vertical  scope lines  which  indicate  the  resources  and  goals
relevant to various parts of the derivation.

The laws of entailment appear as rules for exploiting  resources, planning
for  goals,  and  closing  gaps.  There  are  rules  for  each  of  the  patterns  of
argument that figure in tree-form proofs. The key rules for conjunction are
Extraction (Ext)  and  Conjunction (Cnj) .
Quod Erat Demonstrandum (QED)  is used to close a gap when its goal is
among its resources, and the symbol ● (a filled circle ) marks a closed gap.

When a derivation is developed, numbers are used along with the labels for
rules  to  record  both  the  order  of  the  development  and  the  connection
between the premises and conclusions of the rules.

The branching structure of tree-form proofs is replicated in derivations by
the  system  of  cross-references  provided  by  stage  numbers.  And  the
branching  structure  of  sequent  proofs  lies  in  the  way  gaps  develop,
something indicated by the order of stage numbers and the arrangement of
scope lines. This structure, together with the proximate argument  of each
gap (formed from its active resources and its goal), forms an argument tree .

Principles  of  entailment  for  other  logical  forms  will  be  associated  with
further rules. Those for ⊤ and ⊥ are the rules Ex Nihilo Verum (ENV)  and



7

Ex Falso Quodlibet (EFQ) , which figure in derivations as rules for closing
gaps.

We  keep  track  of  changes  in  the  information  contained  in  goals  and
resources by using the scope lines of a derivation to tell in which gaps given
resources  are  available  and  in  which  gaps  available  resources  are  still
active.
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2.2.x. Exercise questions

1. Restate the derivation below in two ways: (i) as a tree-form proof,
labeling each horizontal line with the number of the stage at which it is
entered, and (ii) as its associated argument tree. That is, do with it what
is done with the example in 2.2.5  (ignoring the extra decoration, such
as colors and dashed lines, that appeared there).

 │(A ∧ C) ∧ B 1
├─

1 Ext │A ∧ C 2
1 Ext │B (4)
2 Ext │A
2 Ext │C (5)

│
││●
│├─

4 QED││B 3
│
││●
│├─

5 QED││C 3
├─

3 Cnj │B ∧ C

2. Use the system of derivations to establish each of the following claims
of entailment:
a. A ∧ B ⊨ B ∧ A
b. A ⊨ A ∧ A
c. A ∧ (B ∧ C) ⊨ (C ∧ B) ∧ A
d. A, B ∧ C, D ⊨ (C ∧ (B ∧ A)) ∧ B

[The derivation for d will have three premises above the initial
horizontal line.]

e. A ∧ (B ∧ C) ⊨ (B ∧ A) ∧ (C ∧ A)

For more exercises, use the exercise machine .
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2.2.xa. Exercise answers
1.

2. a. │A ∧ B 1
├─

1 Ext │A (4)
1 Ext │B (3)

│
││●
│├─

3 QED││B 2
│
││●
│├─

4 QED││A 2
├─

2 Cnj │B ∧ A
 b. │A (2),(3)

├─
││●
│├─

2 QED││A 1
│
││●
│├─

3 QED││A 1
├─

1 Cnj │A ∧ A

(A ∧ C) ∧ B

B
1 Ext

B
4 QED

(A ∧ C) ∧ B

A ∧ C
1 Ext

C
2 Ext

C
5 QED

B ∧ C
3 Cnj

●
│

A, C, B / B

●
│

A, C, B / C
│

A, C, B / C
└─────┬─────┘

A, C, B / B ∧ C
│

A ∧ C, B / B ∧ C
│

(A ∧ C) ∧ B / B ∧ C



 c. │A ∧ (B ∧ C) 1
├─

1 Ext │A (7)
1 Ext │B ∧ C 2
2 Ext │B (6)
2 Ext │C (5)

│
│││●
││├─

5 QED│││C 4
││
│││●
││├─

6 QED│││B 4
│├─

4 Cnj ││C ∧ B 3
│
││●
│├─

7 QED││A 3
├─

3 Cnj │(C ∧ B) ∧ A
 d. │A (7)

│B ∧ C 1
│D
├─

1 │B (6)
1 │C (5)

│
│││●
││├─

5 QED│││C 3
││
││││●
│││├─

6 QED││││B 4
│││
││││●
│││├─

7 QED││││A 4
││├─

4 Cnj │││B ∧ A 3
│├─

3 Cnj ││C ∧ (B ∧ A) 2
│
││●
│├─
││B 2
├─

2 Cnj │(C ∧ (B ∧ A)) ∧ B 2



 e. │A ∧ (B ∧ C) 1
├─

1 Ext │A (7),(9)
1 Ext │B ∧ C 2
2 Ext │B (6)
2 Ext │C (8)

│
│││●
││├─

6 QED│││B 4
││
│││●
││├─

7 QED│││A 4
│├─

4 Cnj ││B ∧ A 3
│
│││●
││├─

8 QED│││C 5
││
│││●
││├─

9 QED│││A 5
│├─

5 Cnj ││C ∧ A 3
├─

3 Cnj │(B ∧ A) ∧ (C ∧ A)
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